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Abstract: Charge time has become one of the primary issues restricting the development of electric
vehicles. To counter this problem, an adapted thermal management system needs to be designed
in order to reduce the internal thermal gradient, by predicting the surface and internal temperature
responses of the battery. In this work, a pseudo 3D model is developed to simulate battery cell
performance and its internal states under various operational scenarios such as temperature and
convection conditions as well as the applied current during charge and discharge. An original mesh
of the JR is proposed where heat exchanges in the three directions (radial, orthoradial and axial)
are considered. The model represents one of the solutions that enable increasing the lifespan of
batteries while decreasing charging time. It offers the opportunity to optimize operating parameters
to extend battery life. In this paper, attention was paid not only to the core and non-core components,
but also to the experiments required to parametrize the thermal and electrochemical models (heat
generation). Unlike existing approaches documented in the literature, the model developed in this
work achieves an impressive balance between computational efficiency and result accuracy, making
it a groundbreaking contribution in the field of electric vehicle technology.
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1. Introduction

In recent years, climate change and energy shortage have gradually become the com-
mon challenges facing all mankind [1]. Since the transport field is one of the major emitters
of greenhouse gases [2], the majority of car manufacturers around the world are committed
to a policy of electrifying their vehicles by offering hybrid and electric vehicles [3]. The
battery pack is the main source of energy of an electric vehicle, and replacing a thermal
vehicle involves several technical challenges that engineers and specialists must face, in
order to both increase the autonomy and lifespan while reducing the battery charging time.
Lithium-ion batteries have gradually evolved from a variety of technologies. Due to their
low self-discharge rate, high energy density and lack of memory effect, this type of battery
has revolutionized the energy storage technology and enabled the mobile revolution [4]. A
battery pack is traditionally a set of modules made up of cells, a metal cover and electrical
harness and a control unit called a BMS (battery management system) whose role is to
manage electrical balancing and temperature both between cells and at cell level.

Lithium-ion battery (LIB) cells are available in various shapes: pouch, cylindrical
and prismatic [5], with the prismatic variant gaining popularity in electric vehicles due
to its efficient packaging and simpler manufacturing using the jelly roll design. The
performance and dependability of LIBs are significantly impacted by the temperature at
which they operate, which is one of the key limiting factors for battery pack performance
and lifetime. Temperature heterogeneity inside LIBs can lead to uneven current density
distributions, local state-of-charge (SOC) differences and local ageing differences, which
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may not only accelerate the global ageing, but also reduce the accessible energy of the
battery. Temperature rise and spatial temperature gradient minimization inside the cell
is one of the main thermal challenges during fast charge [6]. To counter these challenges,
thermal management systems (TMSs) are employed in the majority of vehicles [7]. Cells can
be cooled at different surfaces or at electrical connection tabs, or a combination of both [8].
The TMS is required to control the temperature of the battery pack within the optimal
temperature range of 15–35 ◦C, which ensures the good charge and discharge stability of the
battery pack. Depending on the type of heat transfer medium, the TMS can be divided into
air cooling, liquid cooling and phase-change material cooling (PCM) [9]. Liquid cooling can
be divided into direct liquid cooling and indirect liquid cooling, depending on whether the
coolant exchanges calories with the batteries or not [10]. In cold weather conditions, it is
necessary to preheat the battery in an electric vehicle in order to improve the performance
and lifetime of the batteries. Preheating can be divided into external heating and internal
heating [11,12].

The in situ measurement of internal states such as current, temperature and SOC is
difficult to achieve without opening the cell [13,14]. Therefore, a model-based approach is
required. By modeling the LIB, its behavior can be predicted, thus contributing to man-
aging the battery. The battery model consists of electrical and thermal parts. Regarding
the electrical model, there are broadly two approaches of modeling a lithium-ion cell: a
physics-based pseudo two-dimensional (P2D) model, and an equivalent-circuit model
(ECM). The model, established by Newman, uses partial differential equations, including
the temporal dimension and one or more spatial dimensions to represent the different inter-
nal operating mechanisms. While the P2D model is known for its accuracy and adaptability,
its complex computational procedures pose challenges when integrating it into current
management algorithms [15]. To address this, Wang et al. [16] introduced a streamlined
discrete electrochemical model that remains applicable across a broad temperature spec-
trum. Building upon the foundation of the P2D model, they simplified the control equation
governing solid solution diffusion by employing parabolic approximations for lithium-ion
concentration. Additionally, they developed a lumped mass thermal model to describe
temperature fluctuations within the battery.

The second approach, the ECM, reproduces the battery behavior through an analogy
with an electrical circuit. These are models with localized constants. The spatial dimensions
are thus eliminated, and the equations are ordinary differential equations of the time
dimension alone [17]. Of various levels of complexity, these models are generally dedicated
to the global study of the electrical behavior of a cell. Due to its simplicity and ease of
parametrization, the ECM approach is adopted in this work. The internal parameters of
LIBs are affected by temperature. During charging and discharging, a large amount of heat
can be generated in LIBs, changing the temperature of the battery. With the variation in
battery temperature, parameters such as internal resistance will change and affect heat
generation in turn. Therefore, electricity and heat are coupled to each other in LIBs [18,19].
The heat generated is considered as the input to the thermal model which results in a
new temperature which is fed back to the electrical model [20]. The temperature varies
depending not only on the properties of the cell, but also on the type of loads applied on
the cell. Xu and colleagues studied the effects of different discharge rates on the surface
temperature of a prismatic battery and found that high temperatures could be reached
at high discharge rates [10]. To date, various models have been built and a wide range
of work focusing on the thermal modeling of LIBs has been reported. The simplest and
most common approach is to treat the cell as a homogenous and isotropic material. This
approach has the limitation of not providing internal thermal gradients due to the isotropic
assumption. Other models take into account the anisotropy of the materials and provide the
spatial temperature distribution, but are nevertheless unable to provide the internal thermal
gradient due to their simplicity [20]. On the other hand, there are more complex models
based on Finite Element Analysis (FEA) with detailed cell structure which can reach a very
high accuracy, but the complexity of the models greatly limits their real-time application.
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Optimal models that are not time consuming, that take into account the anisotropy of the
materials and are able to assess the inner thermal gradient already exist in the literature,
but these models focus only on cylindrical cells and not on prismatic ones [21].

The aim of this study was to find an alternative solution between the simplest models
which are not accurate enough and the complex models which are too time consuming to
be embedded in an electric vehicle. First of all, we tackle the jelly roll (JR) modeling by
proposing an adapted mesh which represents the physics of the JR by taking into account
the winding of the electrodes.

2. Materials and Methods

The battery studied here is a commercial 67 Ah prismatic battery cell. The cell specifi-
cations are given in Table 1.

Table 1. Specifications of the battery cell.

Specification Value

Cathode material NMC

Anode material Graphite

Nominal capacity 67 Ah

Cut-off voltages 2.7–4.3 V

Dimensions 150 mm 30 mm 100 mm

Thermal conductivities 40–2.5–40 W·m−1·K−1.

Thermal capacity 1200 J·kg−1·K−1.

The battery cell is represented in Figure 1.
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Figure 1. The studied prismatic battery cell.

One of the most critical steps for developing battery prognostics solutions is to estab-
lish a battery model which enables the car maker to simulate battery behavior and interpret
battery issues in a form that can be understood by users and designers [22]. This section
details the proposed model. By utilizing inputs such as the current, initial temperature
and environmental temperature, the model is capable of accurately forecasting the internal
temperature distribution and state-of-charge of the battery. As mentioned earlier, the model
comprises three interconnected sub-models: a thermal model, an electrical model based on
ECM and a heat generation model. Each sub-model contributes to a holistic understanding
of the battery’s behavior and facilitates more precise predictions of its performance under
varying conditions.
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2.1. The Thermal Model

The main challenge lies in effectively visualizing and quantifying the temperature gra-
dients within the cell, all while ensuring that the model can be simulated efficiently within
a short timeframe to be compatible with integration on a battery thermal management
system. Considering the complex geometry of the JR, it was necessary to design a mesh
which makes it possible to represent all the heat exchanges in all directions inside the cell.
To successfully reproduce the thermal behavior of the JR, it is essential to provide a reliable
mesh able to provide a good assessment of the cell’s inner thermal gradient. The proposed
model involves meshing the JR in thickness as well as in height. The particularity of this
mesh compared to what can be found in the literature is that it considers the orthoradial
direction which shows that the heat can be exchanged between the meshes by going around
the winding. Figure 2 shows the proposed mesh by considering the three directions, axial
(according to the height of the JR), radial (normal to the winding) and orthoradial (parallel
to the winding) [23,24]. The JR mesh is detailed in [25]
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where ρij is the density of the mesh i,j, Cij is the specific heat capacity of the mesh,
.

Qi,j
the heat generated by a mesh i,j and Vij is its volume. These variables are calculated from
the thermo-physical characteristics of the sub-elementary layers of the JR, as described in
Equations (2) and (3):

ρij =
∑ Vi ∗ ρi

∑ Vi
(2)

Cij =
∑ Mi ∗ Cpi

∑ Mi
(3)

where Vi is the volume of the sublayer of the JR, ρi is its density, Mi is its mass and Cpi is
the specific heat capacity of each sublayer [28].

The JR is obtained by wrapping the electrodes around a hollow space. Each turn is
qualified as an elementary layer which is made of different sublayers. Each elementary
sublayer has its own thermal conductivity and capacity, its own thickness as well as its
own density. All these essential data for the thermal model are sourced from the literature
as they could not be obtained from the supplier. Table 2 represents the thermo-physical
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properties of a pouch cell with a capacity of 20 Ah, obtained from [29], and implemented in
the model for simulation.

Table 2. Thickness and thermo-physical properties of jelly roll components.

Material/Layer Thickness [µm] Density
[kg·m−3]

Specific Heat
Capacity

[J·kg−1·K−1]

Thermal
Conductivity
[W·m−1·K−1]

Aluminum foil 21 2702 903 238

Copper foil 12 8933 385 298

Separator sheet 25 1017 1978 0.34

Positive
electrode 70 2895 1270 1.58

Negative
electrode 79 1555 1437 1.04

2.2. The Electrical Model

In order to investigate the dynamic behavior of the cell, two main approaches are
discussed in the literature: (i) Electrochemical Impedance Spectroscopy (EIS) and (ii) mea-
surement of a voltage response using a controlled input current. From this information,
optimization techniques are then applied to determine the model parameters. The general
principle of the EIS method involves the application of an input signal, either current (gal-
vanostatic) or voltage (potentiostatic), followed by the measurement of the characteristic
cell response, which is dependent on the cell impedance. In this work, pulse discharge
measurement was used to determine the internal resistance as a function of temperature
and SOC [30].

The open-circuit voltage (OCV) can be measured either under continuous load with
a very low current (pseudo-OCV) or under incremental load accompanied by relaxations
using the Galvanostatic Electrochemical Intermittent Titration Technique (GITT). In this
work, both methods were investigated. Although the two techniques are different, the OCV
results obtained as a function of SOC were similar. The OCV is assumed to be dependent
on the SOC, temperature and the direction of charge/discharge [31]. The hysteresis of the
OCV between charge and discharge is very negligible since the battery chemistry is NMC.

Figure 3 shows the OCV/SOC curves obtained with the two methods described in the
section above (the GITT method is applied in charge/discharge).
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The impedance parameters represent different phenomena which cover a very wide
dynamic range. Moreover, they are sensitive to operating conditions. A large number of
studies can be found in the literature on the qualitative comparison of the impedance char-
acterization in the frequency and time domains [32]. The frequency method, in particular
GEIS, involves applying an AC current in a frequency range so that the measurement does
not lead to a variation in SOC and therefore in the OCV, which facilitates the parameter
identification. The time characterization method is based on a step response of the cell
which involves applying a step or a square wave of current Ip for a duration tp. This
makes it possible to characterize the sensitivity of the parameters to the direction and to
the amplitude of the current. The main advantage of the time characterization method
concerns the characterization of the diffusion impedance. Under a DC current step, the
majority of the diffusion resistance is reached between a few seconds to hundreds of sec-
onds. In this work, the time method was chosen, and the diffusion resistance was obtained
after 30 s [20] after comparison with the EIS method which gives a good result but was
considered to be highly time consuming. The internal resistance increases with decreased
temperature and battery ageing. In general, the influence of temperature is greater than
that of cell degradation. The discharge resistance is relatively constant around an SOC
of 50% and increases with decreased SOC especially in the low-SOC range. Joule-heat
influencing factors are in decreasing order of importance, temperature, ageing effect and
SOC, while at a low-SOC range, the SOC value is most crucial, followed by temperature
and the ageing effect [33]. Figure 4 provides the results of charge and discharge resistance
as a function of SOC and temperature. It can be clearly seen that charge resistance is smaller
than discharge resistance, meaning that Joule heat production is lower during the charging
process. The simplification which involves not taking into consideration the hysteresis of
the OCV between charge/discharge does not affect our results, since the cell studied here
is an NMC prismatic cell, and the hysteresis of NMC batteries is still negligible [34].
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2.2.1. Electrical Model of a Meshed JR

As mentioned above, the JR is the heart of the cell where the energy is stored. By
meshing the JR, it was assumed that the meshes are electrically parallel because of the way
they are linked to the tabs, so all the meshes have the same voltage. The aim of this work
was to have at every mesh level a thermal model coupled to an electrochemical model.
Each mesh has its own volume according to Equation (4). The electrical resistance as well
as the electrical capacity of each mesh depend on its volume calculated from the generic
parameters of the battery cell:

Vi,j = (2 ∗ l ∗ d + (π/2)) ∗ (2rmin i/i+1 − 2rmin i−1/i)+(π/2) ∗ (2rmax i/i+1 − 2rmax i−1/i)) (4)

The electrical resistance of a mesh can be calculated according to Equation (5):

R30s i,j = R30s JR N (5)

where N is the number of meshes, R30s i,j the electrical resistance of a mesh i,j and R30s JR
the electrical resistance of the JR.

In this work, due to volume variation, the electrical resistance and the electrical
capacity of a mesh i,j were calculated according to the following two equations:

R30s i,j =
R30s JR VJR

Vi,j
(6)

Qi,j =
QJR Vi,j

VJR
(7)

2.2.2. Heat Generation Model

As shown by Equation (8), the total heat generated during the operation of a LIB
.

Q
can be divided into two main parts: irreversible

.
Qirr heat and reversible

.
Qrev heat [35]:

.
Q =

.
Qirr +

.
Qrev (8)

The irreversible heat results from various sources, including ohmic losses caused
by electron/ion transport and the overpotential of the electrochemical reaction, and it
consistently possesses a positive value. It stands out that reaction heat contributes about
80% of the total heat generation during the operation of a battery [36]. In this study, the
irreversible heat arises from Joule heating due to internal electrical resistance, while the
retrievable heat is approximated by considering the cell’s current and entropic coefficient.
To obtain the reversible heat generation, the entropy change as a function of the SOC
was measured using the potentiometric method. The method measures the OCV for each
SOC for two different temperatures (0 ◦C and 25 ◦C). During the measurement, the cell is
maintained for 3 h at 25 ◦C and then 6 h at 0 ◦C to reach an equilibrium potential. The OCV
change due to temperature variation is recorded, and the process is repeated every 10% of
SOC until the cell is fully discharged (SOC of 95% to SOC of 5%) [37].

According to Gibb’s free energy relationship and the Nernst equation (∆G =∆H − ∆S) [37],
the derivative of the variation of free energy ∆G with respect to temperature gives the
expression of the variation of entropy ∆S as a function of variation of OCV at thermody-
namic equilibrium with temperature. Depending on the current and entropy signatures,
the energy can be either exothermic (heat release) or endothermic (heat absorption), leading
to the following reversible heat equation:

.
Qrev = −IT

∂OCV
∂T

. (9)

where I is the current applied to the battery and T is the battery temperature.
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Figure 5 represents the variation of the entropic coefficient according to the SOC. The
data were implemented thanks to a lookup table in the heat generation model.
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To summarize, the heat generated by a mesh i,j can be calculated according to the
following equation:

.
Qi,j = R30s i,j I2

i,j + Ii,jTi,j
∂OCVi,j

∂Ti,j
(10)

where
.

Qi,j is the total heat generated by a single mesh i,j, R30s i,j is the electrical resistance
of a mesh i,j which is responsible of the irreversible heat generation, Ii,j is the electrical
current delivered by a mesh i,j and Ti,j is the temperature of a mesh i,j

Figure 6 shows the electrothermal model of a meshed JR [38].
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To achieve a comprehensive cell model, the JR must be interconnected with other cell
components surrounding it, beginning with the casing, which acts as a thermal bridge
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between the JR and the external environment. In order to visualize the thermal gradient on
the casing, the latter is meshed in height, and each mesh j of the casing is connected with a
mesh i,j of the JR. The casing thermal model is governed by the following equation:

ρcasingCcasing
dT(j)

dt Vj =
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where 𝑉௜ is the volume of the sublayer of the JR, 𝜌௜ is its density, 𝑀௜ is its mass and 𝐶௣௜ 
is the specific heat capacity of each sublayer [28]. 

The JR is obtained by wrapping the electrodes around a hollow space. Each turn is 
qualified as an elementary layer which is made of different sublayers. Each elementary 
sublayer has its own thermal conductivity and capacity, its own thickness as well as its 
own density. All these essential data for the thermal model are sourced from the literature 
as they could not be obtained from the supplier. Table 2 represents the thermo-physical 
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Since the casing is made of aluminum, its physico-thermal characteristics are known,
so the only factor that remains to be quantified is the convection coefficient. To determine
this parameter, the cell is initially positioned at room temperature (25 ◦C) outside a climate
chamber. The climate chamber is then regulated to 40 ◦C, and once the temperature
stabilizes, the cell is swiftly transferred into the pre-set 40 ◦C climate chamber. Subsequently,
the temperature variation of the cell is measured until it reaches a steady state. The obtained
temperature variation data are then fitted using Equation (12) to ultimately deduce the
convection coefficient within the climate chamber:

m Cp
dTc

dt
= hconv(Tair − TC) (12)

where m is the mass of the battery cell, Cp its specific heat capacity, TC its temperature, Tair
is the air temperature inside the climate chamber and hconv is the heat transfer coefficient
between the battery and the air inside the climate chamber.

3. Results and Discussion
3.1. Validation of the JR Thermal Model

Boundary conditions: various scenarios were investigated to validate the thermal
model of the JR. In this article, one scenario is described.

The scenario involves subjecting the lower surface of the JR to convection with a
heat transfer coefficient of 30 W·m−2·K−1, with an outside temperature of 500 K. The
other surfaces of the JR are maintained adiabatic (no thermal exchange with the external
environment). The main goal of this simulation is to investigate the thermal gradient
developed at the JR level after 972 s (stop time chosen randomly).

Four meshes in height and four meshes in thickness were considered for the JR, as
shown in Figure 7. The link between the mesh and the temperature data for each mesh is
indicated through dotted arrows: the black arrow represents the most external mesh on the
base of the JR, and the red arrow represents the central mesh at the top of the JR. For the
scenario described above, the thermal gradient in height reached after 972 s is about 4 ◦C,
with a maximum temperature of 42 ◦C and a minimum temperature of 38 ◦C [39].
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This analysis thus validates the mesh used for the JR discretization and provides a
highly accurate estimation of the thermal gradient with a low computational load.

3.2. Validation of the Electrothermal Model of the Battery Cell

To validate the electrothermal model, the battery cell is subjected to charge/discharge
current profiles using the BCS-815 module from BioLogic, which has eight channels and
eight inputs for temperature measurement using K-type thermocouples. Before the cell
is solicited, it is first placed in a climate chamber. The cell is then wired to the battery
cycler, and finally instrumented by thermocouples in order to recover both the average
temperature of the cell and to investigate the hot spots and the thermal gradient at the cell
level. The instrument specifications are tabulated in Table 3.

Table 3. Instrument specifications.

Instrument Manufacturer Type Ultimate Range Uncertainty

Battery cycler BioLogic BCS-815 ±15 A/channel ±1%

Thermocouples RS PRO K −75~250 ◦C ±1 ◦C

Climate chamber Climats TM 55 −30~150 ◦C ±0.15%

To validate the electrothermal model of the cell, two current profiles were used; see
Figure 8a,b. During these tests, the cell is fully charged in CC-CV mode, then the cell
is relaxed. Once the cell is fully relaxed electrically and thermally, it is then discharged
until it reaches the lower operating limit given by the manufacturer. The choice of these
current profiles is justified by the fact of wanting to scan the entire operating range of the
battery cell from an SOC of 0% to an SOC of 100% and validate the resistance lookup tables
implemented in the model. The other reason was to analyze the charging and discharging
behaviors of the battery. For the current, two different amplitudes were used in order to
investigate the effect of current amplitude on the heat generated as well as on the thermal
behavior of the cell [40]. Figure 8c,d represents the variation of voltage as a function of
time for both current profiles.
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The observation shows that the model’s accuracy decreases at low state-of-charge
(SOC) due to the battery’s nonlinear behavior. As the SOC decreases, the temperature
difference between the simulation and experimental results widens until it reaches 0.8 ◦C,
as depicted in Figure 8h. However, even at a high C-rate, the error remains within 1 ◦C, and
the identified error remains smaller than the uncertainty associated with the thermocouple,
which is +/−1 ◦C. Overall, the model performs reasonably well, especially considering
the inherent challenges posed by the battery’s nonlinear characteristics and the associated
uncertainties in the experimental measurements.

Figure 8g,h represents the temperature responses of the model compared to those
obtained during tests. In both cases, the maximum temperature reached after discharge
is higher than the maximum temperature reached after charge [41,42]. According to the
figures shown above, it is clear that the model is able to reproduce the behavior of the battery
cell both electrically and thermally with high accuracy for different boundary conditions.
It was found that there is a proportional relationship between current amplitude and
temperature response. Figure 8c,d shows that the voltage curve provided by the model is
representative of the real voltage response of the cell during the charging and discharging
phases, except at low SOCs, where the results do not fit well because of the non-linear
behavior of the battery at low SOCs.

The model is also able to reproduce the endothermic behavior as shown in Figure 8h,
where the temperature slows down between 0.5 × 104 and 1 × 104 s and also between
2.3 × 104 and 2.6 × 104 s, which corresponds to the SOC range of 35–60%. This phe-
nomenon is not visible in Figure 8g because of the irreversible heat which dominates the
reversible one at high currents.

Figure 9 illustrates the changes in reversible, irreversible and total heat generated by
the battery, corresponding to the current profile displayed in Figure 8b. The reversible heat,
unlike the irreversible heat, is not consistently positive. If it becomes negative, it indicates
that the activation reactions occurring at the anode and cathode levels are endothermic,
resulting in heat absorption instead of heat generation.
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3.3. Thermal Gradient Assessment for a Given Current Profile

After the mesh description and the battery cell electrothermal model validation, the
aim of this section is to assess the battery cell thermal gradient for a given boundary
condition and current profile.

Boundary conditions:

• The current profile is chosen to investigate the effect of current on the thermal gradient
during charge and discharge;

• The battery is subjected to conduction through its bottom surface with a cooling plate;
• The air temperature is set at 25 ◦C;
• The cooling temperature is set at 30 ◦C.

Figure 10 presents the thermal gradient observed after discharging and subsequently
charging the battery. It is evident that the thermal gradient is more pronounced during the
charging phase, primarily because the current is higher during the charge process. During
the discharge phase, the thermal gradient remains below 0.2 ◦C, while it reaches 0.7 ◦C
during the charge phase.
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Consequently, the temperature difference between the upper and lower sections of the
battery increases notably at high C-rates, particularly when the cooling plate’s temperature
is low. This trend emphasizes the significance of managing temperature variations and
cooling efficiency, especially during high-current charging scenarios, to maintain optimal
battery performance and safety.

4. Conclusions

In this paper, a detailed model of a prismatic cell is built. An original mesh of the JR is
proposed where heat exchanges in the three directions (radial, orthoradial and axial) are
considered. A pure thermal test which involves quantifying the heat transfer coefficient
within a climate chamber was carried out, and the value of the coefficient was obtained.
The meshed JR thermal model has been validated by subjecting the JR to various boundary
conditions. The electrothermal model of the cell has been validated through electrothermal
tests in which the cell is solicited by two different current profiles. It turns out that there
is a relationship between the amplitude of the current and the maximum temperature
reached during a test. Reversible heat is not to be neglected in the heat generation model,
especially at low C-rates. According to the simulations presented in the previous section,
the temperature of the cell does not increase all the time: it might decrease between a SOC
of 35% and 60% due to the endothermic phenomenon. The impact of this work will be
most important in high-rate applications such as the automotive industry, especially in
battery thermal management. The idea is to use this model and duplicate it depending on
the battery pack topology, and also assess the thermal gradient during a fast charge and
investigate battery behavior in extreme conditions. Experimental tests will also be carried
out to validate the model in terms of thermal gradient assessment.
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