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Abstract: Global objectives to mitigate climate change in the construction industry have led to
increasing geopolymer development as an alternative to carbon-intensive cement. Geopolymers can
have similar mechanical properties and a lower carbon footprint. However, geopolymer production
is not as homogeneous as cement because it is produced by synthesizing alkali solutions with
different aluminosilicate precursors. This study assessed the feasibility of using conventional (fly
ash, blast furnace slag, and metakaolin) and alternative precursors (steel slag, mine tailings, glass
waste, sewage sludge ashes, and municipal solid waste incineration bottom ashes (MSWI BA))
in geopolymer mixes for different European regions (Belgium and Finland) from a sustainability
perspective, using environmental, economic, and resource availability indicators as the criteria. A
multi-objective optimization technique was applied to identify optimal precursors for geopolymer
mixes using two scenarios: (1) considering both conventional and alternative precursors; (2) only
considering alternative precursors. The results from the first scenario show that one of the most
optimal precursor combinations for the geopolymer mix is 50% fly ash, 25% MSWI BA, and 25%
sewage sludge ash for Belgium. For Finland, it is 19% fly ash, 27% mine tailings, and 45% MSWI
BA. For the second scenario, one of the most optimal precursor combinations for Belgium is 87%
MSWI BA and 13% steel slag. For Finland, it is 25% mine tailings and 75% MSWI BA. Subsequently,
linear regression analysis was applied to predict the compressive strength of the identified optimal
mixes, and the results for Belgium and Finland were between 31–55 MPa and 31–50 MPa for the first
scenario and between 50–59 MPa and 50–55 Mpa for the second scenario, respectively.

Keywords: geopolymer composites; sustainable production; sustainability assessment framework;
3D multi-objective optimization; multi-criteria analysis; resource availability; linear regression analysis;
predicted compressive strength

1. Introduction

Geopolymer composites are considered as a more environmentally sustainable alter-
native to Portland cement (PC) concrete due to the latter being the second-largest CO2
emitter (4–8% of global CO2 emissions) and the third-largest consumer of energy [1,2].
These concerns have led to increasing research into and the development of geopolymers
in recent times [1,3–6]. Geopolymers can be used for other applications including replacing
natural aggregates [7], adsorbents for wastewater treatment [8], the immobilization of toxic
metals [9], thermal insulators [10], as a precursor for advanced ceramics [11], etc. However,
most research on geopolymers has focused on its application as an alternative to PC con-
crete and has based the development of geopolymer composites mix designs on precursors
such as coal fly ash (CFA), granulated blast furnace slag (GBFS), and metakaolin, making
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these precursors conventional in the development of geopolymer composites. Many of
these studies have reported that improving the environmental profile of geopolymers will
require using industrial by-products (CFA and GBFS) as precursors compared to virgin raw
materials such as metakaolin [5,12,13]. However, conventional precursors from industrial
by-products, CFA and GBFS, are in decline.

CFA has seen a decline due to targets to cease energy production from the combustion
of coal in the European Union (EU). Hard coal production has declined from 277 million
tons in 1990 to 56 million tons in 2020 in EU-27 countries and hard coal and inland
consumption has seen a decline of 389 million tons in 1990 to 143 million tons in 2020 [14].
GBFS on the other hand has declined 22% in production between 2016 and 2018 [15]. In
addition to the decline in the production of the abovementioned precursors, they are also
already competitively used in other industries, including the cement industry. On the
other hand, metakaolin being a virgin raw material calcined from kaolin is not the most
environmentally sustainable option compared to CFA and GBFS [1,16,17]. However, it is
still commonly used in geopolymer development but not produced as much in Europe with
an estimated production of 35 million tons in Europe as of 2019 [18]. Due to the decline
in the production and availability of these precursors, an option might be importing
them from neighboring countries or countries with higher availability such as China
which has about 550 million tons of CFA production with only a 60% utilization rate as of
2018 [19]. The utilization rate has led to an accumulation of up to 3 billion tons of CFA in
China [19]. However, improving the environmental profile of geopolymers will depend on
the availability of local materials to avoid additional emissions from transportation. Based
on these different concerns, the large scale and long-term development of geopolymers
within Europe is put to question.

To overcome these limitations, studies have expanded their outlook from conventional
precursors to other types of materials with pozzolanic properties to be used as precursors in
the development of geopolymer composites. These alternative precursors can include mine
tailings [12,20,21], sewage sludge ash [22,23], municipal solid waste incineration bottom
ash (MSWI BA) [24,25], steel slag [21,26,27], and glass waste [28–30], all of which are locally
available materials in different European regions. The referenced studies have focused on
the technical aspect of geopolymer development with little focus on the environmental
sustainability perspective.

Systematically assessing the environmental impacts of geopolymers with alternative
precursors instead of conventional precursors aids in developing geopolymers with a
better environmental profile. Furthermore, a framework including different sustainabil-
ity criteria could be used in the development of geopolymer composite mix design. To
support this, [31] created a systematic evaluation framework for developing a sustainable
geopolymer composite mix design using a single industrial by-product (CFA) as a pre-
cursor while optimizing costs and associated environmental impacts. In addition, [32]
presented a generic framework for concrete mixture optimization incorporating environ-
mental, financial, and mechanical properties. However, to our knowledge there has not
been a systematic way to optimize the development of geopolymer mix designs with
different combinations of precursors based on environmental, economic, and resource
availability criteria.

Thus, this study applies a 3D multi-objective optimization framework for sustainable
precursor selection in developing geopolymer composite mix designs in two European
countries: Belgium and Finland. The objective is to identify which combination of pre-
cursors is suitable for geopolymer development in both countries. Pareto-optimization
is the employed multi-objective optimization method because it provides non-dominant
solutions over other solutions. The optimization is conducted to find sets of optimum
precursors for geopolymer composite mix designs with minimal economic costs, minimal
environmental impacts, and maximized resource use. This can be applied in practical
situations to assist decisionmakers when considering different precursors in geopolymer
development. To validate the results, linear regression analysis was conducted to predict
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the compressive strength of the optimized mix designs to investigate their relative potential
mechanical properties.

2. Results—Obtain the Optimized Set of Mix Designs

The next stage of the framework, after developing objective functions and defining
major optimization problems and constraints, is to obtain a set of Pareto optimized solutions.
The optimization problem was run 100 times for both Belgium and Finland. Subsequently,
the environmental, economic, and resource availability indicators were compared to ensure
satisfactory savings in the environmental and economic indicators and maximization of the
resource availability indicator. Afterwards, several mixes out of the 100 optimized mixes
identified for each country were selected and investigated in detail to show the diversity of
the different precursor combinations.

2.1. Optimal Mixes in Belgium

The results of the three function (environment, resource availability, and economic)
optimization presented as the Pareto front are illustrated in the 3D graph in Figure 1. As
shown, some selected mixes among the many optimized solutions were further investigated
to illustrate the diversity of the different precursor combinations that led to local Pareto
optimal solutions. These selected mixes are highlighted in the blue color while the rest of
the mixes are in the red color in Figure 1. From the highlighted mixes in the blue color,
mix 1 has the lowest environmental impact and the highest availability of resources to be
produced in Belgium, whereas the costs of EUR 59/m3 are also high compared to the other
mixes. On the other hand, mix 14 has the lowest costs but high environmental impacts,
with limited availability of resources for geopolymer production. The performance of mix
9 across the impact categories is close to the average, indicating a trade-off among the
environmental, economic, and resource availability indicators. Details of the selected mixes
are further presented in Table 1.
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The Results in Table 1 shows the optimal mixes in Belgium, such as mix 1 containing
100% CFA as a precursor, whereas mix 9 contains 50% CFA, 25% MSWI BA, and 25%
sewage sludge ash. The lowest costs were observed for mix 14, which contains 98% MSWI
BAs and 2% CFA. A few mixes contain small amounts of glass waste and steel slag. This
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shows that CFA, MSWI BA, and sewage sludge ash are the optimal precursors in Belgium
from a sustainability perspective.

Table 1. Selected optimal mixes in Belgium.

Mix
Number CFA GBFS Mine

Tailings MSWI BA Glass
Waste Steel Slag Sewage

Sludge Ash Total Predicted Fc

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa

1 400 0 0 0 0 0 0 400 31
2 260 0 0 47 47 0 47 400 38
3 85 17 38 68 68 57 68 400 51
4 70 39 48 62 62 57 62 400 52
5 230 0 0 58 57 0 55 400 39
6 132 0 0 82 80 27 80 400 46
7 188 0 0 108 0 0 104 400 42
8 105 0 0 140 0 67 87 400 49
9 199 0 0 101 0 0 100 400 41

10 100 0 0 300 0 0 0 400 45
11 33 0 0 137 31 63 136 400 55
12 46 0 0 155 0 61 138 400 53
13 59 0 0 255 0 0 86 400 48
14 10 0 0 390 0 0 0 400 50

2.2. Optimal Mixes in Finland

On the other hand, for Finland, the results of the three function (environment, resource
availability, and economy) Pareto front optimization are illustrated in the 3D graph in
Figure 2. While mix 1 has the lowest environmental impacts, it has the highest costs and
low resource availability. Mix 11 has the lowest costs with medium availability, but high
environmental impacts. The trade-off between the impact indicators can be represented
by mix 8. The diversity of the different precursor combination solutions is detailed and
investigated in Table 2.
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Table 2. Selected optimal mixes in Finland.

Mix
Number CFA GBFS Mine

Tailings MSWI BA Glass
Waste Steel Slag Sewage

Sludge Ash Total Predicted Fc

(kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (kg/m3) (MPa)

1 400 0 0 0 0 0 0 400 31
2 102 0 55 69 59 47 68 400 48
3 281 0 0 65 54 0 0 400 36
4 216 0 0 62 60 0 62 400 40
5 340 0 60 0 0 0 0 400 33
6 224 0 84 92 0 0 0 400 38
7 162 0 51 40 82 0 65 400 43
8 114 0 106 179 0 0 0 399 44
9 14 0 186 200 0 0 0 400 50

10 0 0 199 201 0 0 0 400 50
11 0 0 64 336 0 0 0 400 50

The mixes presented in Table 2 were selected (the blue color in the graph) among
the many optimized solutions (the red color in the graph) to illustrate the combinations
of different precursors that make up the local Pareto optimal solutions. The optimal mix
combinations are the following: mix 1 contains 100%FA; mix 8 contains 19% CFA, 27%
mine tailings and 45% MSWI BA, while mix 11 contains 16% mine tailings and 85% MSWI
BA. A few mixes contain glass waste, sewage sludge ash, and steel slag.

2.3. Scenario Analysis

After obtaining different mixes to show the diversity of the different precursor com-
binations, a scenario analysis was conducted where conventional precursors (CFA, GBFS,
and metakaolin) were excluded from the set of available precursors and only alternative
materials, such mine tailings, sewage sludge ash, MSWI BA, steel slag and glass waste,
were considered. This was carried out to determine the optimal mixes when alternative
precursors are used. Figures 3 and 4 illustrate combinations of optimal mix designs for
Belgium and Finland, respectively, without conventional precursors. The diversity of the
different precursor combination solutions is detailed and investigated in Tables 3 and 4.
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Table 3. Selected optimal mixes using only alternative materials in Belgium.

Mix Number Mine Tailings MSWI BA Glass Waste Steel Slag Sewage Sludge Ash Total Predicted Fc

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa

1 0 399 0 1 0 400 50
2 0 217 180 3 0 400 53
3 0 349 0 51 0 400 53
4 0 298 0 102 0 400 56
5 0 258 0 142 0 400 58
6 0 300 0 100 0 400 56
7 0 192 0 108 101 400 59
8 0 204 0 48 148 400 56

Table 4. Selected optimal mixes using only alternative precursors in Finland.

Mix Number Mine Tailings MSWI BA Glass Waste Steel Slag Sewage Sludge Ash Total Predicted FC

kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 kg/m3 MPa

1 1 385 0 0 14 400 51
2 0 156 113 0 131 400 55
3 55 345 0 0 0 400 50
4 100 300 0 0 0 400 50
5 157 243 0 0 0 400 50
6 187 213 0 0 0 400 50
7 203 114 40 0 42 399 51
8 200 200 0 0 0 400 50
9 96 304 0 0 0 400 50
10 54 346 0 0 0 400 50

For Belgium, the lowest environmental impacts, costs, and above-average resource
availability are observed for mix 1, which contains 100% MSWI BAs. Mix 5 which contains
65% MSWI Bas and 26% steel slag has the highest availability of resources, but at the same
time, it has 7% higher environmental impacts and four times higher costs than mix 1. For
Finland, the lowest environmental impacts and costs are observed for mix 1, which contains
96% MSWI BAs and 4% sewage sludge ashes in its precursors content, while mix 8 which



Recycling 2023, 8, 32 7 of 18

contains equal amounts of mine tailings and MSWI BAs is associated with an increased
availability of resources; its environmental impacts and costs are 10% and 24% higher,
respectively, than those of mix 1.

For Belgium, the optimal mix combinations for alternative precursors as shown in
Table 3 are mixes containing MSWI BA and steel slag with some mixes also containing
sewage sludge ashes and glass waste. The MSWI BA content across the selected mixes is
between 48% and 99%. While for Finland, the most optimal mix combinations are MSWI
BA and mine tailings, with a few mixes including sewage sludge ash and glass waste. This
is detailed in Table 4.

2.4. Predicted Compressive Strength

To validate the study, some characteristics of the geopolymer mix designs were inves-
tigated by predicting the compressive strength of the mixes as discussed in Section 5.4.4.
Based on the linear regression model (Equation 12), the predicted compressive strengths of
the optimal mixes are shown in Tables 1–4. To ensure feasible comparison among the mixes,
the compressive strength was estimated based on the precursor and activator quantities
and their chemical composition using the results of regression analysis. For structural appli-
cations, the recommended minimum compressive strength is 20 MPa (BS-EN 197-1, 2011).
For the optimized mixes, their predicted compressive strength varies between 31 MPa
and 59 MPa. The results of the regression analysis indicate the relationship between the
chemical composition of the mix constituents and their compressive strength. However,
the adjusted R2 of 0.72 indicates that variability in compressive strength cannot be fully
explained by variation in the examined variables. Therefore, the real compressive strength
should be verified through laboratory tests.

3. Verification through Literature Studies

To further validate the results of this study, the identified optimal mixes were veri-
fied through a literature review (Table 5). This is to show the possibility of using these
precursor combinations that are available in the literature. As many studies do not present
detailed information regarding the tested mix designs, the exact content of precursors
inside mixes has not been presented. However, it can be observed from the literature that
the combination of precursors identified in this paper (Tables 1–4) can be potentially used
for developing geopolymer composites or alkali-activated materials.

Table 5. Mixes examined in the literature. X depicts the materials that make up the geopolymer
mix design.

Fly Ash GBFS Mine Tailings Sewage Sludge Ash MSWI BA Glass Waste Steel Slag Fc (28 Days) Reference

X 41 [33]

X X 42–49 [34]

X X 46–53 [35]

X X X NA [36]

X X 110 [23]

X X X 25 [21]

X X 40 [37]

X X 38–54 [30]

X X X 27 [29]

X 65 [38]

X X 35–40 [26]
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4. Discussion

The consideration of CFA and GBFS as sometimes waste or by-products creates an
assumption that they are sustainable alternatives as precursors. However, local availability
and pre-treatment costs can be a predetermining factor of their overall sustainability. Ad-
dressing the issues of availability, cost, and environmental impact through the application
of a sustainable criteria framework enables optimization of precursors to minimize envi-
ronmental, economic, and social impacts. The current availability of precursors in Belgium
and Finland is reflected in the resource availability indicator. However, in the future, the
availability of conventional precursors such as GBFS and CFA might decrease due to the
phasing out of coal power plants in Europe, as well as shift from blast furnaces towards
electric arc furnaces in the steel industry. Thus, a scenario analysis was conducted where
only mixes with alternative precursors such as mine tailings, MSWI BA, sewage sludge
ashes, steel slag, and glass waste are considered, of which their supply will be stable in
the future [39]. On the other hand, the utilization of glass waste and steel slag in other
industries, such as in the closed loop recycling of glass waste and the use of steel slag as a
supplementary cementitious material in concrete might increase, leading to competition
for resources between industries and this corresponding to a higher cost of materials. This
might also affect the results of Pareto optimization.

Multi-objective optimization showed that GBFS and metakaolin are not optimal mate-
rials to be used in both countries, meaning that alternative materials such as MSWI BA,
mine tailings, steel slag, and sewage sludge ash have higher potential in these regions.
From the two respective scenarios (Sections 2.1–2.3), the result of the multi-objective opti-
mization show that using alternative precursors (MSWI BA, steel slag, sewage sludge ash,
and mine tailings) instead of a conventional precursor (CFA) has reduced economic impacts
and more consistent resource availability. However, the environmental impacts from the
alternative precursors are slightly higher. This is because CFA does not require as high
a level of additional pre-treatment as the former, which means less energy consumption
and a reduced environmental impact. Although, this is part of what makes CFA a go-to
precursor, the context of this study is to determine locally available alternative precursors
for geopolymers due to the declining availability of CFA in the future. If on the other hand,
CFA is imported, transportation emissions increase the impact associated with the material.
Thus, exploring alternative precursors will require more efficient treatment processes to
reduce the associated environmental impacts.

Furthermore, from the results of the environmental impact of the standard CFA-
based geopolymer concrete which in our reference mix is based on (Table 6), the GWP
of the standard CFA geopolymer is 45% less than the equivalent Portland cement (PC)
concrete [5]. When considering the scenarios with alternative precursors, the GWP will
be 43–45% lower than the PC concrete. This makes the use of the alternative precursors
still a better option for geopolymers. While activators provide a high contribution towards
the environmental impacts and costs of geopolymer mixes, in this study, the amount of
activator was kept the same as in the reference mix. However, little research has been
performed so far on the variability of precursors while keeping the amounts of activators
constant. Therefore, regression analysis was applied to predict the compressive strength of
the examined mixes. The results indicate that optimized combinations of precursors with
constant amounts of activator would achieve a compressive strength suitable for structural
applications. However, other factors besides the examined variables might determine
variation in compressive strength, therefore affecting the actual mechanical properties of
the optimized mixes. For the end-of-life of these geopolymer mix designs, it was assumed
that geopolymer composites using different combinations of precursors will have similar
recyclability potential. Future laboratory tests will be required to verify and examine the
durability properties of the optimized mix designs.
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Table 6. Reference geopolymer mix design [5,40].

Coal Fly Ash
(kg/m3)

Sodium Silicate
Solution (kg/m3)

Sodium Hydroxide
Powder (kg/m3)

Sand
(kg/m3)

Gravel
(kg/m3)

Water
(kg/m3)

Density
(kg/m3)

MPa
(28 Days)

408 103 21 554 1294 16.5 2340 42

5. Methodology

Sustainability has a broad definition which can include environmental, economic,
and social aspects [41]. The criteria to assess sustainability can be defined taking into
consideration both the goal of the study and the nature of material under evaluation [31,42].
In the case of the geopolymer composites in this study, sustainability is evaluated based
on the environmental impacts and economic impacts, as well as the local availability of
materials which we consider as a resource availability indicator. As mentioned earlier,
the local availability of materials in the examined regions not only allows to minimize
transportation emissions and thereby lower environmental impacts, but also implies the
security of domestic supply and reduces the reliability on importation. Furthermore, by
considering the environmental, economic, and resource availability in the optimization
framework, the external stakeholders concerns are considered [31], which aids in better
decision-making in geopolymer composite mix design development.

In this study, the framework presented by [31] has been further developed to evaluate
sustainability of optimized geopolymer mix designs with different combinations of precur-
sors while also extending the framework to include a third dimension, namely resource
availability. Furthermore, the influence of activators on the optimized geopolymer mixes
were considered and their predicted compressive strengths were examined. Figure 5 gives
more details on the framework.

As a first step in the proposed optimization framework, materials with pozzolanic
properties that can be used as precursors in geopolymers were selected. These selected
precursors include both conventionally used materials in the development of geopolymers
(CFA, GBFS, and metakaolin), as well as other aluminosilicate materials that can be sourced
in the EU. Then, a mix design was chosen from literature studies to serve as a reference mix
design in the development of the new optimized mix designs with the different precursors.
This reference mix design as shown in Table 6 was chosen because of its lower amount
of alkali-activator compared to the other mix designs in the literature [5,40]. Several
literature sources have highlighted alkali activators to be the main contributing material
to the environmental impact of geopolymers [3,5,43–45]. As such, special attention was
paid to the quantity of alkali activator when choosing the reference mix design while
ensuring the adequate compressive strength of the mix design. Subsequently, relevant
indicators were selected for the environmental, economic, and resource availability criteria
to assess the geopolymers from a sustainability perspective. These indicators were used
to develop objective functions to define major optimization problems and constraints.
The optimization problem was set up in MATLAB software and as an outcome, a Pareto
optimal frontier with several mix designs was built. Then, several sets of optimal mix
designs were selected from the Pareto frontier to illustrate and assess the diversity of
different precursors in the geopolymer mix designs. Additionally, a scenario analysis was
conducted to determine the optimal precursor mixes when conventional precursors are
excluded. The scenario analysis explores the potential of using only alternative precursors
in geopolymer development. As an additional step to the framework, the compressive
strength of these optimized mix designs was predicted by conducting a linear regression
analysis and these were supported by mix designs found in the existing literature to identify
their real-world potential.
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5.1. Precursors Selection for Blended Mix Design (Evaluation of Precursors for Geopolymer Potential)

Based on the optimization framework in Figure 5, the first step is to select aluminosili-
cate precursors to be blended in developing geopolymer mix designs. Since the framework
is based on multi-objective genetic algorithms, the precursor selection can be a single
material or several materials. Accordingly, conventional precursors in geopolymer such
as CFA, GBFS, and metakaolin and alternative precursors that are locally available across
Europe and specifically in Finland and/or Belgium, such as mine tailings, sewage sludge
ash, municipal solid waste incineration (MSWI) bottom ash, steel slag, and glass waste,
were examined.
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5.2. Find the Desired Mix Design through Literature Studies

Since the focus of this study is optimizing geopolymer mix designs primarily by
using different precursors, other parameters in a geopolymer mix design such as an alkali
activator (sodium silicate and sometimes sodium hydroxide) were kept constant in the
optimization. However, as mentioned earlier, the alkali activator is also known to be the
major contributing factor to the environmental impact of geopolymers. Thus, a reference
geopolymer mix design [40] with a suitable amount of alkali activator and compressive
strength was chosen (see Table 6). The reference mix design was chosen because its
environmental profile has been analyzed in comparison to PC concrete in literature studies
and has shown to be an environmentally sustainable geopolymer mix design with a
45% lower global warming potential (GWP) when compared to PC concrete of the same
equivalence [4,5]. Thus, choosing this mix design and keeping the alkali activator constant
in the optimization allowed a more analytical focus on the precursors and compressive
strength that can be achieved from the optimized mix designs with different precursors. The
range of 400 kg to 408 kg was set for the different precursors. The range acted as a constraint
in setting a lower and upper limit for the precursors in the optimization calculation. Details
pertaining to the constraints will be further discussed in Section 5.4.2.

5.3. Identify the Most Relevant Economic, Environmental, and Social Indicators

After finding the desired reference mix design through the literature study, the most
relevant sustainability indicators (environmental, economic, and resource availability) were
identified following the framework in Figure 5. These indicators were identified based on a
literature review [31,33,42,46] and the relevance in assessing the selected precursors for the
geopolymer mix design. The indicators are presented in Table 7.

Table 7. Most relevant economic, environmental, and social indicators.

Indicator Unit Measured Normalized

Environmental indicators

Production emissions Weighted env. Emissions (CML
2001–January 2016)/kg Europe

Pre-treatment emissions Weighted env. Emissions (CML
2001–January 2016)/kg Europe

Transportation emissions Weighted env. Emissions (CML
2001–January 2016)/kg Europe

Social indicators
Resource availability (local) Ton/year Min-max

Economic indicators
Procurement cost Euro/kg -
Pre-treatment cost Euro/kg -
Transportation cost Euro/kg/km -

Avoided landfill cost Euro/kg -

The relevant environmental indicators identified are production emissions, pretreat-
ment emissions, and transportation emissions [31] for the different precursors. The different
environmental impact categories considered for the emissions include abiotic depletion
potential (ADP), acidification potential (AP), eutrophication potential (EP), global warming
potential (GWP), freshwater ecotoxicity potential (FAETP), human toxicity potential (HTP),
marine ecotoxicity potential (MAETP), ozone depletion potential (ODP), photochemical
ozone creation potential (POCP), and terrestrial toxicity potential (TETP). The environ-
mental impacts are quantified for the indicators (precursor production, pre-treatment, and
transportation to the geopolymer composite production site). Transportation was esti-
mated based on the shortest distances between material sourcing facilities and geopolymer
composite manufacturing sites (existing concrete plants) in Belgium and Finland using geo-
graphic information system (QGIS) software. The results from the environmental impact
assessment of the different precursors were normalized and weighted for each environmen-
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tal indicator. Further explanation can be found in Section 5.4.1, and the weighted result is
presented in the Supplementary Material (Table S3).

The relevant social indicator identified is resource availability [42,46]. This indicator
considers the quantity of the respective precursors locally available in Belgium and Finland.
The results were also normalized. This is described more in Section 5.4.1 and in the
Supplementary Material (Table S7).

Lastly, the economic indicators identified are the procurement costs of the precursors,
the costs associated with pretreatment of these precursors if needed, as well as costs
associated with transportation from the sourcing site to the concrete production site which
is estimated to be EUR 0.228/km/ton [47]. The total costs of transportation depend on
the estimated distances. Furthermore, for materials that are currently being landfilled, the
avoided costs of landfill are also included. The cost for procurement, pretreatment, and
avoided landfill of each precursor were sourced either locally where available or otherwise
from the literature. This is expatiated more in Section 5.4.1 and in the Supplementary
Material (Tables S5 and S6).

5.4. Define Objective Functions Based on the Selected Indicators

After identifying the most relevant environmental, resource availability, and economic
indicators, the objective functions were developed based on these indicators. Here, the
major optimization problem and constraints were defined which are further elaborated in
the section below.

5.4.1. Objective Functions

The three objective functions follow the sustainability concept and aim to minimize
the environmental, social, and economic impacts of the geopolymers to investigate their
potential as a substitute for PC concrete. The following objective functions are defined,
where x is the precursor variable vector.

Objective function 1: Minimize total environmental impacts (EIs) of precursors,
where PE is the weighted environmental impacts associated with material production,
PTE is the weighted environmental impacts associated with material pretreatment, and TE
is the weighted environmental impacts associated with transportation. The environmental
impacts categories (Section 5.3) of each precursor x are collected for PE, PTE, and TE. Then,
the results were normalized and weighted according to normalization factors of CML
2001–January 2016, Europe. Afterwards, the total EIs were summed up as shown in the
Equation (1) below.

Total EI(x) = α1PE(x) + α2PTE(x) + α3TE(x) (1)

Objective function 2: Resource availability (RA) is associated with maximizing the
use of resources, in this case so that local materials that are abundant and available are
prioritized more than scarce materials. Here, the RA indicator was normalized by applying
the min–max normalization method, where materials were ranked from lowest domestic
supply (0) to the highest domestic supply (1).

Total RA(x) = β1RA(x) (2)

Objective function 3: Minimize economic impacts (CIs), where PC is procurement
cost, PT is pretreatment cost, TC is transportation cost, and LC is avoided landfill cost. The
costs were measured in euros per kg of precursor.

Total CI(x) = γ1PC(x) + γ2PT(x) + γ3TC(x)− γ4LC(x) (3)

The coefficients α, β, and γ are weighting factors indicating the priority of variables in
defined objective functions. In this study, all of the variables are considered to have equal
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importance inside objective functions; therefore, coefficients α, β, and γ are equal to 1. The
variables inside the objective Function (1) are represented as follows:

PE = ∑(EFy ∗ Qy) (4)

PTE = ∑(EFe ∗ My ∗ Qy) (5)

PE = ∑(EFt ∗ dt ∗ Qy) (6)

where Qy is the mass of precursor y, EFy is the weighted emission factor associated with
the production of precursor y, EFe is the weighted emission factor associated with energy
consumption My during the pretreatment process of this material, EFt is the emission factor
for transportation, and dt is the average transportation distance between different material
sourcing sites and geopolymer composite plants.

The resource availability indicator defined in Equation (2) is represented by the fol-
lowing variables:

RA = ∑
(

MFy ∗ Qy
)

(7)

where MFy is the annual material flow of material y in tons, normalized across materials,
thus 0 ≤ MFy ≤ 1.

The economic impacts defined in Equation (3) are represented by the following equa-
tions:

PC = ∑(Cy ∗ Qy) (8)

PT = ∑
(
Ce ∗ My ∗ Qy

)
(9)

TC = ∑
(
Ct ∗ dt ∗ Qy

)
(10)

LC = ∑
(
Cl ∗ Qy

)
(11)

Cy is procurement cost of the precursor which is assumed to be 0 if the material is
considered as waste, Ce is the unit cost of energy used for pre-treatment, Ct is the unit
transportation cost, and Cl is the cost of landfilling expressed in euros per kg of material.

5.4.2. Constraints

The quantity of precursors was estimated based on the desired reference mix design in
Table 6 (Section 5.2). This reference mix design indicated that the total amount of precursors
in 1 m3 of concrete is 408 kg. Therefore, this was used to estimate the boundaries for the
quantity of precursors in the geopolymer mix designs. Thus, the constraint is formulated
such that the sum of quantities of precursor used in the objective function is within the
range 400 to 408 (400 ≤ Q1 + Q2 + Q3 + Q4 + Q5 + Q6 + Q7 + Q8 (=Qmax) ≤ 408). Once
the optimal mixes are identified, we estimate the predicted compressive strength of each
mix design based on the chemical composition and quantity of precursors and activator.
This is further described in Section 5.4.4.

5.4.3. Weights

To find the Pareto optimal solution, the different weightings of objective functions
are considered. As we have three objective functions, each function is allocated a weight
inside the optimization problem. The Hardy–Weinberg principle weight distribution
method was used, resulting in the following weights being randomly allocated to three
functions: t2; 2t(1 − t); (1 − t)2, where 0 < t < 1. However, if the decisionmaker considers
one of the objective functions more important over the two others, the results of this
optimization might change with one precursor becoming more favorable over the others.
For example, if more weight is allocated to economic indicators than to environmental or
resource availability.
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5.4.4. Prediction of Compressive Strength

Linear regression analysis was applied to estimate the compressive strength of the
examined geopolymer composite mixes available in the literature [40,48–51], using the
following factors as explanatory variables: Na2O/SiO2, SO2/Al2O4, H2O/Na2O, water to
binder ratio, Na2O/Al2O3, binder to aggregates ratio, reactivity modulus (RM), hydraulic
modulus, (HM), lime modulus (LM), and silica modulus (SM), as well as basicity index.
Both the chemical composition of the precursors as well as the alkali activator was taken
into consideration to determine the abovementioned ratios. The geopolymer mixes were
assumed to be cured at an ambient temperature and this is the reason why curing was not
taken into consideration. The outputs of the regression analyses are presented in the Sup-
plementary Material (Table S9). According to the results, the variables that determine 72%
variation (R2 = 0.72) in the compressive strength of the geopolymer mixes are Na2O/SiO2,
H2O/Na2O, water to binder ratio, hydraulic modulus, and basicity index. Therefore, these
variables were used to predict the compressive strength of the optimized mixes that were
identified based on the three objective functions.

fC−28day(MPa) = −9.266 + 274.343 ∗ Na2O
SiO2

+ 2.241 ∗ H2O
Na2O

− 88.876 ∗ w
b
− 17.567 ∗ RM + 38.533 ∗ basicity index (12)

6. Conclusions

The aim of this study was to identify the most sustainable precursors for geopolymer
mix designs using 3D multi-objective optimization. The investigated combinations of pre-
cursors in the mix designs provided optimized solutions according to three stated objective
functions which are based on environmental, economic, and resource availability indicators.
In addition, regional differences across Europe (Belgium and Finland) were considered in
this selection. Two scenarios are considered: when conventional precursors (CFA, GBFS,
and metakaolin) and only when alternative precursors (MSWI BA, steel slag, sewage sludge
ash, and mine tailings) are considered in the list of optimized precursors. To validate the
results, linear regression analysis was conducted to predict the compressive strength of the
optimized mix designs to investigate their relative potential mechanical properties.

Using the 3D multi-objective optimization mathematical model, the optimal materials
to be used as precursors in geopolymer mix designs were identified. The country-specific
analysis illustrates that the optimal precursors selected for geopolymer composites are
different across the regions. While mine tailings are available in Finland, there is limited
availability of this material in Belgium. MSWI BA has a high potential to be used in both
countries. Glass waste is available in both Belgium and Finland and can be used as an
additional precursor. Steel slag, although produced in both countries, is only optimal
for use in Belgium and only when alternative precursors are considered. The optimal
precursors in which the objective functions are close to the average, indicating a trade-off
among the environmental economic and resource availability, include:

When conventional precursors are considered in the list of optimized precursors:

# 50% CFA, 25%, MSWI BA and 25% sewage sludge ash—Belgium
# 19% CFA, 27%, mine tailings and 45% MSWI BA—Finland

When only alternative precursors are considered:

# 87% MSWI BA and 13% steel slag—Belgium
# 25% mine tailings and 75% MSWI BA—Finland

Thus, when considering alternative precursors, the most optimal precursor for geopoly-
mer composites in Belgium is MSWI BA and steel slag, while for Finland, it is mine tailings
and MSWI BA with an estimated 43–45% lower GWP than PC concrete.

To evaluate the real-world feasibility of the precursors in geopolymer composites,
the compressive strength was predicted based on the precursor and activator quantities
and their chemical composition using the results of the linear regression analysis. The
predicted compressive strengths for Belgium and Finland when conventional precursors
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were considered is between 31–55 MPa and 31–50 MPa, respectively, while the predicted
compressive strength for the alternative precursors is between 50–59 MPa and 50–55 MPa
for Belgium and Finland, respectively. To prove the feasibility of the identified precursor
combinations, the optimal mix designs were verified through literature studies. However,
the next steps of the research can focus on examination of the mechanical properties of
the optimized mixes at a laboratory scale. The long-term durability aspects should also be
taken into consideration.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/recycling8020032/s1, Table S1. Energy requirement for pre-treatment;
Table S2. Electricity costs; Table S3. Weighted Environmental impacts of precursors & transportation,
estimated using Gabi software; Table S4. Transportation distances in km; Table S5. Procurement and
transportation costs and landfill costs in Finland; Table S6. Procurement and transportation costs
and landfill costs in Belgium; Table S7. Availability of materials in Finland; Table S8. Availability of
materials in Belgium; Table S9. Results of linear regression analyses. References [1,14,47,52–76] are
cited in the supplementary materials.
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