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Abstract: Growing environmental concerns, increased population, and the need to meet the diversifi-
cation of the source of global energy have led to increased demand for biofuels. However, the high
cost of raw materials for biofuels production has continued to slow down the acceptability, universal
accessibility, and affordability of biofuels. The cost of feedstock and catalysts constitutes a major
component of the production cost of biofuels. Potato is one of the most commonly consumed food
crops among various populations due to its rich nutritional, health, and industrial benefits. In the
current study, the application of potato peel waste (PPW) for biofuel production was interrogated.
The present state of the conversion of PPW to bioethanol and biogas, through various techniques, to
meet the ever-growing demand for renewable fuels was reviewed. To satisfy the escalating demand
for biohydrogen for various applications, the prospects for the synthesis of biohydrogen from PPW
were proposed. Additionally, there is the potential to convert PPW to low-cost, ecologically friendly,
and biodegradable bio-based catalysts to replace commercial catalysts. The information provided
in this review will enrich scholarship and open a new vista in the utilization of PPW. More focused
investigations are required to unravel more avenues for the utilization of PPW as a low-cost and
readily available catalyst and feedstock for biofuel synthesis. The application of PPW for biofuel
application will reduce the pump price of biofuels, ensure the appropriate disposal of waste, and
contribute towards environmental cleanliness.

Keywords: biogas; bioethanol; biohydrogen; biocatalyst; potato peel

1. Introduction

The world population, which was 7.9 billion as of August 2021, is projected to become
8.6 billion, 9.8 billion, and 11.2 billion in 2030, 2050, and 2100, respectively, according to
the United Nations [1]. Additionally, the Food and Agriculture Organization has predicted
an increase in food and other agricultural outputs for the ever-increasing population. The
increment in agricultural production is expected to be accompanied by increased land and
natural resources degradation and greenhouse gas (GHG) emissions. There is, therefore, an
urgent need to concentrate on producing foods with low carbon footprints, minimize food
waste, and utilize the waste generated from food consumption for other purposes. For
any food production system to be sustainable, the process must have a low carbon dioxide
(CO2) footprint, require less land, and have a high yield.

The dwindling global oil reserves, unpredictable oil prices, the environmental impact
of fossil-based fuel exploitation, exploration, and utilization, the unsatisfactory performance
of fossil-based fuel in internal combustion engines (ICEs), etc., have led to increased research
into sustainable and cost-effective alternative fuel for various applications [2]. Biofuels
are seen as a viable substitute for fossil-based fuels to reduce dependence on fossil-based
fuels, slow down climate change, enhance fuel security, mitigate dangerous emissions, and
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improve performance in ICEs [3,4]. Despite the myriad of benefits of the application of
biofuels to society, the debate on the impacts of biofuels on food security, carbon stores,
and land use has intensified. Additionally, with the growing global population, escalating
global competition on food, land, and water, and the attendant continuous rise in the
global emissions of CO2, the demand for biofuels has continued to increase. Global biofuel
production rose from 1125 million barrels of oil equivalent per day (mboe/d) in 2010 to
1444 mboe/d in 2015 and further to 1790 mboe/d in 2019 [5]. During the same period, the
global CO2 emissions grew from 33.13 Billion Metric Tons (BMT) in 2010 to 35.21 BMT and
36.44 BMT in 2015 and 2019, respectively [6] (Figure 1). The reduction in global biofuel
production and CO2 emission in 2020 can be attributed to the impact of lockdowns and
restrictions of movement occasioned by the COVID-19 pandemic.
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Figure 1. Global biofuel production (2010–2020) and global CO2 emission (2010–2020). Compiled by
the authors from [5,6].

One of the strategies to ensure household biofuel production, reduce the pump price
of biofuels, and potentially avoid conflict with the food chain is to use non-food feedstocks
(energy crops, food and household waste, agricultural and forestry residues, and algae)
for biofuel production. Along this line, the research and development policy of biofuel
production has been refocused to highlight the development of cost-competitive technolo-
gies of converting waste into fuels [3]. With the cost of feedstock accounting for about
60–80% of the total cost of biofuel generation [7], the use of food waste as feedstock and
catalysts is a step towards reducing the production cost and consequently the pump price
of biofuel [8,9]. Leftover kitchen waste such as waste cooking oil, recovered fats, potato
peel, and maize cobs have been converted to biofuels to reduce the cost of feedstock and
ensure environmental cleanliness. Previous research has confirmed the conversion of food
waste to catalysts, corrosion resistance, and biofuels for ICE, biotechnological, and other
applications [10–12].
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2. Potato and Potato Peel

Potato (Solanum tuberosum L.), also known as Irish or white potato, is regarded as
the fourth most significant food crop after rice, wheat, and maize, and is cultivated in
practically all types of soil, except for saline and alkaline soils [13]. Although it originated
from Peru, the potato is grown and consumed in more than 100 countries of the world.
The global production of potatoes has increased from 328.62 Million Metric Tons (MMT) in
2010 to 361.09 MMT in 2013 and further to 370.43 MMT in 2019 (Figure 1) [14]. China is the
world’s greatest producer of potatoes, closely followed by India, Russia, Ukraine, and the
United States of America in that order [15]. Figure 2 shows the global potato production
from 2010 to 2020 and yearly potato production from China, India, Ukraine, Russia, and
the US from 2010 to 2019.
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Figure 2. Global potato production (2010–2020) and potato production by top five countries
(2010–2019) (secondary y-axis). Compiled by the authors from [14,15].

Raw potato typically contains 79% water, 17% carbohydrates, 2% protein, and the
remaining percentage is fats. Because raw potato is about 88% starch, it must be boiled,
fried, or baked before being consumed by humans. Potato can also be consumed in
various forms including mashed potatoes, potato pancakes, potato dumplings, twice-
baked potatoes, potato soup, and potato salads. Potato is rich in amino acids and other
essential nutrients needed for growth and therefore has been declared the food of the
future [16]. Potato has nutritional, health, and industrial benefits. For example, the
consumption of potatoes helps to control blood sugar, improves the digestive system,
enhances bone and heart health, prevents skin damage, helps boost immunity, and is a
cheap supply of nutrients. Potatoes are naturally nutritious and rich in antioxidants such
as flavonoids, carotenoids, and phenolic acids [16,17]. Other dietary contents of potatoes
include potassium, phosphorous, magnesium, iron, zinc, and vitamins (Figure 3). Apart
from their contributions to health and the human diet, potatoes have numerous industrial
applications such as the production of alcohol, dehydrated food products, animal feed,
starch production, and frozen food products.
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Figure 3. The nutritional composition of potato [17].

Potato peel waste (PPW) is generated in households, restaurants, and the food pro-
cessing industry when the skin or outer layer of a potato tuber is removed. Peeling can
be done before boiling, frying, or mashing. However, in some cases, peeling is done after
boiling. Depending on the peeling technique, about 15 to 40% of a potato tuber is removed
as peel and is discarded as waste [18]. Various techniques have been used to peel potato
including abrasive peeling [19], steam peeling [20], extruded peeling [21], un-extruded [22],
lye peeling [20], etc. Raw PPW has been reported to contain about 83 g of water, 8.7 g of
total carbohydrates, 7.8 g of starch, etc., for every 100 g of potato tuber. Table 1 compares the
chemical composition of PPW as reported by various researchers. PPW also contains phe-
nols, unsaturated fatty acids, amides, and other phytochemicals. Because of the presence of
glycoalkaloid compounds such as α-solanine, α-chaconine, and solanidine, the consumption
of potato peel is toxic to humans, animals, and microorganisms [23]. Therefore, while using
potato peel for nutritional purposes, the glycoalkaloid content must be kept lower than
20 mg/100 g of fresh tuber weight, which is the maximum acceptable limit [24].

The huge quantity of PPW generated annually across various jurisdictions has elicited
investigations into the innovative and value-added conversion of this waste for various
applications. The utilization of this carbon-rich resource will be advantageous to hu-
mankind and the environment, save the cost of raw materials, reduce the amount of waste
in dumpsites, and help to avoid resource wastage. In a series of earlier research, Javed
et al. [25], Wu [30], Sepelev and Galoburda [31], and Gebrechristos and Chen [32] reviewed
the various applications (nutraceutical, industrial, and biotechnological) of potato peel.
PPW has also been converted into by-products including bioplastic [33], biocomposites [34],
nanocrystals [35], and lactic acid [27]. The application of PPW as feedstock for renewable
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fuels has been evaluated. For example, Ben Atitallah et al. [36], Hijosa-Valsero et al. [28],
and Dos Santos et al. [37] synthesized bioethanol, biobutanol, and biooil, respectively,
from PPW.

Table 1. Chemical composition of raw potato peel waste.

Parameter

Composition

Dry Weight (g per 100 g)
[25]

Dry Weight (%)
[26]

Dry Weight (%)
[27]

Dry Weight (%)
[28]

Dry Weight (%)
[29]

Water 83.3–85.1 85.06 ns 5.26 77.3
Protein (Ntot6.25) 1.2–2.3 8 17.1 ± 0.3 10.73 13.125

Total lipids 0.1–0.4 ns 1.2 ± 0.0 ns ns
Total carbohydrate 8.7–12.4 68.7 63.2 ± 4.2 43.2 70.3

Starch 7.8 52.14 34.3.2 ± 2.7 23.01 ns
Total dietary fiber 2.5 ns ns ns ns
Total soluble sugar ns 1 ns ns ns

Ash 0.9–1.6 6.34 9.6 ± 0.1 7.45 5.9
Total phenolic

content
1.02–2.92 ns ns 2.5 mg/g ns

Total flavonoids 0.51–0.96 ns ns ns ns
Fat ns 2.6 ns 2.45 ns

Nitrogen ns 1.3 ns ns 2.1
Lignin ns ns ns 32.88 ns

Reducing sugar ns 0.16 ns ns 0.78
Acid soluble ns ns 6.2 ± 0.2 ns ns

Acid insoluble ns ns 4.1 ± 0.0 ns ns

ns = not stated.

Notwithstanding the outcome of these studies, the relevant question to pose which
forms the motivation for the current study is whether the use of PPW in the biofuels sector
has been fully investigated. Are there other avenues where PPW can contribute to the
realization of universal access to affordable biofuel? The present intervention, therefore,
is targeted at the review of recent advances in the application of PPW as feedstock for
biofuel production. Specifically, the various modalities, techniques, and processes for the
conversion of PPW to biogas and bioethanol published in peer review journals within
the last decade are interrogated. The prospect of the generation of biohydrogen and the
synthesis of bio-based catalyst from PPW to take advantage of the huge amount of waste
generated from potatoes is proposed. This approach, therefore, demonstrates the feasibility,
methodologies, and potentials of utilizing PPW as feedstock and a bio-based catalyst for
large-scale biofuel generation towards energy security and environmental sustainability.
The current effort is limited to the application of PPW in the biofuels sector and excludes
the nutritional, health, and other industrial applications of PPW.

3. Application of PPW for Biogas Production

Biogas is produced during anaerobic digestion (AD) when microorganism methanogen
or anaerobic microorganisms break down feedstocks in the absence of oxygen. The anaer-
obic digestion of biomas to generate biogas occurs in an airtight reactor called a digester.
Basically, biogas contains 55% to 75% methane, 24% to 45% CO2, by volume, and other
trace gases such as hydrogen sulfide, ammonia, nitrogen, and moisture. The leftover, after
the generation of biogas, is rich in organic matter and nutrients such as nitrogen, phosphate,
and potash, which are used as organic fertilizers [38].

AD contributes to the circular economy, reduces dependence on fossil-based fuel,
helps in climate change mitigation, improves urban air quality, and contributes towards
improved health and sanitation through better solid waste management [39]. Since the turn
of the century, global biogas production has been escalated considerably from a meager
0.28 exajoules (EJ) in 2000 to 0.84 EJ, 1.27 EJ, and 1.36 EJ in 2010, 2017, and 2018, respectively
(Figure 4) [40]. The global biogas market size which was USD 6.9 billion has been predicted
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to become USD 60 billion in 2021 [41]. Although information on the global production of
biogas from PPW is not available, it is believed that more researchers are adopting PPW as
feedstock for biogas generation.
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Figure 4. Global biogas production from 2010 to 2018 (exajoules). Adapted by the authors from [40].

Researchers have experimented with various feedstock, digesters, and production
parameters (Table 2). The PPW, which is the major feedstock, is first washed thoroughly in
running water to remove all the dirt adhering to the body of the peel. The PPW is thereafter
drained and sun-dried before further drying in an oven at between 80 ◦C and 100 ◦C for
about 60 min. The dried PPW is pulverized into a powdered form to increase the surface
area for reaction and increase product yield [9,42]. In an earlier experiment, Suntikunaporn
et al. [42] investigated the application of PPW for biogas production in a 20 L floating drum
digester. They attributed the impressive yield of 3500 mL per day to the high carbohydrate
content of PPW. Similar results were obtained when Sheikh and Sandeep [43] and S. Liang
and McDonald [44] synthesized biomethane from PPW through AD but with better CH4
content. In a study demonstrating the impact of pretreatment of feedstock on biogas yield,
it was reported that biogas yield increased from 383.7 mL/g VSadded for untreated feedstock
to 453.2 mL/g VSadded and 485.4 mL/g VSadded for feedstock subjected to pulverization
and acid hydrolysis, respectively, with marginal improvement in CH4 content [45].

In recent research, Lu et al. [46] examined the effect of pH during the AD of PPW and
reported that PPW substrate maintained at a pH of 7.0 produced 41.9 g of COD/L and
632.2 mg COD/g VSfed when compared with 21.6 g COD/L and 309.5 mg COD/g VSfed,
18.1 g COD/L and 272.6 mg COD/g VSfed, and 58.0 g COD/L and 31.4 mg COD/g VSfed
recorded for uncontrolled pH, pH 5.0, and pH 11.0, respectively [46]. Similarly, Lahbab
et al. [47], Awosusi et al. [48], and Sanaei-Moghadam [49], at various times and locations,
co-digested PPW with cow dung for methane generation. While reiterating the potency of
PPW for biogas generation, they reported that the addition of cow dung substrate improves
the efficiency and rate of biogas generation.

Going forward, while the suitability of PPW as a viable substrate for biogas production
owing to its chemical composition, oxidation state, and pH, is not in doubt, various
pretreatment techniques and co-digestion techniques are necessary to improve biogas
yield and enhance the concentration of CH4 [50]. The statistical parametric optimization
studies of process conditions such as reactor type, operating temperature, pH, mixing ratio,
and pretreatment methods deserve further investigation. The application of modeling
tools in methane generation needs to be further studied to achieve better cumulative
biogas synthesis.
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Table 2. Some of the reported productions of biogas from PPW.

Type of Digester CH4 Content Yield Remark Ref.

20 L plastic floating
drum tank

40–50% 3500 mL/d PPW is a viable feedstock for AD [42]

ns 65% High methane yield Addition of PPW led to a 112% increase in
biomethane yield

[43]

1 L glass batch reactor 60–70% 273 L/kg VS PPW exhibited good performance and
biogas yield

[44]

500 mL glass bottles 56% 383.7 mL/g VSadded Good biogas yield [45]
500 mL glass bottles 57.5% 453.2 mL/g VSadded Grinding of PPW feedstock led to

improved biogas yield and CH4
concentration

[45]

500 mL glass bottles 58.3% 485.4 mL/g VSadded Acid hydrolysis pretreatment of PPW led
to improved biogas yield and CH4

concentration

[45]

5 L reactor ns 41.9 g COD/L and
632.2 mg COD/g VSfed

PPW substrate maintained at pH of
7.0 achieved highest VFA

[46]

1 L glass bottle ns 170 mL (CH4)/g VS Improved biogas production [47]
600 L polyethylene 66% 1.6 m3 Co-digestion improved the biogas yield

and CH4 concentration
[48]

5 L double-wall glass
cylinder

ns 375 LN (kg VS)−1 Addition of cow dung substrate improve
the efficiency of biogas production

[49]

ns = not stated, COD/L = chemical oxygen demand per liter, COD/g = chemical oxygen demand per gram,
VFA = volatile fatty acid, vs. = volatile solids.

4. Application of PPW for Bioethanol Production

There has been a consistent increment in the yearly global ethanol production over the
past decade. According to the available data [51], the global ethanol production moved
from 13 123 Million Gallons (MG) in 2007 to 21 812 MG, 26 583 MG, and 29 026 MG in
2012, 2016, and 2019, respectively (Figure 5). The reduced production volume of 26 059 MG
recorded in 2020 can be attributed to the lockdowns and restrictions occasioned by the spate
of the COVID-19 pandemic. In terms of the market share, the global ethanol market size
that amounted to (United State Dollar) USD 89.1 billion in 2019 became USD 93.7 billion in
2020 and is anticipated to grow at 5.2% from 2021 to 2030 [52]. The anticipated increment is
propelled by the increased application of ethanol as fuel. It is believed that no less than
73% of the global ethanol production is applied as fuel, while the remaining percentage is
used for beverages and industrial ethanol [26].

As with other liquid biofuels, the commercial production of bioethanol has been
hampered by the high cost of feedstock and interference with the food chain. With a
production cost estimated at USD 0.40/l [26] and the use of edible feedstocks, it is not
surprising that the widespread use of bioethanol as an alternative fuel for ICEs has not been
achieved. The use of PPW as a raw material for the synthesis of bioethanol is an avenue for
the democratization of sustainable bioethanol production and utilization. Table 3 compiles
the outcomes of some of the studies on the conversion of PPW to bioethanol. Hijosa-Valsero
et al. [28], Meenakshi et al. [53], and Soltaninejad et al. [54] reported that PPW was first
washed with distilled water, dried in the sun for 2–3 days, dried in an oven at 45 ◦C,
crushed with a ball mill, and sieved to a particle size of 0.5–1.0 mm as physical pretreatment
measures. Other chemical, biological, and ultrasonic pretreatment techniques with the use
of acids, alkaline, wet oxidation, ozonolysis, and hydrogen peroxide with metal salts were
employed. These pretreatment processes have been found to ensure the improvement of
product yield by increasing the surface areas of the reactants [9]. The conversion of PPW
to ethanol [26,55], bioethanol [56,57], or biobutanol [28] was demonstrated using various
techniques including hydrolysis, saccharification, and fermentation. The production rate
varied from 7.6 g/L to 40 g/L. The aggregate of the outcomes of these investigations is a
pointer to the suitability and the impressive performance of PPW as a cost-effective and
readily available feedstock.
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Table 3. Application of PPW for bioethanol.

Production Techniques Enzymes Production Rate
(g/L)

Yield (%) Remark Ref.

Fermentation Saccharomyces
cerevisae var.

bayanus

7.6 91.6 Efficient conversion of PPW
to ethanol

[26]

Autohydrolysis and
enzymatic hydrolysis

Clostridium 40 ns Production of biobutanol at
industrial scale

[28]

Fermentation Saccharomyces
cerevisae

48.76 80.62 Low-cost ethanol
production

[55]

Saccharification and
fermentation

Saccharomyces
cerevisiae BY4743

22.54 ns Effective bioethanol
production

[56]

Enzymatic hydrolysis
and fermentation

Saccharomyces
cerevisiae

30 ns Improved yield of
bioethanol

[57]

Enzymatic hydrolysis,
saccharification and

fermentation

Saccharomyces
cerevisiae

ns 5.8 Low-cost
bioethanolProduction at

moderate conditions

[58]

Enzymatic hydrolysis
and fermentation

Alpha amylase and
cellulase

11.9 ns Bioethanol production from
varieties of PPW

[59]

Fermentation Termamyl and
amyloglucosidase

21 ns Effective production of
bioethanol from PPW

[60]

Fermentation Clostridium
acetobutylicum
MTCC 11274

ns 96 Improved yield of
biobutanol

[61]

Fermentation Clostridium
acetobutylicum

24.8 75 Low-cost and eco-friendly
production of biobutanol

[62]

Pyrolysis ns ns 47.5 Effective biooil production [63]
Pyrolysis ns ns 29.18 Novel conversion of PPW to

biofuel
[64]

ns = not stated.

Sujeeta et al. [58], Chavez et al. [59], and Khawla et al. [60] utilized PPW for the pro-
duction of bioethanol using Alpha amylase and cellulase, termamyl and amyloglucosidase, and
Clostridium acetobutylicum MTCC 11274, respectively. The outcome of their investigations
gave credence to the practicality of the conversion of PPW to bioethanol. In research,
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Kamboj and Ms [61] applied powdered orange peel (Citrus sinensis) extract to improve
the conversion of PPW to Acetone butanol and ethanol via fermentation using Clostridium
acetobutylicum MTCC 11274. It was reported that the generation of butanol increased with
the addition of orange peel extract. Using a similar technique, Abedini et al. [62] used
clostridium acetobutylicum for the conversion of PPW to biobutanol via fermentation. In both
situations, PPW was effectively used as low-cost and eco-friendly feedstock under a mild
production process.

PPW has been pyrolyzed for the production of various grades of biooil with encour-
aging outcomes. Önal et al. [63] and da Silva Batista [64] produced biooil by pyrolyzing
PPW powder in a reactor maintained at 400–700 ◦C, with a heating rate of ~ 100 ◦C/min
for 3 min. The process yielded a combination of solid, liquid, and gaseous fuels at various
percentages depending on the process parameters. PPW has been successfully pyrolyzed
into biochar, biooil, and syngas for various applications. For example, Daimary et al. [65]
pyrolyzed PPW at 500 ◦C for 30 min to obtain biochar (29.50%) and biooil (23.60%) for
catalytic biodiesel production, while Liang et al. [66] reported a yield of 30.5% biochar,
22.7% biooil, and 46% syngas from pyrolyzed PPW. Kim et al. [67] and Frantzi and Za-
baniotou [68] cataloged the types, composition, properties, and applications of various
products from the pyrolysis of PPW and other food wastes. The authors reported that PPW
was converted into biofuel without the use of an enzyme or catalyst. The aggregate of
opinions from the various researchers indicates that PPW is a low-cost, readily available,
and effective feedstock for bioethanol production.

5. Prospect of PPW in the Biofuel Sector

Apart from the production of biogas and bioethanol, there is great potential for more
applications of PPW in the biofuel sector. From the compositional and economic points of
view, PPW has the potential to be used in other areas of biofuel synthesis both as feedstocks
and catalysts.

5.1. Potential of PPW as Feedstock for Biohydrogen Production

Hydrogen can be used as a fuel and as a raw material for industries. As a fuel,
hydrogen is an integral part of the global energy mix, a key pillar of decarbonization
for industry, and an alleviator of the impacts of global warming. Hydrogen can be used
as a fuel, chemical, and industrial feedstock. Because of its multi-faceted applications,
the global demand for hydrogen has continued to increase from 18.2 million metric tons
(MMT) in 1975 to 39.8 MMT, 62.4 MMT, and 74.5 MMT in 1995, 2010, and 2018, respectively
(Figure 6). The reduction in global demand recorded in 2020 is a result of the impact of the
global lockdowns occasioned by the COVID-19 pandemic. Global hydrogen demand has
been projected to become 88.3 MMT, 415.2 MMT, and 519 MMT in 2030, 2060, and 2070,
respectively [69]. In terms of market share, the global hydrogen generation market that
was USD 130 billion in 2020 has been predicted to become USD 201 billion in 2025 [70].

The major driver for the favorable growth in hydrogen generation is the advent of
new hydrogen separation techniques, the increased utilization of hydrogen, and govern-
ment policy on desulfurization and greenhouse gas emissions. However, huge amount
of CO2 emissions from hydrogen production and cost storage has continued to limit its
application. Currently, about 95% of hydrogen is synthesized from fossil-based fuels
sources, including coal, oil, and natural gas, emitting about 830 million tons CO2eq per year
globally (equivalent to the CO2 emission of the United Kingdom and Indonesia) [71–73].
Producing hydrogen from renewable feedstocks and low-carbon footprint technologies
(biohydrogen) will contribute to the decarbonization of the energy system, slow down
the impacts of the GHG, reduce energy consumption during production, and democratize
utilization. The production of biohydrogen is more environmentally friendly, safer, cheaper,
and less energy-intensive when compared with hydrogen production from fossil-based
sources [72,74].
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Among the technologies for hydrogen generation such as coal gasification [75], steam
methane reforming [76], thermochemical water splitting [77], water electrolysis [78], and
methane pyrolysis, biomass gasification has a low production cost and minimum carbon
footprint [79]. This has popularized the production of biohydrogen from various biomass
and waste. Feedstocks such as substrates (glucose, starch, sucrose, and lactose) and waste
carbohydrates (bagasse, molasses, waste biomass, cyanobacterial) have been used to gen-
erate biohydrogen through dark fermentation [80]. Carbohydrate and starch have been
identified as the two major substrates needed in any feedstock for the synthesis of biohy-
drogen through a dark fermentation process. Waste foods, wastewater, waste vegetables,
and biomasses with high sugar and complex carbohydrates contents are easily fermented
to generate biohydrogen. Taking these facts, Islam et al. [74], Zhang et al. [81], Rezaeitavabe
et al. [82] Srivastava et al. [83], Sivaramakrishnan et al. [84], and Reaño [85] synthesized
biohydrogen from wastewater, corn stover, food wastes, sugarcane bagasse, rice bran waste,
and rice husk, respectively, and reported that by using appropriate bioprocess technolo-
gies, the identified wastes served as sustainable, low-cost, and low-energy-intensive raw
materials for biohydrogen generation.

To corroborate these facts, Sinha and Pandey [80] and Marone et al. [86] used vari-
ous waste vegetables and biomasses for the effective generation of biohydrogen. They
relied on the high carbohydrate, total lipids, glucose, sucrose, and starch content of var-
ious feedstocks to produce biohydrogen. The work of Mars et al. [87], who synthesized
biohydrogen from untreated and hydrolyzed potato peels, can be further stretched and
explored to include the use of PPW. Similarly, Ferreira et al. [88] synthesized biohydrogen
from PPW for use to complement Portuguese transportation fuel. From the foregoing, it is
safe to conclude that apart from the composition of the potential feedstocks, availability,
cost-effectiveness, substrate purity, and the ease of hydrolysis and biodegradation are
among the major requirements for biohydrogen production. Based on this, innovative
investigations are needed to utilize the compositional advantage, availability, and purity to
meet the increasing demand for biohydrogen.



Recycling 2022, 7, 23 11 of 17

5.2. Potential of PPW as Biocatalyst for Biofuel Production

One of the problems militating against the universal and commercial adoption of
biofuels for various applications is the high financial outlay of production. The high price
of raw materials, mainly feedstock, and catalysts account for 60–80% of the total cost of
production [89]. Apart from the exorbitant cost of some catalysts, the use of commer-
cial catalysts not only instigates disposal challenges but also impacts the environment
negatively, as many of them are not eco-friendly and biodegradable. The application of
heterogeneous catalysts derived from waste not only reduces the cost of raw materials by
more than 13% but also promotes waste utilization, controls pollution, ensures availabil-
ity, non-toxicity, and engenders less destructive ecological impacts [90]. There is a large
gap for the conversion of more food and agricultural wastes to biocatalysts for various
biofuel applications.

To convert PPW into heterogeneous catalysts, waste materials must be collected from
households and restaurants and transported to laboratories. The PPW must be separated
from any other waste and any unwanted objects. The PPW is washed under running
warm iodized water to remove any dirt and impurities on the body of the peels. The water
in the washed peel is drained into a sieve, and the peel is dried in the sun. The PPW is
exposed to further drying in an oven kept at 100 ◦C for 6 h. The dried PPW is subjected
to further processing, as depicted in Figure 7. The PPW powder is subjected to any of the
established modification processes, including physical mixing, high-temperature calcina-
tion, calcination–hydration–dehydration, wet impregnation, bifunctional, co-precipitation,
and sol gel [91,92]. The potential bio-waste catalyst is subjected to thermal, compositional,
and spectroscopic characterization to determine the suitability of the powder for catalytic
applications. Among other techniques, X-ray diffraction is used to identify and determine
the sample’s composition, phase, or structure, while Brunauer–Emmett–Teller, thermogravi-
metric analysis, scanning electron microscopy, and differential scanning calorimetry will
reveal the structural and specific surface area, thermal stability, structural analysis, and
heat flow, and heat capacity, respectively [93–95].
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In a study, Hussein et al. [96] synthesized a sulfonated carbon (SO3H-PPAC) catalyst
from PPW for the conversion production of biodiesel from several low-grade, highly acidic
feedstocks. This was achieved by mixing the PPW with ZnCl2. The outcome was then
activated at 450 ◦C for 1 h to obtain a porous carbon (PPAC) material. The PPAC was
later sulfonated through concentrated sulfuric acid treatment. The generated catalyst was
characterized and found to possess a high surface area of 827.7 m2/g and a high concen-
tration of acidic active sites of 1.6 mmol/g. During usage, a high oleic acid conversion
efficiency of 97.2% was achieved at a catalyst dose, reaction temperature, and time of
5 wt.% SO3H-PPAC, 80 ◦C, and 2.5 h, respectively. With activation energy of 32.9 kJ/mol
and reusability of five runs, the PPW-derived heterogeneous catalyst showed impressive
catalytic performance. Biochar obtained from the pyrolysis of PPW was calcinated at 700 ◦C
was used as a heterogeneous catalyst for the conversion of soybean waste cooking oil into
biodiesel [65].

5.3. Other Applications of PPW

PPW has also been utilized for adsorption purposes. In another application, acti-
vated carbon obtained from pyrolyzed PPW was used as a natural and green adsorbent
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for the removal of cobalt, copper, nickel, cadmium, iron, lead, and other heavy metals
from wastewater and other aqueous solutions [97–99]. Quisperima et al. [100], El-Nahas
et al. [101], and Maleki et al. [102] successfully produced active adsorbents for the effective
removal of phosphorus, nitrate, and dye, respectively, from domestic wastewater, industri-
ally contaminated water, and aqueous solutions. Modified activated carbon generated from
the valorization of PPW was used as an eco-friendly adsorbent for the effective removal of
dorzolamide and pramipexole from synthetic aqueous pharmaceutical effluents [103].

Wesley et al. [104] and Durairaj et al. [105] synthesized biochar from PPW to produce
a copper(II)Phthalocyanine compound for the novel production of appropriate electrode
material for electrochemical supercapacitors for energy storage applications. The biochar
was generated through hydrothermal carbonization and activated with a potassium hy-
droxide solution. Similarly, porous carbon materials doped with heteroatoms were derived
from PPW for the development of eco-friendly, efficient, and low-cost supercapacitor elec-
trode materials for improved energy storage applications [106]. In another application,
Andreas Arie et al. [107] synthesized a carbon–sulfur composite as a cost-effective cathode
material for lithium–sulfur battery capabilities. These applications further demonstrate the
wide applications of PPW for various purposes. PPW offers effective, efficient, low-cost,
environmentally friendly, and readily available raw materials.

6. Implications

The utilization of PPW for biofuel applications is a step to meeting the global renewable
energy quota. The peel derived from the over 400 MMT of the potato produced in 2020 can
be utilized to meet the global biofuel production. Apart from the production of biogas
and bioethanol from PPW, there are more utilization pathways for the huge amount of
waste generated from potatoes. The implication, therefore, is to explore more avenues for
the utilization of PPW for various applications in the biofuel sector. The conversion of
waste to useful products is a major component of waste utilization, zero waste, and the
circular economy.

The high moisture content of PPW is one of the major challenges militating against its
conversion, development, and utilization. The collection, processing, handling, storage,
shelf life, and transportation of PPW are greatly impacted by the high moisture content. The
application of PPW for catalytic applications will be greatly impacted by the high moisture
content of PPW. The high water content of PPW requires an effective dryer, drying time,
and additional drying cost for its conversion to a heterogeneous catalyst [108]. The high
moisture content of PPW is a major drawback and reduces the effectiveness of pyrolysis as
a conversion technique. Additionally, the rapid decomposition of PPW commences almost
immediately after peeling, with an unpleasant odor [109]. This makes the sourcing and
storage of PPW as a feedstock challenging. Additionally, the viability and sustainability
of PPW as a starting raw material for activated charcoal needs to be improved and made
less challenging. Despite the huge quantity of PPW generated, the actual collection of an
adequate quantity for various applications is doubtful.

At the household level, generated PPW is often mixed with other food waste and is
difficult to be separated before disposal. However, industries and restaurants that deal in
potatoes as their major raw materials generate, separate, and collect the generated PPW
at the peeling section. When compared with PPW, Panahi et al. [110], Neto et al. [111],
and Karmee [112] reported that waste such as food waste, fruit and vegetable waste, as
well as other kitchen waste can be converted to bioethanol, biogas, and other biofuels,
respectively. The conversion yield of food waste to biodiesel was reported to be between
95% and 97%, while the conversion yield of between 92% and 96% was recorded with
bioethanol. Most food waste, fruit and vegetable waste, crop residue, and animal manure
have strong potential as feedstocks for biofuels and other value-added products. The
deciding factors are the selected valorization strategies, production parameters, and the
chemical composition, particularly the concentration of carbohydrate, in the different waste
deployed as feedstocks.



Recycling 2022, 7, 23 13 of 17

7. Conclusions

Potato is one of the most popular and essential foods in the world. The huge quantity
of PPW generated globally has been a source of concern to waste managers and environ-
mentalists over the years. The huge amount of PPW generated and collected every year has
widespread applications in various sectors and industries. Currently, efforts are being made
regarding the conversion of PPW to a form of biofuel including biogas and bioethanol.
The conversion of PPW into biogas and bioethanol is influenced by its availability and
chemical composition. The high content of water, carbohydrate, starch, and ash influence
its conversion to biogas and bioethanol. There are economic, sanitary, and environmental
advantages in the conversion of PPW to biofuel that are too numerous to be ignored.

The potential of utilizing PPW for biohydrogen production is very promising and
economically viable. This is not only from a waste conversion point of view but also to
meet the huge demand for biohydrogen as a renewable fuel. The conversion of PPW
to a biobased heterogeneous catalyst for possible biofuel is a research gap that needs
further investigation. Going forward, further investigations are needed to optimize PPW
generation, cost outlay, energy consumption, conversion efficiency, and yield of the current
conversion process. An adequate and seamless PPW collection infrastructure should be
established and maintained to ensure an unbroken supply of waste for biofuel applications.
The use of appropriate techniques and technologies such as cloud computing, the internet
of things, and other fourth industrial revolution technologies should be incorporated into
the mapping, collection, and conversion of PPW into valuable products.
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