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Abstract: Most road surfaces globally are constructed using bituminous materials. The construction of
new roads and the maintenance of existing ones demand a huge amount of virgin natural aggregates.
Depletion of resources that takes place during the construction of the road has an impact on cost
and also on the environment. Hence, there is a need to reduce virgin aggregate use for bituminous
pavement construction. This can be achieved by utilizing sustainable materials such as marble waste
and reclaimed asphalt pavement (RAP) in hot mix asphalt (HMA)-type road construction. This
research work is focused on sustainable development goal (SDG) 12, exclusively on the target number
12.5 which describes the recycling and reuse of materials. However, no investigations were seen
to be reported on the integrated utilization of sustainable materials and RAP in bituminous paver
blocks. The bituminous mixes were evaluated based on strength and compared with the control mix
in this study. Bituminous paver blocks were then cast using sustainable materials and tested in the
laboratory to assess the performance of the blocks through a compression test, Cantabro loss test,
and wheel rut test. The test results gave satisfactory values; hence, these bituminous blocks can be
used for service maintenance of the pavement structures. The study indicates that using sustainable
material along with RAP in blocks can provide an eco-friendly, easily maintainable pavement system
which makes it a key approach to SDG 9 as well, in terms of innovative infrastructure solutions.

Keywords: bituminous blocks; sustainable development; sustainable material; recycle; innovative
road unit; rut test; field simulation test

1. Introduction

Road infrastructure plays a vital role in all aspects of developing countries. A signif-
icant component of road infrastructure are the pavement structures that are constructed
using either bituminous material or cement concrete. The majority of pavement structures
in developing countries such as India are made with bituminous material as the main
constituent. India’s road network was named the world’s largest in 2019, with 5.9 million
kilometers of road. The total road length of the country has inflated considerably from
0.3 million km [1]. An increase in the road length results in rising demand for materials
for construction and for regular maintenance. The use of excellent quality conventional
materials in road construction is turning out to be increasingly expensive in developing
countries because of scarcity and demand for virgin materials. One of the major aspects
that affect sustainability in construction is material consumption [2]. Along with the rising
demand for construction materials, developing countries are also facing certain issues such
as waste disposal (an environmental concern) and also challenges during utility service
maintenance work on pavements, as it requires various types of machinery and techniques
to be implemented and also more resources based on the condition of work. The sustainable
development goals (SDG) were framed by the United Nations (UN) in the year 2015 to
guide global communities toward sustainable development [3]. A total of 17 SDGs with
169 targets covering the aspects of ending poverty, zero hunger, good health for all, quality
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education opportunities for all, gender equality, sustainable water management, clean
energy for everyone, sustainable economic growth with decent work culture, industry
innovation by building resilient infrastructure, reduced inequalities, safe sustainable cities,
sustainable consumption and production in terms of recycling and reuse, climate action,
protect life below water and on land, peace, justice for all, and partnership for the goals [4].
This research work is focused on covering a part of the targets which come under SDG 9
and 12. Various works in the literature reviewed that come under the category of SDG 9
and 12 are discussed below.

Many researchers are trying to find out possible ways to improve the use of waste
materials in pavements and thus to reduce the use of virgin materials, as well as to imple-
ment new techniques for road construction and maintenance works. Recycling of asphalt
pavement creates a cycle of reusing materials that optimizes the utilization of natural re-
sources. Recycling in pavement construction majorly relates to the use of RAP [5,6] and has
a few challenges [7]. A variety of materials have been employed in place of conventional
materials such as RAP [8–10], quarry debris [11], marble waste [12–15], mining wastes [16],
rice husk ash [17], and other materials [18–22]. A few research attempts have been made,
such as the utilization of locally available materials and waste materials in the pavement
structure [23] and quarry wastes along with RAP [24]. RAP has been intensively inves-
tigated as the most popular material, and different studies using RAP are prescribed in
Table 1. RAP could be a useful alternative to virgin materials as it reduces the requirement
for virgin aggregate [25,26]. Some findings suggest that the asphalt mixes with RAP with
a high proportion [21,27], even 50 to 100% replacement ratio, and thus provided better
performance [28]; 50% RAP substitution in base course performed better compared with
conventional hot mix asphalt mixtures, as they minimized the environmental impacts
through the reduction of energy consumption, improved the mechanical properties and
durability, and also enhanced the stripping resistance [29]. Increasing RAP content reduces
the density of the specimen, and the moisture damage decreases significantly with an
increase in RAP content. Similarly, the performance of specimens related to rutting charac-
teristics is also significant. Fatigue behaviour was found to be low for all mixes for up to
30% RAP content [30]. No negative effect was seen on the test specimen when RAP is mixed
with the high modulus mixture, even for high proportions [31]. In some studies, recycled
concrete aggregate is also used as an ingredient for the construction of road pavement [32],
and for sustainable development by using construction and demolition waste [33].

Table 1. Different studies using RAP.

RAP Studies Ref. Literature

Mechanical behavior [19,34–37]
Construction (recycling) [38,39]
Structural performance [19,20,25,40,41]

Serviceability conditions [19,20,42]

From the literature reviewed, it was also found that the largest natural stone produced
in the world is marble, accounting for 50% of the world’s natural stone produce [43]. Marble
dust is usually dumped on riverbeds and possesses a serious environmental concern [44].
To reduce the disposal issues related to this waste generated, they are reclaimed to produce
appropriate alternative materials for highway construction [24]. Reuse of waste generated
in the construction of roads is one of the possible solutions to reduce the use of virgin
material [45]. Some studies have found that other materials such as marble can serve as
an alternate material for virgin material [46]; for example, marble dust is used as filler
in asphalt pavement construction [12,23,47], marble chips [48], and wastes from marble
quarries as aggregates in pavement construction [11,49]. From the literature, it was observed
that the use of virgin material for road construction and maintenance works can be reduced
by utilizing sustainable materials such as RAP, marble wastes, etc. and the proportion of
these materials may vary depending on the purpose.
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This study is mainly focused on an innovative technique for the rapid maintenance
of pavement structure by developing bituminous blocks, and is not limited to the re-use
of existing road material such as reclaimed asphalt but also utilizes a waste material,
i.e., marble dust. In developing countries, pavement structures are not maintained properly
during service maintenance works such as water supply and electrical services, as well as
structural maintenance work such as rectifying distresses including potholes in pavement
structures. The trenches created for service maintenance works are normally filled manually
and the roads are resurfaced using either concrete or chipping material for faster execution.
During maintenance work, the prevailing surface materials are wasted, owing to poor
workmanship. Proper measures taken to reclaim and reuse the existing pavement, instead
of using it as a filling material, as an ingredient for bituminous pavement works can save
considerable amounts of virgin material. Present maintenance works do not provide a
better solution, thus evolving an idea of developing a bituminous block for achieving
better results in the maintenance works, which relates to SDG 9 on innovative solutions for
infrastructure. In the earlier days, bituminous blocks were being used in road pavement
construction in isolated places across the world, such as Georgia and Canada. Bituminous
blocks have the benefits of a wide application range and easy recycling, and less time
is required for curing. Some studies have been done to evaluate the bituminous blocks’
performance [50]. Zhang et al. conducted a study to compare the mechanical characteristics
of the precast hot-mix asphalt block with the precast mortar block, and based on the
research result, it can be concluded that the precast HMA paver block has good resistance
to deformation and rutting at par with conventional paver blocks, and for different climatic
conditions and environments, the precast bituminous blocks should be designed to meet
the desired gradation and requirement [50]. Abdelgalil et al. conducted a study on the
influence of block thickness on the performance of asphalt blocks, and observed that with a
decrease in block thickness of the asphalt block, the static load resistance also decreases [51].

From the extensive literature study, it was analyzed that few studies have been carried
out on paver blocks made of conventional HMA. No studies were found to have been
carried out on bituminous paver blocks cast using sustainable materials. This paper
focuses on the development of modular bituminous blocks for pavement construction
and maintenance in countries. In this study, the mechanical properties of the HMA mix
using conventional and sustainable materials are evaluated, and then the optimum mixes
are used for casting the HMA paver blocks. The ultimate objective of this work is to
develop bituminous concrete paver blocks, using two sustainable materials, namely RAP
and marble dust waste in the conventional hot-mix asphalt (HMA-bituminous concrete of
grade 2 mix) to reduce the use of virgin materials and to provide a sustainable solution to
the service maintenance works. By the above-mentioned objectives, a part of the sustainable
development goals framed by the UN such as SDG 12 and SDG 9 can be achieved. The
structure of this article comprises different sections. Section 2 describes the materials
used in this research. In Section 3, the methodology followed in this research is discussed.
Detailed discussions about the results from the laboratory test are discussed in Section 4.
Finally, in Section 5, the summary of the findings is presented.

2. Materials

The study made use of the following materials: Bitumen, coarse and fine aggregate,
and sustainable materials, namely, RAP and Marble.

2.1. Bitumen

The bitumen was subjected to various tests as per Indian Standards to determine
its properties, including specific gravity [52], penetration [53], softening point [54], and
ductility [55] as specified in the specifications. The type of binder used has an effect on the
properties of bituminous mixes. In the paver block, VG 30 (viscosity-graded) bitumen was
used, with the properties listed in Table 2 below.
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Table 2. Properties of Bitumen.

Name of the Test Obtained Result Standards

Specific gravity test on bitumen (IS:1202) 1 0.99 minimum
Penetration test on bitumen (IS:1203) 67 50–70

Softening point test on bitumen (IS:1205) 52 ◦C 40–52 ◦C
Ductility test on bitumen (IS:1208) 77 cm 75cm minimum

2.2. Aggregate

The aggregate of sizes 12 mm and 6 mm and filler material were used in the bituminous
mix. Table 3 shows the aggregate gradation based on the sieve analysis as per IS 2386:1963
(part 1). The selection of aggregates for the study is based on the MoRTH (Ministry of
Road Transport and Highways, India) [56] specifications. For the bituminous concrete mix
of grade 2, the normal aggregate sizes are 12 mm and 6 mm, and filler material is used.
The aggregate type is charnockite, which was commonly used for road construction at the
regional level. For the mix design, the specific gravity of all aggregate sizes was determined
as per IS 2386:1963 (part 3), and the specific gravity values for 12 mm, 6 mm, and filler
material were 2.67, 2.68, and 2.60, respectively, indicating that all values are within the
specified limit. The specific gravity of aggregates is used in the calculation of the stability
value of the mix.

Table 3. Aggregate Gradation (%).

Aggregate
Nominal Size

Sieve Size (mm)

19 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

12 mm 100 51.33 2.67 0 0 0 0 0 0 0
6 mm 100 100 92.58 14.04 0 0 0 0 0 0
Filler 100 100 100 100 88.30 68.1 55.82 37.62 24.63 9.03

Marble 100 100 100 93.75 81.25 65.63 48.44 25 15.63 6.25

2.3. Sustainable Materials

The sustainable materials used in this study are marble waste (fine and coarse) and
RAP, the marble waste being bought from the rock mines and RAP was collected from
the service road of the Karikkakom area of the Kanyakumari-Kochi NH 66 bypass road,
Thiruvananthapuram, Kerala, India. RAP and marble waste were crushed to produce
aggregates of a smaller size than 19mm using a jaw crusher for the incorporation of
materials in the bituminous mixes; marble waste was made finer using a roller crusher.
The utilization of RAP and marble waste in the bituminous mixes will achieve a part of
sustainable development goal 12 and target number 12.5 in the way of recycling and reuse
of materials.

3. Methodology
3.1. Design of HMA

The bituminous concrete of grade 2 mix was selected for the HMA mix as per the
MoRTH specification for roads and bridge works in India [56]. The gradation was obtained
by the trial-and-error method and was compared to the required specification, for the
above-selected materials. The proportion of mix for the control specimen was fixed as 20,
30, and 50 percent of 12 mm, 6 mm, and filler material, respectively. Figure 1 shows the
gradation of materials used in the bituminous mixes, and all values are within the specified
limit. The upper limit and lower limit of the gradation were selected from the bituminous
concrete mix of grade 2 as per specification [56].
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3.2. Specimen Preparation

In this study, two sets of the bituminous mix were used for casting the bituminous
blocks, i.e., control mix and sustainable mix; for the sustainable mix, RAP and marble
waste were integrated. The control mix proportioning with varying binder content is
shown in Table 4. The bituminous specimens using RAP material were prepared by
changing the percentage of RAP content, using the optimum binder content obtained for
the control mix by the Marshall stability test. Eight mixes were prepared using sustainable
material with varying RAP percentages and varying marble waste percentages in the RAP-
incorporated control specimen as a replacement for filler material. The proportion of RAP
in the bituminous mix was changed by 10%, 20%, 30%, and 40%. Marble waste was also
used as a replacement for fines in the bituminous mix, in order to reduce the use of virgin
materials. As per the literature study, marble waste can be used as a replacement for fines
by about 100% [57]. The percentage of replacement of fines in the sustainable bituminous
mix used for the present study was 25%, 50%, 75%, and 100%. In the marble mix, 30%
of RAP was used, which denotes the optimum RAP content based on the laboratory test
results. The sustainable bituminous mix proportioning adopted in this study is shown
in Table 5.

Table 4. Control Mix Proportion.

Material (Grams) Mix 1 Mix 2 Mix 3 Mix 4

12 mm aggregate 240 240 240 240
6 mm aggregate 360 360 360 360

Filler 600 600 600 600
Binder Content 54 60 66 72

Binder % 4.5 5 5.5 6
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Table 5. Sustainable Mix Proportion.

Material (Grams)
RAP Mix Marble Mix

Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12

12mm aggregate 216 192 168 144 168 168 168 168
6mm aggregate 324 288 252 216 252 252 252 252

Filler 540 480 420 360 315 210 105 0
RAP 120 240 360 480 360 360 360 360

RAP % 10 20 30 40 30 30 30 30
Bitumen in RAP 5 10 15 20 15 15 15 15
Virgin bitumen 61 56 51 46 51 51 51 51

Marble 0 0 0 0 105 210 315 420
Marble % 0 0 0 0 25 50 75 100

3.3. Preparation of Bituminous Blocks

The optimum mixes obtained based on the previously discussed test results were used
for the preparation of the bituminous blocks. These mixes included mix 3, mix 7, and mix
12, and the size of the bituminous block is 150 mm × 150 mm × 55 mm. Specimen thickness
of the bituminous block is adopted based on the average thickness of the bituminous
concrete layer in practice [58]. The procedure adopted for bituminous block manufacturing
is similar to the Marshall specimen-casting technique, but the compaction is done using
hydraulic compression instead of the drop-hammer compaction used for the casting of the
Marshall specimen.

Initially, the ingredients are weighed, and the overall weight of the mix is fixed, based
on the size of the compacted bituminous block. Then, the materials are mixed and heated
up to the required temperature according to the specification, and compaction is done.
Based on the trial-and-error method, the hydraulic load is given for the casting of blocks
to achieve the desired density and thickness of the modular bituminous block. According
to the standard specification in India, the equivalent standard axle load passing over the
bituminous pavements is about 8 Ton [56], i.e., per dual wheel assembly, the load would
be 4 Ton. For producing the bituminous blocks, a hydraulic loading of 90kN was applied
which is more than the standard axle load as per the specifications. The schematic process
of the bituminous block compaction and compacted bituminous block is shown in Figure 2.
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3.4. Test on Bituminous Blocks

In this study, the novel bituminous blocks are evaluated for their load-bearing capacity,
rutting resistance, and loss of material due to abrasion and impact. In addition to the
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above-mentioned tests, a field simulation was carried out to evaluate the performance
of bituminous blocks. The rut depth of the bituminous block is assessed by placing
four specimens in the wheel rut tester mold, which is a unique approach used in this
study. 158 block specimens were manufactured for conducting the performance evaluation.
Conventional tests were done on an average of 3 samples for each test and an average
of 16 samples was used for the rut test and field simulation test. The performance of the
bituminous block when loaded over the edge and center of the block was tested using the
wheel rut tester. The wheel rut testing of the bituminous block and the loaded area are
shown in Figure 3. The placement of the bituminous block in the wheel rut test reflects
the real scenario of bituminous block construction. The load-bearing capacity of the block
was tested by using a compression strength-testing machine, and the procedure adopted
was the same as per the testing of modular blocks [59]. The load observed at the failure of
the bituminous block is recorded as the load-bearing capacity. The wear and tear of paver
blocks is generally studied through conventional abrasion tests using an abrasive charge
such as sand. These tests are not applicable or reliable in the case of the viscoelastic mix.
Hence, a study on the performance of blocks subjected to abrasion and impact was done,
based on the principles of the Cantabro loss test [60], with an aim to subject the blocks to
an extreme amount of abrasion and impact.
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3.5. Field Simulation Test

While the wheel rut tester evaluates the rut resistance of a bituminous block, the study
has a limitation in that the role of underlying layers is not considered, as the slab is placed
inside a steel mold. The field simulation test was conducted to evaluate the performance
of the bituminous block by simulating a realistic scenario of bituminous block pavement
subjected to repeated wheel loads in the field. A laboratory setup was fabricated using
mild steel and acrylic sheet, to perform a field simulation test. From the field simulation
test, the surface deformation and the rut depth of the bituminous blocks are measured by
applying dynamic loading over the surface. The method of loading for the field simulation
test was identical to the wheel rut test. In the setup, pavement layers were constructed,
i.e., subgrade, subbase, base course, and blocks. The total material quantity for each
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pavement layer was determined by using the compacted density required. The material
used for the subgrade is red soil and the thickness is 300 mm. The granular subbase layer
was constructed using a combination of crushed stones, and the thickness is 150 mm. Wet
mix macadam was constructed as the base course and the thickness is 250 mm. Bituminous
blocks of thickness 55 mm are placed over the base course. The layer thickness of the
pavement structure was calculated based on the California bearing ratio of the material.
Loading was done by means of a hydraulically loaded pneumatic wheel. A loading set-up
fabricated for another study in the laboratory was used for this purpose. The deformation
of the surface was measured by using linear variable differential transducers (LVDT).

4. Results and Discussion
4.1. Marshall Stability

The binder content selected for the control specimen bituminous mix was 4.5%, 5%,
5.5%, and 6%, and the optimum binder content was determined by the Marshall stability
test as described earlier. The average value of bitumen (binder) content giving maximum
stability, maximum bulk density, and 4% air voids of the bituminous mix is the optimum
binder content. Based on the test results, the following graphical plots are made: (a) stability
vs. bitumen content, (b) bulk density vs. bitumen content, (c) air void vs. bitumen content,
and (d) flow value vs. bitumen content. The graphical plots for the control specimen are
shown in Figure 4. The optimum binder content and maximum stability value of the mix
are, respectively, 5.5% and 12.42 kN. The stability value of the bituminous mix having a
binder content of 6% decreased by 13% due to an increase in asphalt content. As the asphalt
content increases, the flow value of the bituminous mix also increases and the percentage
of air void decreases because of the voids filled by asphalt and an increase in adhesion
between the particles.
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The sustainable mix using RAP was prepared using the optimum control mix, i.e.,
mix 3, by varying the percentage of RAP content. The optimum sustainable RAP mix
is obtained by the Marshall stability test. The maximum stability value of 12.13 kN was
observed for mix 7. Then, the inclusion of sustainable material in the bituminous mixes
(mixes 9, 10, 11, 12) was evaluated using the Marshall stability test. The stability value
of the bituminous mix containing marble waste increases as the waste content increases.
The stability value is 10.41 kN for 25% replacement of marble in control + RAP mix, and
it increases for 50%, 75%, and 100% replacement to 10.91 kN, 11.46 kN, and 12.09 kN,
respectively. The stability value of mix 12 is 16% more than mix 9. The Marshall stability
value for the fines replaced by marble specimens is shown in Table 6. The stability value
of mix 9 is less than the control mix because the increase in fine material will increase the
surface area and cause difficulty in binding, and reduce the voids too. The stability value
for all the mixes is more than the specified value of 9kN. A comparison of stability values
of the sustainable bituminous mixes is shown in Table 6.

Table 6. Marshall Test Results for Sustainable Mixes.

Parameter
RAP Mix Marble Mix

Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12

Stability (kN) 9.81 11.45 12.13 10.52 10.41 10.91 11.46 12.09

4.2. Evaluation of Bituminous Blocks

The modular paver blocks (concrete) are generally tested for load-bearing capacity
using the compression-testing machine. There is no standard test or code specification
available for assessing the performance of the modular bituminous paver blocks. In this
study, the performance of the modular blocks was assessed by finding load-bearing capacity
using the compressive strength-testing machine. The load sustained by the bituminous
block for the three optimum mixes mix 3, mix 7, and mix 12 during the test are presented
in Figure 5. The test results show that all the bituminous blocks sustained a load higher
than the standard load of 80 kN. For the control mix (mix 3), RAP mix (mix 7), and marble
mix (mix 12), the load-bearing capacity is higher than the standard load. The addition of
marble waste thus increases the load-carrying capability of the bituminous block.
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Figure 5. Block specimen (a) before testing; (b) after testing, showing loss of material marked by
red circles.

Corners of the specimen disintegrate more (red circles) in comparison with the central
portion of the specimen, as shown in Figure 5 during the Cantabro loss test. While it is a
matter of concern, it may be noted here that the specimen is allowed to cyclically fall from
a height of 700 mm and hit the bottom of the abrasion testing cylinder. In addition, damage
to the edges and corners is high as there is no adjacent block to transfer the loads, whereas,
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in reality, the effect would be minimal as there would be adjacent blocks in contact and
bonding with the tested block. In this study, the principle of the Cantabro loss test method
was used to perform a relative comparison between the blocks made out of the conventional
mix and the sustainable mixes; the intention was only to rigorously test the vulnerability
of each test specimen (damage to the edges and corners, and material loss), and hence,
instead of Marshall cylindrical specimens, the blocks were tested as such. Cantabro loss
test values (indicative only) for the square bituminous blocks are shown in Figure 6.
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Figure 6. Results of compression and material loss based on the principle of Cantabro test.

The rut depth on the bituminous block is determined from the wheel rut test under
a controlled temperature of about 60 ◦C. The rut depth values were measured for the
bituminous blocks at two places, i.e., over the center of the bituminous block and over the
joint of the bituminous blocks. The rut depth values for the bituminous block specimen
are presented in Table 7. Compared to the results of the control specimen (4.15 mm), the
bituminous block specimens using sustainable materials showed a better performance in
rutting. Based on the test result, it can be inferred that the bituminous block specimens
using marble dust showed better rut resistance. The rut resistance offered by the specimens
with RAP and specimens with marble dust as fines is about 55% and 73% more, respectively.

Table 7. Average Rut Depth (mm).

Type Position Notation Rut Depth Standard Deviation

Control Mix Joint CMJ 4.15 1.46
Control Mix Center CMC 3.82 0.94

RAP Mix Joint RMJ 1.86 0.43
RAP Mix Center RMC 1.58 0.47

Marble Mix Joint MMJ 1.08 0.32
Marble Mix Center MMC 0.77 0.18

4.3. Field Simulation Test

The pavement layer construction with bituminous blocks is shown in Figure 7. The
field simulation test was performed to measure the deformation under dynamic loading. A
rolling load was applied through a loaded pneumatic tyre of a special set-up on the joints
and center of blocks of the bituminous block pavement (by changing the laying pattern).
The deformation of the bituminous block was measured using linear variable differential
transducers (LVDT). The LVDTs are placed on the pavement on blocks adjacent to the
wheel path. The position of the LVDT and loading path is shown in Figure 6. After the
loading process, the rut depth, i.e., deformation along the wheel path, was measured using
a steel rule. The deformation of the bituminous block by joint loading and center loading of
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the control mix after loading are shown in Figure 8. The rutting deformation values of the
modular bituminous block for the control mix and sustainable mix using RAP and marble
are shown in Table 8.
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Table 8. Field Simulation Test Results.

LVDT Surface Deformation (mm)

Position Control Mix Joint Control Mix Center Marble Mix Joint Marble Mix Center RAP Mix Joint RAP Mix Center

A 3.6 4.6 1.85 3.4 2.21 3.36
B 2.1 1 1.09 1.82 0.7 0.93
C 2.9 3.1 1.12 2.89 3.9 4.3
D 1.34 0.77 1.55 3.02 3.2 4.8

The deformation of bituminous blocks in the pavement far from the loaded area is
significantly less than the deformation in the center for all the test trials. For the control
mix loading on joint tests, the deformation value at location D is quite low compared to all
other places since the load transferred to location D is insignificant. The load-deformation
value at position C is nearly 19% lower than the deformation value at point A. The lowest
deformation value was approximately 1.34 mm at point D for the control mix paver block,
with loading on joint. Due to their close proximity to the loaded area, the deformation
values at positions A and C are higher than those at positions B and D for the control mix
blocks during the central loading trial.

Based on the measurement in the laboratory, the deformation at the center of the
control mix specimens is approximately 6mm. The sustainable mix specimens using RAP
and marble materials were then subjected to the field simulation test. The deformation
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along the wheel path after the dynamic loading is about 4mm and 2mm for the RAP and
marble mix, respectively. The deformation value is significantly less at LVDT location B
compared to all other positions for the sustainable mix. From Table 8, it is clearly observed
that the deformation values are significantly higher when LVDTs are positioned very near
to the loaded area (wheel track). In addition, the bituminous block does not require any
jointing material due to the bonding and flexibility in the nature of the bituminous mix,
along with its thermal response.

4.4. Cost Comparison

Apart from the scope of the study, a cost comparison of the bituminous block was
carried out by comparing it to the conventional paver block. The cost comparison between
the bituminous block and the conventional pavement block is shown in Table 9, based on the
quantity of material required for the block paving and the standard rates specified. The chart
shows the cost of materials required per square foot size. The ingredients required to make
a single square foot of bituminous block cost roughly
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39 ($0.47). The market value of one
square foot of conventional pavement block, including transportation, is roughly
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The modular bituminous block pavement is less expensive than the conventional pavement
block in terms of cost. Material costs for conventional pavement blocks are 56% more than
for bituminous blocks. Considering the study done by Rafiq et al. [61], the cost reduction
was reported at about 14% using RAP compared with conventional material. Similarly, the
use of sustainable materials in the manufacture of bituminous blocks decreases the cost
much more comparatively.

Table 9. Cost Analysis (One Square Foot Size).

Materials Quantity (kg) Rate (
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4.5. Trial Implementation in a Parking Lot

The study included a field trial in the parking lot with two small areas paved with
modular bituminous block pavement and two with a conventional interlocking concrete
pavement block. The construction site for bituminous blocks and conventional interlocking
concrete pavement blocks is shown in Figure 9. From the field observation over one year,
it was evident that the bituminous paver block would be suitable for use in parking lots,
and for service maintenance works, rapid maintenance of bituminous pavement (pothole
patching), etc. The joints were found to be bonded well without any jointing material, due
to the viscoelastic nature of the mix.
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4.6. Achievement of Sustainable Development Goals

Table 10 shows how the sustainable development goals (SDG) are achieved in the
present study. Goals 9 and 12 are achieved to a great extent.

Table 10. Sustainable Development Goals Achieved by this Study.

Sl. No. SDG Achieved Contribution from the Present Work

1
SDG 9: Industry, Innovation and Infrastructure

Build resilient infrastructure, promote inclusive and
sustainable industrialization and foster innovation

• This research work is focused on the development of
modular bituminous blocks using sustainable materials

• After evaluation of the bituminous block in the field
and laboratory, it shows a better performance

• These bituminous blocks can be used as an innovative
solution for the rapid maintenance of flexible pave-
ment structures, utility service maintenance works,
parking lot construction, etc.

2

SDG 12: Responsible Consumption and Production
Ensure sustainable consumption and production patterns

Target 12.5: Substantially reduce
waste generation through

prevention, reduction,
recycling and reuse

• The consumption of natural resources can be reduced
by 65% in bituminous pavement construction

• By this method, the waste generated from the marble
quarries/industry can be utilised as an ingredient for
bituminous blocks

• Recycling and reuse of materials from the existing
pavement unit, i.e., bituminous block, is possible

5. Conclusions

A study was conducted on developing a novel bituminous block pavement using
sustainable materials. The following are the most important conclusions drawn from this
research study:
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• Optimum bituminous mixes are obtained based on the Marshall test, and the optimum
binder content is about 5.5% for the control mix.

• Utilization of sustainable materials in the bituminous mixes could reduce the use of
conventional materials by 65%.

• Rut resistance offered by the sustainable bituminous paver blocks using RAP and
marble is about 55% and 73%, respectively.

• As per the cost comparison, bituminous pavement blocks cost about 56% less than
conventional paver blocks.

• As per the field trial test conducted, the bituminous pavement was found to be in a
good and stable condition even after a year, promising durability too.

• From the field simulation test, it can be concluded that the bituminous block does not
require any jointing material due to the flexibility in nature of the bituminous mix.

• However, a jointing material could improve the performance of bituminous blocks
and load transfer; this needs further study.

Thus, from this study, it can be concluded that the proposed sustainable bituminous
paver blocks can serve as a pavement-building unit for places such as parking lots, and in
service maintenance works, rapid pavement maintenance, and pothole patching works.
The road governing agencies and all stakeholders can implement this kind of innovation in
regular practice, which makes it a way to achieve the SDGs fully in forthcoming years. A
small step in the consideration of the SDGs in local-level constructions will make a huge
impact, and this spreads to the country level as well as to the global level.
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