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Abstract: The outbreak of COVID-19 has shocked the entire world with its fairly rapid spread, and
has challenged different sectors. One of the most effective ways to limit its spread is the early and
accurate diagnosing of infected patients. Medical imaging, such as X-ray and computed tomography
(CT), combined with the potential of artificial intelligence (AI), plays an essential role in supporting
medical personnel in the diagnosis process. Thus, in this article, five different deep learning models
(ResNet18, ResNet34, InceptionV3, InceptionResNetV2, and DenseNet161) and their ensemble, using
majority voting, have been used to classify COVID-19, pneumoniæ and healthy subjects using chest
X-ray images. Multilabel classification was performed to predict multiple pathologies for each patient,
if present. Firstly, the interpretability of each of the networks was thoroughly studied using local
interpretability methods—occlusion, saliency, input X gradient, guided backpropagation, integrated
gradients, and DeepLIFT—and using a global technique—neuron activation profiles. The mean micro
F1 score of the models for COVID-19 classifications ranged from 0.66 to 0.875, and was 0.89 for the
ensemble of the network models. The qualitative results showed that the ResNets were the most
interpretable models. This research demonstrates the importance of using interpretability methods to
compare different models before making a decision regarding the best performing model.

Keywords: COVID-19; pneumonia; chest X-ray; multilabel image classification; deep learning; model
ensemble; interpretability analysis

1. Introduction

In 2020, the world witnessed a serious new global health crisis, the outbreak of the
infectious COVID-19 disease, which is caused by severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) [1,2]. Due to its long incubation period and its highly contagious
nature, it is important to identify infected cases early and isolate them from the healthy
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population. To date, viral nucleic acid detection using reverse transcription polymerase
chain reaction (RT-PCR) has been regarded as the gold standard diagnostic method [3].
However, RT-PCR tests have been reported to suffer from a high rate of false negatives
owing to laboratory and sample collection errors [4,5].

However, medical imaging emerges as a great alternative candidate for screening
COVID-19 cases and discriminating them from other conditions, as the majority of infected
patients exhibit abnormalities on medical chest imaging [6–8]. In this context, chest radiog-
raphy (CXR) and computed tomography (CT) are widely utilised in front-line hospitals
for diagnosis [9–11]. In certain instances, chest CT images have been demonstrated to
exhibit higher sensitivity than RT-PCR and have detected COVID-19 infections in patients
with negative RT-PCR results [4,11–13]. Nevertheless, there are numerous advantages to
encourage the use of CXR imaging in clinical practice, such as faster diagnosis, infection
control, and less harmfulness than CT [14,15]. Moreover, X-ray machines are far more
readily available than CT scanners, especially in developing countries. In addition, with the
help of portable X-ray machines, imaging can be performed in isolation rooms, decreasing
the risk of infection transmission during transportation to the CT room, as well as the time
needed for disinfecting the CT equipment and room [16]. Despite its limitations, CXR
is more widely available than CT across the globe and is widely utilised for COVID-19
screening [16].

Airspace opacities or ground-glass opacities (GGO) are commonly reported radio-
logical appearances with COVID-19 [17,18]. Predominant distributions in the bilateral,
peripheral, and lower zones are primarily observed (90%) [19]. However, these manifesta-
tions are very similar to various viral pneumoniæ and other inflammatory and infectious
lung diseases. Therefore, it is difficult for radiologists to discriminate COVID-19 from
other types of pneumoniæ [20]. Expert radiologists are needed to achieve high diagnostic
performance, and the duration of the diagnostic is relatively long.

Artificial intelligence (AI) can play one of the potential roles in strengthening the power
of imaging tools to provide an accurate diagnosis. Many AI applications have focused on
infection quantification and identification to assist radiologists in decision making. The
classification of COVID-19 and other types of pneumonia has been investigated using deep
learning techniques [6,21]. However, due to the "black box" nature, the rationale behind
such techniques is often unknown; hence, these techniques are considered to have low
reliability to be integrated within the clinical workflow. Interpretability techniques, which
show the focus area of such deep learning methods, are potentially needed to build the
confidence of medical practitioners in such methods. Techniques have been proposed that
also involve interpretability to understand the reasoning performed by the model [22].
However, comparative studies of different models based on accuracy and interpretability,
and then verification of the interabilities by doctors. have not been performed. Thereby,
in this work, the authors have considered the state-of-the-art deep learning models to
classify COVID-19 and similar pathologies, along with a thorough look involving doctors
into the interpretability of each of these models. Foremost, motivated by the fact that one
patient can have multiple pathologies at the same time, a multilabel classification was
performed—a task not commonly performed in similar studies. The motivation behind
considering deep learning and not interpretable non-deep learning techniques is owing to
the fact that, in recent times, deep learning techniques have been observed to outperform
others for various radiological applications [23–25].

The remainder of the paper is organised as follows: in Section 1, several related works
are presented and discussed, followed by Section 2, which details the various network
models and interpretability techniques used here, and the approach to dataset creation is
delineated. Section 3 presents the classification results and the interpretability analysis.
The results are then analysed in Section 4, and, finally, Section 5 concludes the work and
provides directions for further research.
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Related Works

The use of artificial intelligence (AI) in healthcare has been developed to support
humans in decision making [26–29]. AI-based knowledge has been combined with medical
imaging to enhance the accuracy of diagnoses of various diseases, such as respiratory
infectious diseases [30] and pulmonary tuberculosis [31], including pandemic diseases such
as H1N1 influenza [32].

The spread of COVID-19 has attracted many researchers to concentrate their efforts
toward developing AI-based disease detection techniques for various medical imaging
modalities. The assistance of deep learning has shown an improvement in binary diagnosis
(presence or absence of COVID-19) from CXR images [33] and a reduction in the workload
of front-line radiologists [34]. Many efforts have been made to perform multiclass classifi-
cation (COVID-19, other types of pneumonia, or healthy) to assist radiologists in decision
making. Narin et al. [7] used ResNet50, InceptionV3, and InceptionResNetV2 models to
classify patients with COVID-19 using CXR images. They demonstrated that the pre-trained
ResNet50 model yields the highest accuracy (98%). However, accuracy is often deemed a
misleading metric in the case of imbalanced datasets. Furthermore, they only discriminated
between healthy subjects and COVID-19, but did not include the other types of pneumonia.
Wang et al. [35] designed COVID-Net using CXR images for the classification of patients
with bacterial pneumonia, viral pneumonia, COVID-19, and also healthy subjects with
a sensitivity of detection of 91% COVID-19. Zhang et al. [6] used a ResNet-based model
to classify COVID-19 and non-COVID-19 patients. They achieved a sensitivity of 96%
and a specificity of 70.7%. Ghoshal et al. [36] presented a drop-weight-based Bayesian
convolutional neural network (BCNN) for CXR-based COVID-19 diagnosis. They found
a drastic correlation between the accuracy of the prediction and the uncertainty of the
model. Awareness of diagnosis decision uncertainty could endorse deep learning-based
applications to be used more and more in clinical routines. Singh et al. [37] proposed
the Gen-ProtoPNet architecture that provides interpretable classifications of COVID-19 in
CXR [37] and CT scans [38], resulting in F1 scores as high as 98%. Furthermore, Shorten
et al. [39] provided a comprehensive survey of different applications of deep learning for
COVID-19. On the other hand, De Falco et al. [40] proposed an interpretable, completely
transparent evolutionary rule-based approach, but only managed to achieve an accuracy of
around 80%. This demonstrates the possible trade-off between transparency and model
performance. Deep learning methods that are interpretable, or that are interpreted using
post hoc methods, can mitigate this trade-off. Although the application of deep learning
methods for COVID-19 lesion detection is not an unexplored topic, including interpretabil-
ity, systematic comparisons of different models in terms of interpretability and verification
of the interpretability results by medical professionals are still missing. These are the
aspects this paper seeks to address, while presenting the importance of evaluating or
comparing models with respect to interpretability along with classification accuracy. It is
noteworthy that these problems and the message of this paper are not limited to COVID-19
classification, but are also applicable to classification problems in general, especially in
high-risk domains like medical imaging.

Although AI-based assistance has been present in the field of radiology for a long time, the
decision-making mechanisms within these “black-box” methods remain questionable. Recently,
research on interpretability has gained more focus. Different interpretability techniques, such as
occlusion [41], saliency [42], guided backpropagation [43], integrated gradients [44], etc., have
been introduced, demonstrating the potential to open these black boxes.

2. Materials and Methods
2.1. Network Models

During the course of this research, various network architectures were explored and
experimented with, including several variants of VGG [45], ResNet [46], ResNeXt [47],
WideResNet [48], Inception [49], and DenseNet [50]. Prior to training on the dataset of this
research work, all the networks were initialised with weights pre-trained on ImageNet.
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After observing the results, five network architectures were shortlisted for further analysis
and also used to create an ensemble using the majority voting strategy for better prediction
performance. The models were selected based on different criteria, such as performance,
complexity of the model, etc. The selected models are discussed in this section, and Table 1
shows the complexity of the models.

Table 1. Number of trainable parameters in each model.

Model No of
Parameters GFLOPs MACs (×109 )

GPU Memory
(Forward +

Backward) in
GB

ResNet18 11,183,694 18.95 9.53 0.15
ResNet34 21,291,854 38.28 19.22 0.22

InceptionV3 24,382,716 35.04 17.63 0.44
DenseNet161 26,502,926 80.73 40.98 1.31

InceptionResNetV2 54,327,982 81.07 40.70 0.72

ResNet:

At the nascent stage of deep learning, the deeper networks faced the problem of
vanishing gradients/exploding gradients [51,52], which hampered convergence. The
deeper network faced another obstacle called degradation, where the accuracy starts to
saturate and degrade rapidly after a certain depth of the network. To overcome these
problems, He et al. [46] designed a new network model called residual network or ResNet,
where the authors came up with ‘Skip Connection’ identity mapping. This does not involve
adding an extra hyperparameter or learnable parameter but just adding the output from
a preceding layer to a subsequent layer. It unleashed the possibility of training deeper
models whilst avoiding these aforementioned issues.

After comparing various versions of ResNet, during this research two different vari-
ants, ResNet18 and ResNet34, were chosen for further analysis.

InceptionNet:

An image can have thousands of salient features. In different images, the focused
features can be in any different part of the image, which makes determining the appropriate
kernel size for a convolution network a very difficult task. A large kernel has a greater focus
on globally distributed information, while a smaller kernel focuses on local information. To
overcome this problem, Szegedy et al. [49] came up with a new network architecture called
InceptionNet or GoogleNet. The authors used filters of multiple sizes to operate on the
same level, which made the network “wider” rather than “deeper”. In order to enhance
computational cost-effectiveness, the authors restricted the number of input channels by
adding an extra 1 × 1 convolution before the 3 × 3 and 5 × 5 convolutions. Adding 1 × 1
convolutions is much cheaper than adding 5 × 5 convolutions. The authors introduced
two auxiliary classifiers to avoid the problem of a vanishing gradient, and an auxiliary loss
is calculated on each of them. The total loss function is a weighted sum of the auxiliary loss
and the real loss.

Excessive reduction in dimensions can cause a loss of information, also known as a
“representational bottleneck”. To overcome this problem and scale the network in ways
that utilise the added computation as efficiently as possible, the authors of InceptionNet
introduced a new idea in another publication by Szegedy et al. [53], factorising convolutions
and aggressive regularisation. The authors factored each 5 × 5 convolution into two 3 × 3
convolution operations to improve computational speed. Furthermore, they factorised the
convolutions of the filter size nxn into a combination of the 1 × n and n × 1 convolutions.
This network is known as InceptionV2.

Szegedy et al. [53] also proposed InceptionV3, which extends InceptionV2 further by
factorising 7 × 7 convolutions, label smoothing, and by adding BatchNorm in the auxiliary
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classifiers. Label smoothing is a type of regularising component added to the loss formula
that prevents the network from becoming too confident about a class.

InceptionV3 ranked in one of the top five positions during the initial trials and therefore
was used for further analysis.

InceptionResNetV2:

The different variants of InceptionNet and ResNet have shown very good performance
with relatively low computational costs. With the hypothesis that residual connections
would cause Inception network training to accelerate significantly, the authors of the
original InceptionNet proposed InceptionResNet [54]. In this, the pooling operation inside
the main inception modules was replaced by the residual connections. Each Inception block
is followed by a filter expansion layer (1 × 1 convolution without activation), which is used
for scaling up the dimensions of the filters back before the residual addition, to match the
input size.

This is one of the networks that has been used in this research, because of its perfor-
mance on the dataset that has been used.

DenseNet:

Huang et al. [50] came up with a very simple architecture to ensure maximum infor-
mation flow between layers of the network. By matching feature map size throughout
the network, they connected all the layers directly to all of their subsequent layers—a
densely connected neural network, or simply known as DenseNet. DenseNet improved the
information flow between layers by proposing this different connectivity pattern. Unlike
many other networks, such as ResNet, DenseNets do not sum the output feature maps of
the layer with the incoming feature maps but concatenate them.

In the preliminary trials of this study, DenseNet161 came out as a winner in terms of
performance. Therefore, DenseNet161 was included in this research.

2.2. Interpretability Techniques

Interpretability techniques can aid in understanding the reasoning of a network for
its predictions. In general, the results of interpretability can be visualised using heatmaps,
where higher values indicate a heightened focus. However, this may vary among differ-
ent interpretability techniques. Typically, the heatmaps are overlaid on top of an input
image to understand at which parts of the image the network is focused to generate the
predictions. The techniques that use a single image at a time for analysis are known as
local interpretability techniques. On the other hand, a global interpretability technique
often pertains to comprehending how the model works—an aggregated behaviour of the
model based on the distribution of the data [55,56]. There are several techniques already in
existence. Some of the methods, such as occlusion, saliency, input X gradient, integrated
gradients, guided backpropagation, DeepLIFT, and neuron activation profiles, which have
been explored in this research, are explained briefly in this section.

Occlusion:

Occlusion is one of the simplest interpretability techniques for image classifications.
This technique helps to understand which features of the image steer the network towards
a particular prediction or which are the most important parts for the network to classify a
certain image. To obtain this answer, Zeiler et al. [41] performed an occlusion technique
by systematically blocking different parts of the input image with a grey square box and
monitoring the output of the classifier. The grey square is applied to the image in a sliding
window manner that moves across the image, obtaining many images, and subsequently
feeds into the trained network to obtain probability scores for a given class for each
mask position.
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Saliency:

In the context of visualisation, saliency refers to a topological representation of the
unique features of an image. Saliency is one of the baseline approaches for the interpretation
of deep learning models. The saliency method of Simonyan et al. [42] returns the gradients
of a model for its respective inputs. Positive values present in the gradients show how a
small change in the input image changes the prediction.

Input X Gradient:

Input X gradient is an extension of the saliency approach. Similarly to the saliency
method of Simonyan et al. [42], this method of Kindermans et al. [57] also takes the
gradients of the output with respect to the input, but additionally multiplies the gradients
by the input feature values.

Guided Backpropagation:

Guided backpropagation, also known as guided saliency, is another visualisation
technique for deep learning classifiers. Guided backpropagation is a combination of vanilla
backpropagation and deconvolution networks (DeConvNet) [43]. In this method, only
positive error signals are backpropagated, and the negative signals are set to zero while
backpropagating through a ReLU unit [58].

Integrated Gradients:

Sundararajan et al. [44] proposed a model interpretability technique, which assigns
an importance score to each of the features of the input by approximating the integral of
the gradients of the output for that input, along the path from the given references for
the input.

DeepLIFT:

Deep Learning Important FeaTures or DeepLIFT, proposed by Shrikumar et al. [59],
is a method to pixel-wise decompose the output prediction of a neural network on a
specific input. This involves backpropagating the contributions of all neurons in the
network to every feature of the input. DeepLIFT compares the activation of each neuron
to its “reference activation”, and then assigns contribution scores based on the difference.
DeepLIFT can also reveal dependencies that might be missed by other approaches by
optionally assigning separate considerations to positive and negative contributions. Unlike
other gradient-based methods, it uses difference from reference, which permits DeepLIFT
to propagate an importance signal, even in situations where the gradient is set to zero.

Neuron Activation Profiles:

The aforementioned interpretability techniques are local methods that help to un-
derstand single predictions of a neural network. To investigate model behaviour more
generally, a global interpretability technique called neuron activation profiles (NAPs) is
employed [60,61]. NAPs describe and contrast the activity of the neural network of sets
of related inputs, for example, of different classes, using an averaging approach. Initially,
the activation values in the layers of interest are obtained by computing a forward pass for
every test image. Then, the average feature maps over each respective group are computed
to characterise the group-specific activity. In addition to characterising the network activa-
tions for a group, further emphasis is given to the differences between the groups. To this
end, the average over all groups is subtracted from each group’s average. These normalised
averaged activation values can be interpreted as the activation difference from the global
average. Positive values indicate a characteristically high neuron activation compared
with the entire dataset, and negative values indicate a comparably low neuron activation.
NAP values are particularly useful to identify which activations differ between groups
of interest and correspondingly indicate the model’s ability to distinguish between the
classes according to the activations. When working with image data, visually interpretable
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plots of NAPs of feature maps can be created. For data that are not visually interpretable,
NAPs can be further used for similarity analyses [61] or for dimensionality reduction-based
visualisation [62].

In order to obtain useful averaging results, this method requires data in which the
objects are at the same location in the images. This alignment is guaranteed through data
preprocessing that resizes and crops the original images.

2.3. Implementation

The models were implemented using PyTorch [63]. An interpretability pipeline for
PyTorch-based classification models was developed with the help of Captum [64]. The
code of this project is available on GitHub: https://github.com/soumickmj/diagnoPP. The
pipeline was later made part of the TorchEsegeta [65].

Training sessions were conducted using Nvidia GeForce 1080 Ti and 2080 Ti GPUs,
each with 11GB of memory. The loss was calculated using binary cross-entropy (BCE) with
logits, which combines the sigmoid layer with the BCE loss to achieve better numerical
stability than using the Sigmoid layer followed by BCE loss separately. The numerical
stability is achieved by using the log-sum-exp trick, which can prevent underflow/overflow
errors. The loss was minimised by optimising the model parameters using the Adam
optimiser [66], with a learning rate of 0.001 and a weight decay of 0.0001. A manual seed
was used to ensure the reproducibility [67] of the models. Automatic mixed precision was
used using Apex [68] to speed up training and decrease GPU memory requirements.

The interpretability methods were applied on the models using Nvidia Tesla V100
GPUs, having 32GB memory each. Some of the interpretability techniques could not be
used on certain models owing to insufficient GPU memory caused by the complexities of
the models.

2.4. Data
2.4.1. Data Collection

The CXR images were collected from two public datasets. The first dataset was
the COVID-19 image data collection by Cohen et al. [21,69], comprising 236 images of
COVID-19, 12 images of COVID-19 and ARDS, 4 images of ARDS, 1 image of Chlamy-
dophila, 1 image of Klebsiella, 2 images of Legionella, 12 images of Pneumocystis, 16 images
of SARS, 13 images of Streptococcus, and 5 images without any pathological findings. The
second dataset was the Chest X-ray Images (Pneumonia) dataset by Kermany et al. [70,71],
which has a total of 1583 images of healthy subjects, 1493 images of viral pneumonia,
and 2780 of bacterial pneumonia. From this dataset, 500 images of healthy subjects, 250
images of viral pneumonia, and 250 images of bacterial pneumonia were randomly chosen.
Figure 1 portrays the final data distribution considered for the work. This CXR image
dataset comprises posterior anterior (PA), anterior superior (AP), and anterior superior
supine (AP supine) radiographs. Whilst the AP view is not the preferred positioning and
has disadvantages such as organ overlap that could interfere with network prediction [72],
it is a technique commonly used for COVID-19 patients in a coma.

The hierarchical nature of the pathologies can be observed in this combined dataset
(see Figure 2). For example, SARS and COVID-19 are subtypes of viral pneumonia. How-
ever, Streptococcus, Klebsiella, Chlamydophila, and Legionella are subtypes of bacterial
pneumonia, and Pneumocystis is a subtype of fungal pneumonia. Furthermore, viral,
bacterial, and fungal pneumoniæ are different types of pneumonia. Therefore, a patient
with COVID-19 inherently has viral pneumonia. ARDS, which stands for acute respi-
ratory distress syndrome, is a serious lung condition with a high mortality rate [73]. It
frequently develops alongside pathological conditions like nonpulmonary sepsis, aspira-
tion, or pneumonia [74]. Although the respiratory pathologies of ARDS (associated with
or without COVID-19) and COVID-19 are similar, COVID-19 has different features that
require different patient management, and a patient suffering from both could require

https://github.com/soumickmj/diagnoPP
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additional care [75–77]. Therefore, the dataset, which comprises cases where a patient has
both COVID-19 and ARDS, is suitable for multilabel classification.

2.4.2. Dataset Preparation

The final dataset was randomly divided into a training set, consisting of 60% of
unique subjects and the remaining 40% of the subjects being used as a test set. Five-fold
cross-validation (CV) was conducted to assess the generalisation capabilities of the models.
The performance of the models during the 5-fold CV is reported in Section 3.1. For the
interpretability analysis, only the results from the first fold were used, as this yielded the
highest micro F1 scores.

Figure 1. CXR images distribution for each infection type in the dataset.

Figure 2. A hierarchy of pathological labels used in this study.

2.4.3. Pre-Processing

The dataset used for the task comprises X-ray images collected at different centres
using different protocols and varying in size and intensity. Therefore, all the images were
initially pre-processed to have the same size. To make the image size uniform throughout
the dataset, each image was interpolated employing bicubic interpolation to have 512 pixels
on the longer side. The pixel count on the shorter side was determined, keeping the aspect
ratio of the original image. Subsequently, zero-padding was applied to the shorter side
to make that side have 512 pixels, resulting in a 512 × 512 image. Image resizing was
followed by percentile cropping, where the image intensity was cropped to the first and
95th percentile, and then the intensity normalisation was performed to the range [0,1].
The percentile cropping normalisation minimises the effect of intensity variation due to
non-biological factors.

2.4.4. Classification Setup

In this multilabel classification setup, the model was trained to identify the disease
and also its supertypes. Therefore, when a network encounters an image of a COVID-19
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patient, it should ideally predict it as pneumonia, viral pneumonia, and COVID-19. When
a network encounters an image of a patient with multiple pathologies, as in this dataset
where some patients have both COVID-19 and ARDS, ideally, the network should classify
it as pneumonia, viral pneumonia, COVID-19, and ARDS. Interpretability analysis was
conducted for each label of each image in the test set.

2.5. Evaluation Metrics

In a multiclass setting, classifiers are generally evaluated with respect to precision,
recall, and F1 metrics. In a multilabel classification setting, these metrics are computed in
two manners: macro and micro averaging [78].

Macro =
1
P

p

∑
i=1

Metric

(
TPi, FPi, TNi, FNi

)
. (1)

As shown in Equation (1), the macro-based metrics are first computed individually
from the true positives (TP), true negatives (TN), false positives (FP), and false negatives
(FN) of each class/pathology and then averaged, where P denotes the number of classes
and Metric ∈ {precision, recall, F1}.

This manner of computation of metrics helps to treat each pathology equally, and the
metric values are significantly influenced by the rarer labels.

Micro = Metric(
p

∑
i=1

TPi,
p

∑
i=1

FPi,
p

∑
i=1

TNi,
p

∑
i=1

FNi). (2)

In micro-based metrics, TP, TN, FP, and FN of each class/pathology are added indi-
vidually and then averaged, as shown in Equation (2). Therefore, the micro-based metrics
portray the aggregated contribution of all classes/pathologies. Therefore, the influence of
the predictions from the minority classes becomes diluted among the contributions from
the majority classes. This makes the micro-based metrics a suitable measure for estimating
the overall performance of the classifier, particularly in scenarios involving imbalanced
datasets. Given the significant imbalance in the utilised dataset, micro-based metrics have
been considered for classifier evaluation [79].

3. Results
3.1. Model Outcome
3.1.1. Overall Comparisons of the Classifiers

Figure 3a shows that the overall performance of the classifiers over pathologies was
similar. Among the non-ensemble models, DenseNet161 performed the best in all metrics.
Although InceptionResNetV2 was the most complex model among all, it yielded the poorest
recall, which implies that the ability of the model to find pathology-affected cases was poor
compared with less complex models. ResNet18 was the least complex model among the
non-ensemble classifiers, ranking second to DenseNet161 with respect to micro F1. The
ensemble produced the best results and the minimum variance in the 5-fold cross-validation,
as presented in Table 2.

Table 2. Performance of all the classifiers with respect to micro-based metrics over 5-folds.

Model Precision Recall F1

DenseNet161 0.864 ± 0.012 0.845 ± 0.015 0.854 ± 0.008
InceptionResNetV2 0.844 ± 0.023 0.787 ± 0.063 0.814 ± 0.042

InceptionV3 0.802 ± 0.065 0.792 ± 0.044 0.796 ± 0.053
ResNet18 0.824 ± 0.014 0.824 ± 0.008 0.824 ± 0.007
ResNet34 0.815 ± 0.022 0.800 ± 0.025 0.807 ± 0.018

Ensemble 0.889 ± 0.010 0.851 ± 0.005 0.869 ± 0.007
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Another interesting observation that could be made is regarding inactive feature maps
(dead neurons). DenseNet161 had the highest percentage of such feature maps—as high
as 99.22% for the middle layer. Although InceptionResNetv2 was the most complex, it
had fewer inactive feature maps than DeseNet161. ResNets, the least complex models in
this study, had the lowest percentage of inactive feature maps (48.44% and 60.16% for the
middle layers of ResNet18 and ResNet34, respectively).

3.1.2. Comparisons of the Classifiers for Different Pathologies

The authors also compared the classifiers’ performance at the pathology level. The
average metric values across five cross-validation folds are depicted in Figure 3b–f for
COVID-19, pneumonia, viral pneumonia, bacterial pneumonia, and healthy subjects, re-
spectively. When comparing the models using the average F1, it was observed that the
performance of most models for COVID-19, pneumonia, and healthy was good, except for
the performance of InceptionResNetV2 for COVID-19 cases. Among all models, the results
of DenseNet161 were the most promising for all diseases. For the COVID-19 classification,
DenseNet161 performed the best, and ResNet18 was in second position. DenseNet161
performed the best for pneumonia. InceptionResNetV2 provided the highest performance
for the classification of viral pneumonia. Lastly, InceptionV3 gave the highest scores for
bacterial pneumonia.

(a) Micro metrics (b) COVID-19 (c) Pneumonia

(d) Viral Pneumonia (e) Bacterial Pneumonia (f) Healthy subjects
Figure 3. Comparison of the classifiers based on micro metrics (a) and their performance for the
different classes (b–f).

3.2. Interpretability of Models

In Section 3.2.1, different interpretability techniques are explored for different clas-
sifiers with respect to the different diseases. Section 3.2.2 talks about how the different
models performed for specific pathologies.

All the given interpretability analyses (except using the global method NAP) were
performed for that specific input CXR image that was shown as the underlay. In the
interpretability analysis using NAP, all images from the test set were used, as this method
performs a global analysis.

3.2.1. Pathology-Based Comparisons of Local Interpretability Techniques for Models

To visualise the results for a specific case, the models were interpreted using local
methods: occlusion, saliency, input X gradient, guided backpropagation, and integrated
gradients, and are shown in Figures 4–6. Apart from occlusion, the other interpretability
techniques failed to run for DenseNet161 due to GPU memory limitations. in DeepLIFT,
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ResNets faced an additional challenge due to the ReLU operations used “in place” in those
models. Models have to be updated to run DeepLIFT on them.

Figure 4. Comparison of various interpretability techniques with respect to models for COVID-19
predictions against the manual annotation of the affected areas by medical experts.
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Figure 5. Comparison of various interpretability techniques with respect to models for pneumonia
predictions against the manual annotation of the affected areas by medical experts.
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Figure 6. Comparison of various interpretability techniques with respect to models for viral pneumo-
nia predictions against the manual annotation of the affected areas by medical experts.

According to the clinical findings of the COVID-19 image data provided by
Cohen et al. [21], multiple abnormalities of the lungs were located in the upper and lower
pulmonary field, as well as the upper left part of the lung. The models classified this case as
COVID-19, pneumonia, and viral pneumonia responding to the pathology of lung infection.
It can be seen that the focus area of the models for COVID-19 differs from the focus area for
pneumonia and viral pneumonia. DenseNet161 and InceptionResNetV2 focused primarily
on the right lung. InceptionV3, ResNet18, and ResNet34 covered both the right and left
parts, not only the lesion but also the irrelevant regions outside the lung.
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Local interpretability methods suffered mainly from false positives. In some cases,
the occlusion did not detect the affected areas for DenseNet161 and InceptionResNetV2
and falsely marked the normal areas as positive, as shown in Figure 4. Furthermore,
for InceptionV3, it detected some positive patches, but falsely detected more areas as
positive. Finally, in general, for ResNets, occlusion was most sensitive to positive areas and
detected fewer false negatives. Guided backpropagation, saliency, integrated gradients,
and DeepLIFT in general falsely detected normal lung areas as positive—they picked
up normal bronchovascular markings as positive and did not mark the actual affected
areas. The input X gradient detected some positive areas correctly for ResNet18, but falsely
marked many normal areas. In general, the representations learnt by the ResNet models
captured the most accurate regions, as seen from most interpretability techniques, with
fewer false negatives. Among the local interpretability techniques, occlusion provided
the best guidance in finding clinically important areas, which were confirmed by medical
experts.

3.2.2. Intense Interpretability
The failure case of the best performing model for COVID-19 classification:

Although DenseNet161 performed the best among all models, it gave false negatives
for some of the COVID-19 patients, while the rest of the models, including the ensemble,
predicted correctly. The occlusion results of the models can be observed in Figure 7. This
figure shows that DenseNet161 and InceptionResnetV2 did not focus on any affected areas,
but rather on other regions (e.g., normal right hilum). InceptionV3, ResNet18, and ResNet34
mainly focused on affected areas with good sensitivity. InceptionV3, however, had more
false positives than ResNets (e.g., outside the right lung).

Another analysis was performed with CXR of a 70-year-old woman who had three
days of cough, myalgia, and fever, without any recent overseas travel. A series of chest
radiographs were obtained before confirmation of coronavirus infection, and follow-ups
were performed at three days, seven days, and nine days, which showed the progression of
radiographic changes. In the image prior to COVID-19, both models falsely detected all
normal areas as relevant features. In the image of day 3, the doctor could not visually detect
any affected area, although this was the image from the third day after testing positive
for COVID-19. This may indicate that, when no substantial affected area can be seen in
the image visually (i.e., day 3), the model might be picking up some mild markers, which
cannot be confirmed visually. In the images of days seven and nine, DesNet161 did not
focus correctly on the affected regions and had both false positives and false negatives,
while ResNet18 focused on the affected regions more accurately.

ResNet18 can be considered the overall winner, as it yielded high evaluation scores,
despite having the least number of network parameters. Furthermore, its interpretability
analysis showed the location of the lesion, which allows us to use this network for follow-up
or severity estimations, as illustrated in Figure 8.

Figure 7. A case-study of DenseNet161 failure using occlusion. The affected areas in the lungs have
been annotated by medical experts.
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Figure 8. Comparison using occlusion between DenseNet161 and ResNet18 for a specific COVID-19
follow-up case. The affected areas in the lungs have been annotated by medical experts.

Representations in DenseNet161 and ResNet18:

In addition to individual failure cases, the authors further investigated how the COVID-19
and pneumonia pathologies are represented in the neuron activations of DenseNet161 and
ResNet18 compared with healthy individuals. This representation analysis was performed
using NAPs—a global interpretability technique. In general, in a well-generalised model, larger
neuron activation differences are expected between different pathologies and healthy subjects in
the lungs than in other image areas. If activity differences are observed in other regions, this
indicates that the model exploits biologically irrelevant features to discriminate the classes.

To find potentially exploitable features, the input averages (input layer NAPs) were first
investigated in Figure 9 (left). It can be observed that pneumonia images cover a smaller
portion of the height dimension than COVID-19 or healthy subject images. This means that
there are dark top and bottom regions in the majority of pneumonia images. Based on this
observation, the authors hypothesised that a model might exploit this non-biological feature.
To investigate this hypothesis, the feature map NAPs of DenseNet161 and ResNet18 in an
early and deep layer, respectively, were visualised. The authors particularly investigated
layers at representative depths of the networks. For DenseNet161, the ReLU-activated
outputs of the first and last dense blocks were chosen. As representative layers of ResNet18,
the outputs after the first and last residual connections were selected. For these layers, two
exemplary feature map NAPs among those of the highest activity differences between the
observed classes are shown in Figure 9. In DenseNet161, one can clearly observe activation
differences in both the border regions and the lung. For example, COVID-19 images are
easy for the model to distinguish based on the activation difference corresponding to not
having dark regions at the bottom and top of the images. In the deeper layer, the activation
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difference patterns do not resemble any interpretable structure, neither in the lungs nor
in the lower and upper regions. This indicates why DenseNet161 has a high performance
despite giving false negative COVID-19 results. Instead of detecting COVID-19-specific
features, it likely exploits features of the data that are correlated but not related to the
pathology. However, it does not appear that DenseNet161 uses dark border regions as
the main distinguishing factor. ResNet18, in contrast, is less likely to detect biologically
irrelevant features. Although in the early layers there are activation differences in the top
and bottom areas of the images, in most deep-layer feature maps, the groups can be most
clearly distinguished from each other from neuron activity in the (right) lung regions.

COVID-19

Pneumonia

Pneumonia
without COVID-19

Healthy

DenseNet161 ResNet18
early layer deep layer early layer deep layer

Figure 9. Average input images and feature map NAPs in different models and layers for different
pathologies and healthy subjects. Blue indicates lower activation of the respective neuron for this
group compared with the other groups, and red indicates higher activity.

COVID-19, pneumonia and viral pneumonia:

Based on the fact that COVID-19 is a subset of viral pneumonia, the focus of this section
is centralised on the interpretability comparison of the models for these three pathologies.
Interpretability techniques reported that different networks focused on different areas for
the same CXR image to predict each of the diseases. It was observed that the focus area
of DenseNet161 for COVID-19 was explicitly different from that for pneumonia and viral
pneumonia. However, InceptionResNetV2 and InceptionV3 emphasised a similar area
(different focus areas for each model) for the three pathologies. Furthermore, ResNet18 and
ResNet34 targeted the lung region for COVID-19 and viral pneumonia, but differed for
pneumonia. Figure 10 exhibits the mentioned findings.
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Figure 10. Example of occlusion for lung pathologies: COVID-19, pneumonia, and viral pneumonia.

4. Discussion

The literature review portrays that the diagnosis of COVID-19 is seen as a multiclass
classification task rather than a multilabel classification. The datasets used in the previous
works vary in terms of the amount of data used for the classification task. In [7], the
authors created a balanced dataset by appending the 50 COVID cases with 50 healthy
cases from another dataset and reported the highest mean specificity score of 0.90 using
InceptionV3. The others [6,8,35] performed a multiclass classification task on different
imbalanced datasets using X-rays, and achieved a maximum mean specificity of 0.989, 0.979,
and 0.971, respectively. In this work, InceptionResNetV2 achieved the highest specificity
of 0.975, comparable to previous studies. However, in this research, the authors used a
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different dataset, train–test split, and preprocessing techniques compared with previous
works, which makes it unfair to compare the results with previous studies.

It was observed that the less complex models were more interpretable, while having
fewer dead neurons than the more complex ones. DeneseNet161, which resulted in the
highest F1 score, had the highest number of dead neurons and also had the worst focus
areas according to interpretability methods. The model that resulted in the second-best F1
score, ResNet18, was the least complex model in this study—while also having the best
focus areas, as dictated by the interpretability methods. This was further confirmed by a
global interpretability method, NAPs, which showed that ResNet18 was less likely to detect
biologically irrelevant features. It should be noted that, in some cases, the network predicted
the findings as a presence of COVID-19, while the doctors did not report any abnormalities.

There were a couple of cases where the network detected both viral and bacterial
pneumonia. According to Morris et al. [80] and Shigeo et al. [81], the induction of viral
infection could lead to secondary bacterial infection and increase the severity of symptoms.
Though such cases were considered as miss-predictions for the current dataset based on
the available labels, one could argue that the network was able to detect such instances.

The main motivation to perform a multilabel classification over a multiclass clas-
sification was to be able to predict multiple pathologies from the images if they were
present. It was observed that all networks, including the ensemble, were able to predict
both COVID-19 and ARDS correctly for the images that had both pathologies present.

Lastly, this study also showed that the models could classify lung pathologies from
CXR images, although unwanted objects, such as annotations or labels, were obscuring
the radiographs.

5. Conclusions and Future Works

In this paper, a range of deep learning-based classifiers were compared for the multilabel
classification of COVID-19 and similar pathologies in CXR images, and the interpretability of
these models was investigated and finally corroborated by medical professionals. In general,
most of the models performed well. However, certain models failed at specific tasks. The
authors additionally formulated an ensemble employing majority voting, which aided in
addressing these models’ shortcomings by combining their predictions. Furthermore, the
smallest model, ResNet18, was found to compete well with considerably larger models. In fact,
for certain situations, it performed better than the largest model in the mix, InceptionResNetV2.
For patients who had more than one pathology, this multilabel classification setup was able
to predict all of those pathologies correctly. DenseNet161 was the model that performed the
best in this setup in terms of classification scores, though it was observed that the focus of the
network was often on unrelated biologically irrelevant regions. This can be attributed to the
fact that the network discerned some irrelevant patterns in the dataset, which might be due to
the high complexity of the model. The highest number of dead neurons was also observed in
this model, suggesting that the model may have been overly complex for the given task. After
qualitative analysis of the interpretability results, it can be said that the ResNets were the most
interpretable models, as the networks focused predominantly on the appropriate regions.

Model explainability methods such as LIME [82], SHAP [83], etc., were not explored
during this research but are planned as future work. The same approach can also be
tried on CT images to compare the networks’ sensitivity for COVID-19 on CT and CXR
images. Moreover, it would be interesting to investigate how the networks’ performances
are affected if completely unrelated pathologies (like tumours) are mixed with this current
dataset. Prior nonimage information (like the patient’s prior medical history, the result of
the RT-PCR test, etc.) could also be integrated into the network models to aid the networks
in decision making. Furthermore, instead of supplying the whole image to the models,
lung segmentation could serve as a preprocessing step, which might improve the networks’
predictions by helping them to focus just on the region of interest, which in this case is
the lungs. Training techniques such as few-shot learning (including one-shot learning),
semi-supervised learning, etc., can be explored for learning to classify COVID-19 cases
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from a small dataset. Moreover, joint segmentation–classification techniques can also be
investigated for this multilabel classification problem. Several interpretation techniques
were implemented in the interpretability pipeline, but were not investigated in this study
and will be explored in the future for this dataset model setup. Finally, in the future,
a large-scale study involving more medical professionals should also be performed to
evaluate the benefits of interpretability methods in terms of building trust, and also their
usefulness in the clinical workflow should also be evaluated in the future.
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