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Abstract: The scientific community has revealed the environmental benefits of recycling construction
waste (CW) versus its disposal, and its contribution to circularity. The Life Cycle Assessment (LCA)
method enables the environmental impact of CW management to be quantified and facilitates the
comparison of recycling versus alternative disposal scenarios. However, due to its complexity, LCA
is seldom used by technicians during the design phase, which constitutes a crucial stage in the
prevention of environmental impacts. This paper therefore proposes an LCA-based tool, integrated
into the Building Information Modelling (BIM) methodology, that helps designers to automate the
environmental assessment of recycling versus disposal. The CW-LCA-BIM tool uses impact factors
obtained from an LCA model applied to CW and was applied to the structural system of a building in
Spain. Up to 99% of the non-hazardous waste was recyclable or reusable. The management of three
types of recyclable waste was assessed: concrete (27.2 t), plastics (4.2 t), and steel (1.5 t). Recycling is
shown to be the best option since it prevents 1.4 times (14.6 t) the emissions of the disposal scenario
and saves 85 times (148.5 GJ) its energy consumption. This tool can be developed in other waste
management systems and infrastructures. It can be useful both for designers for the reduction of the
environmental impact of their buildings, and for policy managers for waste-prevention policies.

Keywords: Life Cycle Assessment (LCA); construction waste (CW); Building Information Modelling
(BIM); environmental impact; recycling; disposal; landfilling; concrete structure

1. Introduction

The generation of construction and demolition waste (CDW), together with the use of
resources in the construction industry, presents a worldwide problem [1]. In the European
Union (EU), the construction sector is the main source of waste generation, accounts for
more than a third (35%) of all waste generated [2], and is the main consumer of natural
resources in that it consumes approximately 50% of all extracted material [3]. Faced with
this situation, initiatives and strategies to promote CDW recycling and circularity have
been implemented in recent years. The EU rules, for example, aim not only to ensure that
CDW is managed in an environmentally sound way, but also to contribute towards the
circular economy. The new Circular Economy Action Plan [4] is thereby one of the main
building blocks of the European Green Deal [5], which focuses on the sectors that use the
most resources and on where the potential for circularity is high, such as construction
and buildings. Nevertheless, the level of recycling and material recovery of CDW varies
greatly across the EU: from less than 10% to over 90% [6]. Hence, recycling rates remain
far from the target of recycling 70% of CDW (excluding soil) set for 2020 by the European
Waste Framework [7]. A major barrier to the circular principles is the lack of appropriate
design methodologies to enable the better use of CDW [8]. In fact, in the light of the circular
economy, the provision of methods and tools to evaluate and subsequently enhance product
performance has become a significant issue, albeit still barely addressed [9].
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The design phase is a crucial stage in improving on-site waste management, since not
only does building design determine the types and quantities of waste generated, but it
also dictates the level of recyclability of the waste on site. Moreover, Life Cycle Assessment
(LCA) [10,11] is a method that can measure the environmental impact caused by waste
management, and hence enables the comparison of alternative CDW management scenarios.
In the field of CDW, LCA has been used in scientific studies, mainly to assess alternative
End Of Life (EOL) scenarios [12,13], with only a few studies focused on other phases of the
life cycle, such as the construction phase. Although the EOL is the main source of CDW in
many countries, such as the USA, where demolition waste (DW) represented more than
90% of total CDW debris generation in 2018 [14], in other countries, such as Spain, new
construction in 2019 incurred a higher incidence of CDW (85%) than did demolition (10%)
and rehabilitation (5%) [15]. In both cases, design methodologies are needed that include
the prediction of the environmental impact from early design phases [12], since these phases
facilitate the implementation of corrective measures before the design is complete [16].

However, LCA application by technical designers has been limited due to its complex
and time-consuming properties [17,18]. In this vein, Building Information Modelling (BIM)
has become a powerful tool for the management of building information [19–21] and
for the automation of calculations during the design stage [16,21]. In the field of CDW,
BIM has been applied with several approaches: (i) to predict CDW generation [22–25];
(ii) to estimate the CDW [26] and the environmental impact prevented [27] through clash
detection; (iii) to support waste minimization, management, and control [28–32]; and (iv)
to facilitate the adoption of the circular economy in the construction industry [33–37].
However, the application of LCA and BIM to the field of CDW has remained limited. As
shown in Table 1, there are LCA studies [38–44] applied to CDW that include disposal
and recycling scenarios but with few integrated approaches in the design tools. A BIM
tool [45] has been developed to simulate alternative management scenarios but it focuses
on DW generated in the EOL. Therefore, the lack of approaches and design tools for the
assessment of the environmental impact of CDW management in general and especially
that of construction waste (CW) has motivated the interest and timeline of this study.

Table 1. LCA studies that evaluate recycling and demolition scenarios in construction and demolition
waste. BIM integration.

Study CW DW LCA Recycling Disposal BIM

[38–42] X X X X
[43,44] X X X X X

[45] X X X X X
Proposed CW-LCA-BIM tool X X X X X

CW. Construction waste generated in the construction phase; DW. Demolition waste generated in the End-Of Life
phase; LCA. Life Cycle Assessment; BIM. Building Information Modelling.

In order to fill this research gap, this paper proposes a CW-LCA-BIM tool the main
contribution of which is that it enables designers to automate the evaluation of the en-
vironmental impact of alternative CW management scenarios, using the project’s own
design tool (i.e.,Audodesk Revit 21.1.1, Autodesk Inc., San Rafael, California, USA). The
tool is based on a BIM-integrated plug-in to quantify CDW [46] and on environmental
impact factors obtained from an LCA model applied to building waste [47]. A case study
in Spain is provided to show the usefulness of the CW-LCA-BIM tool. Recycling and
disposal scenarios for the management of the CW generated by a structural system of
a residential building are compared in the early design stages. The CW-LCA-BIM tool
informs the designer both of the potentially recyclable waste and of the environmental
benefits achieved by its recycling, thereby promoting the circularity of materials in the con-
struction phase of buildings. The paper first presents the materials and methods necessary
for the development and application of the CW-LCA-BIM tool, and subsequently reveals
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the results obtained with its application to the case study as well as the discussion and
conclusions derived from the major findings.

The following research questions (RQ), regarding general gap issues and far removed
from professional practice during the design of the building, are intended to be answered
with the tool:

RQ1. During the design phase, is it possible to obtain the impact reduction achieved with
the recycling versus disposal scenarios of CW, without being an LCA expert and without
time consumption?
RQ2. Is CW recycling always the most beneficial option with respect to CW disposal?
RQ3. Which environmental impact categories are most influenced by CW recycling?
RQ4. Which CW and building elements have the greatest impact on CW management and
which CW benefits the most from recycling?

2. Results and Discussion

The structural system was modelled in BIM with an LOD of 300 as shown in Figure 1.
The information of each building element was included in their respective BIM-Objects to
quantify CW as explained in [46]. The CW-LCA-BIM tool allowed the designer to classify
the building elements into five main groups: (i) the foundation slab (60 cm reinforced
concrete slab); (ii) the walls (30 cm reinforced concrete walls); (iii) the pillars (reinforced
concrete and steel pillars); (iv) the beams (embedded and dropped reinforced concrete
beams); and (v) the floors (both 30 and 35 cm reinforced concrete waffle slabs with expanded
polystyrene cassettes and concrete decks).
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Figure 1. Structural system of “La Maria” modelled in BIM.

Ten main fractions of CW (excluding soil) were identified and quantified in terms of
volume (m3) and mass (t), as shown in Figure 2, structured in groups of building elements.
The main sources of CW were (in descending order of mass): (i) concrete leftovers due to
its manufacture and pouring on site; (ii) wooden pallets used to supply the waffle slab
caissons; (iii) metal cans to contain the form release agents; (iv) cuts and pieces of the
polystyrene waffle slab caissons; (v) timber formwork from the concrete slabs; (vi) steel
from reinforcement cuts and remains of metal formwork; (vii) plastic film to protect the
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waffle slab caissons; (viii) mixed waste, unavoidable, to be separated on site; (ix) mixed
packaging that was unavoidable, to be separated on site; and (x) release agent residues.
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In order to obtain the variable types (i) and quantities (Q) of recyclable CW, each
fraction was classified into four groups according to the preferred management option, as
shown Figure 2.

i. Hazardous waste (16%) (in red): (i) timber formworks and (ii) metal cans contami-
nated by release agents; and (iii) release agent residues, which must be separated
and removed by a specialized waste manager in accordance with Spanish regula-
tions [50].

ii. Reusable waste (11%) (in orange): (i) wooden pallets that are usually stockpiled on
site and removed by the same supplier of the materials.

iii. Non-recyclable waste (1%) (in grey): (i) mixed waste and (ii) mixed packaging, the
recycling of which is economically and technically unfeasible since their heteroge-
neous mixtures may be difficult to separate on site as explained in [47].

iv. Recyclable waste (71%) (in green), variables “i” and “Q”: (i) concrete (27.2 t);
(ii) plastics (4.2 t); and (iii) steel (1.5 t).

Subsequently, two alternative scenarios were simulated in the CW-LCA-BIM tool:

i. Recycling scenario (R), in which each recyclable fraction is separated on site and trans-
ported to its corresponding recycling plant by an authorized manager (see Figure S1).
These recycling plants would produce the by-products: recycled aggregates, recycled
steel, and recycled plastic, considering the processes explained in [13,47];

ii. Disposal scenario (D), in which each recyclable fraction is separated on site and
transported to its corresponding landfill (concrete to the landfill of inert waste; and
steel and plastics to the landfill of non-inert waste) by an authorized manager (see
Figure S1); considering the processes explained in [13,47].

For each scenario, the tool quantified the environmental impacts (I) by considering
the impact factors (Fi) shown in Table 1. These impacts were obtained for each type of CW
(Figure 3a), for each type of group of building elements (Figure 3b), and globally for the
entire building system (Figure 4a). Finally, the tool provided a graph showing the reduction
of impacts, prevented emissions, and energy savings achieved in the recycling scenario
(Figure 4b).
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2.1. Case Study Validation and Answers to the Research Questions (RQ)

The tool provides estimates as would be used in the design stage to simulate scenarios
before the building was constructed. The reliability of the CW estimates and accurate
data acquisition are discussed in [46,51]. Nevertheless, it is verified that the three types of
recyclable CW obtained (see Figure 2) are included in the ratios of CW generation in new
residential buildings in Spain [49]: (i) concrete (0.017 t/m2), in the range 0.010–0.034 t/m2;
(ii) plastics (0.003 t/m2), in the range 0.001–0.005 t/m2; and, although steel (0.001 t/m2) is
below the ratio of mixed metals (0.002–0.007 t/m2), this fraction is expected to be higher
as it would be complimented with other metals (aluminum, copper) of other building
systems (carpentry, plumbing). However, it was found that the steel waste expected to
be generated due to steel reinforcement cuttings (1.1 t) (output data) represented 1.2% of
the reinforcement steel considered in the project budget (input data, 91.1 t), which is an
acceptable loss percentage for construction work in Andalusia [52]. Moreover, the fractions
of concrete and plastics are likely to be higher once other waste sources are included in
other building systems.

The environmental impacts prevented were ascertained without the aid of an expert
in LCA, thereby addressing RQ1. The most time-consuming step for the designer was
the modelling of the BIM-Objects. Once modelled, the technician obtained the results by
clicking on the corresponding buttons on the tool.

Regarding RQ2, disposal was identified as the scenario that produces the highest
impact for all types of waste and categories (see Figure 3a), except for plastic in ODP
(insignificant category), and for steel in HTP, where the recycling scenario would be less
beneficial. This result is in line with the literature, since most studies have demonstrated
the reduction of environmental impacts of recycling with respect to disposal [40,44,53–55],
although other work reports that recycling is not always beneficial [56,57].

Regarding RQ3, the tool identified GWP and HTP as the categories with the greatest
impact on the amount of emissions and showed the relevance of energy consumption (see
Figures 1 and 2a). This issue is a consequence of the impact factors obtained and discussed
in [13,47]. As Table 1 shows, 1 ton of deposited concrete waste, for example, generates
2.70 kg CO2 emissions and consumes 40 MJ of energy, whereby the impact is much higher
for the non-petrous fractions of steel (6.20 kg CO2, 100 MJ) and plastics (100 kg CO2,
120 MJ). Another study estimated impacts for 1 ton of deposited mixed CDW of 4.12 kg
CO2 emissions and 62.91 MJ of energy [58]. Moreover, the largest emission reductions
were achieved in HTP (9.4 t) and GWP (5.1 t) followed by the EP (0.02 t) and AP (0.02 t)
categories, and the energy savings in the CED category (148.5 MJ), as shown in Figure 4b.
GWP, GHG emissions and Climate Change are the most evaluated impact categories in
LCA [59]. HTP was also identified as the most significant category in [53].

Figures 1 and 2 show how the tool addressed RQ4. The most polluting option would
be plastic disposal (10.1 t), followed by concrete disposal (0.12 t) and steel disposal (0.03 t),
and the most energy-consuming option would be concrete disposal (1 MJ) followed by
plastic disposal (0.5 MJ) and then steel disposal (0.2 MJ) (Figure 3a).

As shown in Figure 4b, the tool identified the floors, followed by the foundation slab,
the beams, walls, and pillars as the most polluting and energy-consuming group of building
elements. The reason is twofold. On the one hand, the floors and slabs are the main source
of waste: 75% of all waste (see Figure 2). On the other hand, the floor slabs generated a large
amount of plastic (3.74 t) due to cut-outs in the EPS cassettes. Nevertheless, in any building
element, the deposit of its corresponding waste would be the least beneficial option and
recycling would be the best option, since the recycling of the waste generated by floors
and slabs prevents the most emissions and achieves the highest energy savings (13.4 t and
138.9 GJ), followed by the other three groups of elements (0.6 t and 9.6 GJ) (Figure 4b).

Finally, the incidence of the impacts prevented by steel, and plastic recycling, above
other types of waste such as concrete and stone, has been highlighted in other studies such
as [54]. As shown in Figure 4b, the waste whose recycling would be the most beneficial is
that of plastic (prevents 13.0 t of emissions and saves 122.6 GJ), followed by steel (prevents
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1.5 t of emissions and saves 20.2 GJ), and, to a lesser extent, concrete (prevents 0.1 t of
emissions and saves 5.67 GJ). Although the literature points to the greater benefit of steel
recycling compared to that of plastics (e.g., [53]), this study found greater environmental
impact reductions with the recycling of plastics. One reason is that the amount of plastic
waste (4.2 t) represented almost three times the amount of steel waste (1.5 t) and therefore
represented a higher incidence of recycling. In another building [47] where the amount
of steel (14.7 t) and plastics (17.5 t) waste was similar, a greater reduction of impacts
in the GWP category was detected with steel recycling (16.2 t) versus plastics recycling
(13.8 t), using the same impact factors. Moreover, other tools use impact factors applied to
municipal solid waste, and result in similar trends. In the WARM tool [60], recycling 1 ton
of steel (cans) prevents 1.8 times the GHG emissions prevented by recycling 1 ton of plastic
(PET, HDPE), while recycling plastic saves 2.1 times the energy consumption saved by
recycling steel. In the proposed tool, these values are 1.4 and 2.3 (extracted from Table 2).

Table 2. Environmental impact factors (a), recycling impact factor (FR), and disposal impact factor
(FD) for each recyclable CW fraction in the case study.

AP
(kg SO2eq)

/t Waste

EP
(kg PO4eq)/

t Waste

GWP
(kg CO2eq)/

t Waste

ODP
(kg CFC-11eq)/

t Waste

HTP
(kg 1,4-DBeq)/

t Waste

POP
(kg C2H4)/

t Waste

CED
(MJeq)/
t Waste

LoW Code (b) ,
Type of CW FR FD FR FD FR FD FR FD FR FD FR FD FR FD

17 01 01
concrete

−5.3 ×
10−3

2.0 ×
10−2

−4.1×
10−4

4.3 ×
10−3

−7.6 ×
10−1

2.7 ×
100

−6.2 ×
108

3.5 ×
10−7

−9.7 ×
10−2

1.6 ×
100

−1.8 ×
10−4

5.1 ×
10−4

−1.7 ×
102

4.0 ×
101

17 04 05
steel

−3.5 ×
100

4.3 ×
10−2

−9.1
×

10−1
8.2 ×
10−3

−1.1 ×
103

6.2 ×
100

−4.0 ×
10−6

7.0 ×
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Environmental impact categories: Acidification Potential (AP), Eutrophication Potential (EP), Global Warming
Potential (GWP), Ozone Depletion Potential (ODP), Human Toxicity Potential (HTP), Photochemical Oxidation
Potential (POP), Cumulative Energy Demand (CED). (a) Obtained from [13,47,61]; (b) European List of Waste
(LoW) [48].

2.2. Implications of Findings

The proposed tool assesses the environmental impacts caused by CW management,
which form part of the embodied impacts of the building. Although materials and con-
struction (embodied carbon) are responsible for 11% of total building impacts and building
operations for 28% [62], embodied carbon can be as relevant as operational carbon [63]. For
example, Spain, is expected to achieve national climate neutrality and 97% of renewable
energy in the total energy mix by 2050 [64], which could radically reduce the incidence
of operational impact emissions over the life cycle of the building. However, after the
total reduction of operational impact emissions, embodied carbon will continue to grow
significantly as a proportion of total remaining emissions [63,65]. Therefore, efforts should
now focus on reducing embodied carbon emissions [65]. Strategies to make buildings
net-zero energy and zero carbon constitute a key part of the global strategy [66] for long-
term decarbonization and must become the mainstream form of building construction in
all economies to achieve net zero emissions by 2050 [62]. In order to reach this goal, it is
necessary to develop and implement tools into the design software itself to help predict
these impacts in early design stages [16].

Therefore, the proposed tool is implemented in BIM and predicts the potential re-
cyclable CW generated due to the selected building elements, as well as the potential
environmental benefits of its recycling. In the case study, only 16% of CW was identified
as hazardous waste, the vast majority being non-hazardous (84%). A total of 99% of non-
hazardous waste would indicate a high potential for recycling or reuse. This percentage is
well above the current practice in Spain, where 75.13% of non-hazardous CDW is recov-
ered [67]. In the case study, only 1%, corresponding to an unavoidable fraction of mixed
waste, was considered non-recyclable due to the difficulty of its separation on site: its major
environmental impact is shown in [47].
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The designer became aware of the benefits achieved with the recycling scenario. As
shown in Figure 4b, the recycling scenario would remove 14.6 t of pollutants from the
system, improving human health by obviating 9.4 t of 1,4-DB eq emissions and contributing
to decarbonization, by preventing 5.1 t of CO2 eq emissions. To a lesser extent, it would
contribute to the enrichment of the freshwater ecosystem with nutritional elements, and
to the deacidification by preventing 0.02 t PO4 eq emissions and 0.02 t SO2 eq emissions.
Furthermore, the recycling scenario would save 148.5 GJ of energy consumption over the
disposal scenario. It can be concluded that recycling is the best option, as it prevents
1.4 times the emissions of the disposal scenario and saves 85 times the energy consumption
of the disposal scenario.

Furthermore, the results provided by the tool would enable policy makers to detect
hot spots in the recycling of materials in a given location in order to accelerate the imple-
mentation of recycling and practice of the circular economy. For example, by detecting
those materials and products where the benefits of recycling remain lower than the impacts
of landfill, the tool could help shift this situation towards a more circular scenario. There-
fore, the tool, in addition to contributing to the implementation of LCA from the design
stage, would contribute to improving circularity in the construction sector through the
digitalization of the AECO sector via the BIM methodology.

2.3. Limitations and Future Work

In order to estimate the environmental impacts of CW management, certain simplifica-
tions have been considered. For example, the tool used generic instead of specific impact
factors, since the case study is less than five kilometers (by road) from the reference build-
ing for which the generic impact factors were calculated and distances to infrastructure
were taken into account (see Figure S1). To refine the results, it would be necessary to
obtain specific impact factors or to use corrective factors depending on the distances. It
is precisely this process that would limit the application of the method given its higher
complexity. In addition, the three types of recyclable waste were considered to be clean
waste. It was assumed that the system of selective collection and separation on site enables
the collection of clean waste before it is mixed with other waste. In addition, the EPS
(polystyrene) generated by the slab cassettes used the same impact factor as that of the
plastic film (polyethylene). For each type of plastic, a specific impact factor should be used.

Most studies on LCA that are applied to waste evaluate waste management options
once the waste is generated. Future approaches should explore the beneficial environmental
effects of waste prevention scenarios. Moreover, the field of DW has been more widely
addressed in the literature than that of CW. The estimation of DW, in which 100% of
the building is waste, is more predictable than the estimation of CW, in which only a
percentage of the materials supplied to the site becomes waste. In CW, packaging waste is
also generated: a waste difficult to foresee during the design phase. However, in Spain,
for example, construction work has incurred a higher incidence than has demolition work
to date, and although the trend is moving towards refurbishment, tools that assess the
environmental impact of new buildings are still needed.

In the field of civil engineering, there are advances in the application of other recycled
materials in other construction elements, such as the use of recycled rubber in paving
roads [68,69]. In this vein, the tool could be applied to other types of construction, such
as roads, tunnels, and industrial facilities. To this end, it will be necessary to design new
BIM objects related to the construction systems of these types of civil work, e.g., asphalt
paving and drainage systems. These BIM objects should include information related to
CW generation and the environmental impact of its management. In this way, the library
of BIM objects could be enriched and completed over time with the incorporation of: (i)
other construction typologies; (ii) other materials, including recycled and reused materials;
(iii) data from other lesser-known phases, such as those of use and maintenance; and
(iv) other socio-economic indicators and impact categories affected by CW management,
such as the economic cost of its management.
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Finally, since the tool relates design decisions (materials, construction techniques, etc.)
to environmental data (recycling rates, types and quantities of recyclable waste, environ-
mental impact of waste management, emissions, energy consumption, carbon footprint,
etc.), it could be employed to compare and simulate alternative design decisions in real
time. For example, it could be applied in order to investigate the effects of prefabrication
(compared to on-site construction) on both the recycling rate of waste in buildings and
the effects on the decarbonization of the waste management system. Albeit most effective
during the early design phases to simulate alternative design solutions, the tool could also
be applied in the detailed design phase to quantify and report final impacts. In this vein,
further applications of the tool to other building typologies, building systems, and building
phases will be necessary in order to verify the usefulness of its implementation, including
application in other geographical contexts.

3. Materials and Methods
3.1. Basic Assumptions

This study focuses on construction waste (CW) generated on new construction sites.
Waste generated in other phases of the building’s life cycle, such as the use phase and
the demolition, lies outside the scope of this work. The functional unit is defined as “the
management of 1 ton of the ‘i’ fraction of CW potentially producible at a given construction
site” [13]. Two alternative management scenarios are considered—the recycling scenario
and the disposal scenario—the definitions of which are in accordance with the European
Waste Framework Directive [7]:

i. ‘Recycling’ means any recovery operation by which waste materials are reprocessed
into products, materials, or substances whether for the original or other purposes.
This includes the reprocessing of organic material but does not include energy
recovery and the reprocessing into materials that are to be used as fuels or for
backfilling operations. This is used in the recycling scenario.

ii. ‘Disposal’ (also called landfill, elimination, or dumping in the literature) refers
to any operation which is not recovery even where the operation has, as a sec-
ondary consequence, the reclamation of substances or energy. This is used in the
disposal scenario.

According to the waste management hierarchy [7], recycling should be used when
the waste cannot be prevented or prepared for reuse and disposal should be used as a last
resort when the waste cannot be recovered. This study focuses on CW that can potentially
be recycled, hereinafter referred to as recyclable CW. Other management options, such as
incineration or preparation for reuse lie beyond the scope of this study.

3.2. Steps

Figure 5 shows the five steps of the method and the variables obtained in each step.
Steps 1 to 4 develop the CW-LCA-BIM tool and Step 5 applies the tool to a case study.

In order for the waste generated during the construction of buildings to be recycled, it is
necessary to foresee the types and quantities of recyclable CW expected to be generated.
This information enables the planning for its separation and selective removal to the corre-
sponding waste treatment infrastructures during the construction phase of the building.
Step 1 therefore consists of estimating the types (i) and quantities (Q) of recyclable CW
during design by means of a BIM tool for CW quantification [46]. Each type of recyclable
CW is considered as either recycled, in the recycling scenario, or deposited, in the disposal
scenario, according to the existing infrastructures in the context of the construction site,
called the waste management system. The method is based on impact factors (Fi), which
depend on the location of this infrastructure in relation to the construction site. These
factors are considered in Step 2 and can be obtained from an LCA model to evaluate
waste prevention and non-prevention scenarios [47]. Note that the tool will include non-
prevention scenarios (recycling and disposal). Subsequently, in Step 3, the environmental
impacts (I) of each option can be quantified once the Q, and Fi factors are ascertained. The
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factors, variables, and mathematical formulations of these three steps are integrated into
BIM software in Step 4, so that the calculation can be included in the design process and
can be performed effortlessly. Finally, in Step 5, the CW-LCA-BIM tool is applied to a case
study to demonstrate its usefulness.

Recycling 2022, 7, x FOR PEER REVIEW 10 of 18 
 

ii. ‘Disposal’ (also called landfill, elimination, or dumping in the literature) refers to any 
operation which is not recovery even where the operation has, as a secondary conse-
quence, the reclamation of substances or energy. This is used in the disposal scenario. 
According to the waste management hierarchy [7], recycling should be used when 

the waste cannot be prevented or prepared for reuse and disposal should be used as a last 
resort when the waste cannot be recovered. This study focuses on CW that can potentially 
be recycled, hereinafter referred to as recyclable CW. Other management options, such as 
incineration or preparation for reuse lie beyond the scope of this study. 

3.2. Steps 
Figure 5 shows the five steps of the method and the variables obtained in each step. 

 
Figure 5. Flowchart of the developed methodology. Recyclable CW from “Quiñones et al., 2022” 
[46]. Environmental impact factors from “Llatas et. al., 2021” [47]. 

Steps 1 to 4 develop the CW-LCA-BIM tool and Step 5 applies the tool to a case study. 
In order for the waste generated during the construction of buildings to be recycled, it is 
necessary to foresee the types and quantities of recyclable CW expected to be generated. 
This information enables the planning for its separation and selective removal to the cor-
responding waste treatment infrastructures during the construction phase of the building. 
Step 1 therefore consists of estimating the types (i) and quantities (Q) of recyclable CW 
during design by means of a BIM tool for CW quantification [46]. Each type of recyclable 
CW is considered as either recycled, in the recycling scenario, or deposited, in the disposal 
scenario, according to the existing infrastructures in the context of the construction site, 
called the waste management system. The method is based on impact factors (Fi), which 
depend on the location of this infrastructure in relation to the construction site. These fac-
tors are considered in Step 2 and can be obtained from an LCA model to evaluate waste 
prevention and non-prevention scenarios [47]. Note that the tool will include non-preven-
tion scenarios (recycling and disposal). Subsequently, in Step 3, the environmental im-
pacts (I) of each option can be quantified once the Q, and Fi factors are ascertained. The 
factors, variables, and mathematical formulations of these three steps are integrated into 
BIM software in Step 4, so that the calculation can be included in the design process and 

Figure 5. Flowchart of the developed methodology. Recyclable CW from “Quiñones et al., 2022” [46].
Environmental impact factors from “Llatas et. al., 2021” [47].

3.2.1. Step 1: Quantifying the Types and Quantities of Recyclable CW in BIM

Several studies have shown the relationship between the design that covers the con-
struction solutions, materials, and technologies used in buildings and the types and quan-
tities of waste generated [70–72]. The types and quantities of waste generated can be
ascertained from the building design: manually, using waste quantification models [51,73];
semi-automatically, in various BIM platforms (Allplan 2021.02, Nemetschek AG, Munich,
Germany; Archicad 24, Graphisoft, Nemetschek AG, Munich, Germany; Audodesk Revit
21.1.1, Autodesk Inc., San Rafael, California, USA) [22,25,74]; or automatically, such as
in BIM (Revit) [23,24,46]. Specifically, certain studies [46,74] integrated the quantification
model [51] into BIM, so that automated CDW quantification can be carried out by the
designer without effort nor time consumption.

The proposed CW-LCA-BIM tool is based on the BIM tool for CW quantification [46]
in such a way that once the building systems are modelled in BIM with a minimum LOD of
200, the designer automatically attains: (i) the types and quantities of CW listed according
to the European List of Waste (LoW) [48]; (ii) the source of the CW; (iii) the CW generated
by each building element or system; (iv) hazardous and non-hazardous CW; and (v) CW
originated by breakage and losses (remains), in addition to packaging waste and soils.

The CW is then classified into four groups depending on its management: (i) hazardous
CW, which must not be mixed with other waste; (ii) reusable CW, which should be prepared
for reuse; (iii) recyclable CW, which should be recycled if it is technically and economically
feasible on site; and (iv) non-recyclable CW due to the technical and economic unfeasibility
of recovery. Thus, the variables “i” (types of recyclable CW) and “Q” (quantity of recyclable
CW) can be ascertained. Moreover, detailed information on the CW can be obtained per
building element (e.g., beams, pillars, walls), per building system (e.g., structure, masonry,
roofing), and for the entire building through the total addition of the CW of these building
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elements. Since the quantities of CW are obtained by volume (m3), and the impact factors
obtained in Step 2 are applied to the mass of CW (t), the CW densities used in Spain [49]
are applied to ascertain the quantity of CW by mass (t). This information can be displayed
through Bar Graphs for better visualization. This step was integrated in Step 4 into BIM
(see Section 3.2.4).

3.2.2. Step 2: Implementing the LCA-Based Environmental Impact Factors in BIM

The environmental impact factors (Fi) can be obtained from an LCA-based model that
allows for the evaluation scenarios of prevention versus those of non-prevention of CW [47].
The proposed CW-LCA-BIM tool focuses on the non-prevention scenarios of recycling and
disposal. The four phases of the LCA methodology [10,11] were followed to obtain the
impact of managing 1 ton of each type of CW for each environmental impact category
(GWP, PA, EP, etc.) using the CML 2000 [75], and the Cumulative Energy Demand (CED)
methodologies. SimaPro software v.7.1, PRé Sustainability B.V. (Amersfoort Netherlands),
was employed to quantify impact. Other methodological issues as well as assumptions
were conducted in [13,47,61]. For example, the zero-burden assumption principle [76] was
applied. Therefore, the system boundaries included downstream processes and omitted
upstream loads since they are equal in both scenarios (recycling and disposal). The impact
considered the main processes once the waste was generated: (i) waste collection; (ii) se-
lective separation; (iii) transport to the treatment facility; and (iv) impact due to waste
processing. In the case of recycling, the loads from the manufacture of natural materials
that had been replaced by recycled materials were eliminated from the system. This makes
the recycling option in general more beneficial since it removes burdens from the system.

The waste management system of a site, in which the infrastructure for managing
each type of waste is located, plays a key role. It conditions the impacts, mainly due to
waste transportation from the construction site to the waste treatment site. The impact
factors were therefore obtained for an imaginary construction point located at the center
of this system, called the Reference Building (RB). From the RB, the distances to each
infrastructure were taken and generic impact factors were calculated in such a way that, for
any construction site located within the scope of this system, these generic impact factors
can be applied. This strategy simplifies the calculation, since the LCA is applied only
once to obtain generic impact factors instead of obtaining specific impact factors for each
construction site. Two impact factors are defined:

i. FD is the final environmental impact produced by the disposal of 1 ton of each
type of CW according to each impact category (AP, EP, GWP, etc.). This factor
corresponds to FΩD Downstream Impact Factor of Disposal in [47];

ii. FR is the final environmental impact produced by the recycling of 1 ton of each
type of CW according to each impact category (AP, EP, GWP, etc.). This factor
corresponds to FΩR Downstream Impact Factor of Recycling in [47].

These impact factors were quantified in the unit of measurement of each impact
category indicator (e.g., kg CO2eq in the case of GWP) and were included in the tool
database in order to quantify impacts in the next step. They were calculated for the waste
management system of Seville as analyzed in [13,47,61], where the case study building is
located (see Figure S1), and are the factors that have been included in the CW-LCA-BIM
tool. This step was integrated into BIM (see Section 3.2.4) in Step 4. Table 2 shows the
generic impact factors considered for the recyclable CW in the case study. As noted, most
of the recycling impact factors (FR) are negative, which a priori points to a greater benefit.

3.2.3. Step 3: Quantifying the Environmental Impacts in BIM

Once the quantities (Q) of each type (i) of recyclable CW in tons and the impact factors
(Fi) of 1 ton for each management option are ascertained, then the total impact (I) can be
obtained using the following equations. Equation (1) obtains the impact of CW recycling
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(IR). Equation (2) obtains the impact of CW disposal (ID). These equations have been
derived from the Equations (1)–(4) conducted in [47].

Ij
R=∑n

i Qi×FR
j
i (1)

Ij
D=∑n

i Qi×FD
j
i (2)

where:

Ij
R is the total recycling impact of the environmental impact category “j”;

Ij
D is the total disposal impact of the environmental impact category “j”;

Qi is the quantity in tons of the fraction “i” of recyclable CW generated on site;

FR
j
i is the environmental impact of the category “j” of 1 ton of the recycled CW “i”;

FD
j
i is the environmental impact of the category “j” of 1 ton of the disposed CW “i”.

Quantification can be carried out automatically from the Revit template. This step was
integrated into BIM in Step 4 (see Section 3.2.4).

3.2.4. Step 4: Programming the CW-LCA-BIM Tool

A BIM design platform, Revit [77], was selected to implement the tool that uses the
C# programming language with the Microsoft Visual Studio 2019 code editor, and the
Classes and Methods available in the Revit Application Programming Interface (API) [52].
The API provides a set of tools, definitions, and protocols that allow new software to be
developed and integrated into the Revit application, thereby extending its capabilities.
Once the building systems have been modelled through the BIM-Objects and the CW is
quantified in terms of building elements and coded according to the LoW [48] using the
Add-in [45], the tool then operates as follows:

i. First, the designer classifies the building elements by grouping them according to
their main function (e.g., walls, pillars, beams). This step can be carried out manu-
ally; however, by default, the CW-LCA-BIM tool classifies the building elements
according to the Base de Costes de la Construcción de Andalucía (BCCA) [52]. This
step enables the environmental impact of each group of building elements to be
evaluated and compared;

ii. Second, the CW-LCA-BIM tool allows the designer to classify CW into 4 main
groups according to their main management option: (i) hazardous waste (e.g.,
wood contaminated with release agents, paint cans, solvent residues); (ii) reusable
waste with little or no treatment (e.g., wooden pallets, super-plus construction
materials); (iii) recyclable waste (e.g., concrete/ceramic waste and those that can
be assimilated to urban solid waste such as paper, cardboard, plastics, and metals);
and (iv) non-recyclable waste (e.g., mixed waste). By default, the tool advises the
designer of the most common option for each type of waste generated. This step
enables the identification of recyclable waste;

iii. Third, once the types and quantities of recyclable waste have been identified, the
tool, by default, evaluates their recycling versus their disposal. However, the
designer could compare other scenarios by selecting only those types of waste that
would be recycled.

Note that the basis of the tool is the BIM-Objects library, the main function of which is
to store and manage the data of the building elements during design.

3.2.5. Step 5: Applying the Tool to a Case Study

The case study is a real 1638.65 m2 multi-family housing building, called “La María”,
developed by a Public Company, the Municipal Housing Company in Seville (EMVIS-
ESA) [78] (see Figure 6). The structure consists of concrete pillar-and-beam frames and
concrete waffle slabs. A concrete slab serves as foundation and there are concrete basement
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walls. The building is located within the area of the Seville waste management system
analyzed in [47], as shown in Figure S1 (see supplementary data).
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The selected building system is representative, since in Spain the construction of resi-
dential buildings is the main construction typology (60%) (see Table 3), and the reinforced
concrete structure is the main structural typology (68%) used in buildings (see Table 4).

Table 3. Surface area in Spain per type of construction work carried out in 2019. Spanish Ministry of
Development (2022) [15].

Type of Construction Work Thousand m2 Percentage

New building for residential use 15,614 60%
New building for non-residential use 6424 25%

Demolition work 2745 10%
Rehabilitation work 1325 5%

Table 4. Type of vertical structure in newly constructed buildings built in Spain in 2019. Spanish
Ministry of Development (2022) [15].

Type of Vertical Structure Number of Buildings Percentage

Reinforced concrete 20,123 68%
Load-bearing walls 4275 14%

Metallic 3711 12%
Mixed and others 1776 6%

4. Conclusions

The transition to a circular and decarbonized construction model, with a special focus
on embodied carbon, presents a major challenge. The role of designers is key and the
implementation of BIM methodology in the AECO sector provides an opportunity to
integrate LCA-based methods into professional practice to help improve the circularity and
decarbonization of buildings. Therefore, this study presents the CW-LCA-BIM tool whose
principal innovation is that it automates the quantification of the environmental impact
of CW management scenarios within the Revit BIM modeler in real-time. The tool was
applied during the design phase of a residential building structure, and has provided the
following answers to the starting research questions:
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(i) Although an LCA expert is required to develop the tool, it is possible to obtain the
results during the design without an LCA expert and without time consumption, as
RQ1 queried;

(ii) Four groups of CW were obtained: hazardous waste (16%), reusable waste (11%),
non-recyclable waste (1%), and recyclable waste (71%);

(iii) The management of the following three types of recyclable waste was assessed:
concrete (27.2 t), plastics (4.2 t), and steel (1.5 t);

(iv) Although recycling would be the best option for the entire structural system since it
could prevent 14.6 t of emissions (1.4 times that of the disposal scenario) and could
save 148.5 GJ of energy consumption (8.5 times that of the disposal scenario), recycling
would not always be the most beneficial option with respect to CW disposal for all
types of CW and categories, as queried by RQ2;

(v) The recycling scenario would be less beneficial for plastic in ODP, a relatively insignif-
icant category, and for steel in HTP;

(vi) The environmental impact categories most influenced by CW recycling would be
those related to the climate emergency, GWP, and energy consumption, in addition to
HTP, with a greater influence on human health, as queried by RQ3;

(vii) RQ4 revealed that the CW management that would have the greatest impact would
be that of plastic disposal (which emits 10.1 t and consumes 0.5 MJ) and concrete
disposal (which emits 0.12 t and consumes 1 MJ), followed by steel disposal (which
emits 0.03 t and consumes 0.2 MJ). RQ4 also revealed that the most beneficial CW
management would be that of recycling plastic (which prevents 13.0 t of emissions
and saves 122.6 GJ), followed by recycling steel (which prevents 1.5 t of emissions
and saves 20.2 GJ) and, to a lesser extent, recycling concrete (which prevents 0.1 t of
emissions and saves 5.67 GJ).

(viii) The building elements that would have the greatest impact on CW management
would be the horizontal structural elements (floors and foundation slab), followed by
the vertical structural elements (walls and pillars);

(ix) Finally, CW recycling would contribute towards decarbonizing the building by elimi-
nating 5.1 t of CO2 eq emissions from its embodied carbon.

The CW-LCA-BIM tool could help designers to report, quantify, compare, and simulate
alternative design solutions in order to identify and select those with higher CW recycling
rates and greater environmental benefits in their CW management. Designers could
introduce improvements in their projects by exploring possible corrective measures based,
for example, on the identification of the most suitable materials and construction techniques
for waste recyclability, and on the analysis of its contribution to the decarbonization
of the building. The results obtained could also help to plan control strategies for the
optimization of CW management on site, such as the forecast of recycling, selective sorting,
and appropriate treatment.

The tool is firmly aligned with EU strategies and policies, such as the Green Deal
and the Circular Economy, thereby contributing to the transition towards circular and
decarbonized construction.

Future studies should address more design tools, applications, case studies, and
benchmark values, the results of which can be used by policy makers to explore material
recycling hot spots.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/recycling7060082/s1, Figure S1: Location of “La María” in the
waste management system of the city of Seville.
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