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Abstract: Lithium-ion battery health and remaining useful life (RUL) are essential indicators for
reliable operation. Currently, most of the RUL prediction methods proposed for lithium-ion batteries
use data-driven methods, but the length of training data limits data-driven strategies. To solve this
problem and improve the safety and reliability of lithium-ion batteries, a Li-ion battery RUL prediction
method based on iterative transfer learning (ITL) and Mogrifier long and short-term memory network
(Mogrifier LSTM) is proposed. Firstly, the capacity degradation data in the source and target domain
lithium battery historical lifetime experimental data are extracted, the sparrow search algorithm
(SSA) optimizes the variational modal decomposition (VMD) parameters, and several intrinsic mode
function (IMF) components are obtained by decomposing the historical capacity degradation data
using the optimization-seeking parameters. The highly correlated IMF components are selected
using the maximum information factor. Capacity sequence reconstruction is performed as the
capacity degradation information of the characterized lithium battery, and the reconstructed capacity
degradation information of the source domain battery is iteratively input into the Mogrifier LSTM
to obtain the pre-training model; finally, the pre-training model is transferred to the target domain
to construct the lithium battery RUL prediction model. The method’s effectiveness is verified using
CALCE and NASA Li-ion battery datasets, and the results show that the ITL-Mogrifier LSTM model
has higher accuracy and better robustness and stability than other prediction methods.

Keywords: sparrow search algorithm; variational modal decomposition; transfer learning; Mogrifier
LSTM; lithium battery lifetime prediction

1. Introduction

Lithium-ion batteries are commonly utilized in various industries, including consumer
electronics, electric vehicles, communications, and airplanes, due to their advantageous
characteristics such as extended lifespan, high energy density, low self-discharge rate,
and environmental friendliness [1]. Their health management, performance degradation,
safety maintenance, and remaining useful life (RUL) prediction have become important
research issues [2]. In practice, with the increase in operation time, lithium-ion batteries
will inevitably deteriorate until failure [3]. Failure of lithium-ion batteries may lead to
serious economic losses and catastrophic consequences [4]. Therefore, accurate lithium-ion
battery RUL prediction and timely management and maintenance are important to ensure
the safe operation of equipment as well as to avoid equipment failure [5].

Lithium-ion battery RUL prediction is mainly divided into model-based approaches
and data-driven approaches [6]. Data-driven approaches are more suitable for large-scale
engineering applications, as they extract health factors from raw data to depict degradation
trends without considering the internal physical and chemical changes within the bat-
tery [7]. Ansari Shaheer et al. [8] proposed an enhanced lithium-ion battery life prediction
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model based on a recurrent neural network (RNN) and a particle swarm optimization
algorithm (PSO), demonstrating high robustness and prediction accuracy. Nevertheless,
the PSO algorithm tends to fall into local optima, making it challenging to obtain the exact
optimal solution. To overcome this issue, the LSTM, a variant of RNN, effectively addresses
the problems of gradient explosion and gradient disappearance [9]. Qu et al. [10] developed
a PA-LSTM model for Li-ion battery RUL prediction, combining LSTM network, particle
swarm optimization, and an attention mechanism. Their method employs Complete En-
semble Empirical Modal Decomposition with Adaptive Noise (CEEMDAN) to denoise
the original data, thus improving prediction accuracy. Similarly, Liu et al. [9] optimized
the LSTM network using the improved sparrow search algorithm (ISSA) to predict Li-ion
battery RUL, achieving better accuracy and robustness. While a single LSTM network
may be inefficient due to random data fluctuations, the Mogrifier LSTM [11] was intro-
duced to enhance data interaction. Bo et al. [12] proposed a combined prediction method,
employing the deep belief network (DBN) and Mogrifier LSTM network, with Ensemble
Empirical Modal Decomposition (EEMD) used to preprocess lithium battery capacity data.
This method effectively addresses the battery capacity regeneration problem and exhibits
high effectiveness. He et al. [13] proposed CAM-LSTM-DA, a method based on causal
analysis, an attention mechanism, and Mogrifier-LSTM, for unsupervised constrained
adversarial domain adaptation to enhance the generalization and prediction performance
of Li-ion battery RUL models. These approaches contribute to the informed utilization of
Li-ion batteries.

Data-driven approaches focus on improving the accuracy of the underlying model.
However, variations in data distribution across different types, components, and batches
of products can result in substantial model errors [14]. Therefore, data-driven models
constructed under variations in data distribution cannot guarantee high accuracy and
better generalization ability [15]. The accuracy of their prediction results often relies on the
length of the available data that the model can learn from [16]. When the training data is
insufficient to learn the degraded features, achieving the expected accuracy in prediction
becomes challenging [17]. Consequently, the model lacks generalization capability and the
ability to rapidly predict the RUL of batch datasets under diverse working conditions [17].
Transfer learning (TL) is an emerging solution to address the challenges posed by variations
in data distribution. Ma et al. [18] introduced a hybrid network that combines TL, DBN,
and LSTM. Lu et al. [19] presented a Li-ion battery State of Health (SOH) evaluation model
that utilizes transfer learning and LSTM, effectively reducing the training iterations of
the target domain model for SOH prediction. To address the challenge of predicting the
RUL for small target sample sets in Li-ion batteries, Wang et al. [20] introduced a transfer
learning-based Gate Recurrent Unit (GRU) RUL prediction model. This study further
demonstrated the potential of State of Charge (SOC) estimation using big data techniques
and limited target samples. Zou et al. [21] proposed a transfer learning-based fusion model
that combines Convolutional Neural Networks (CNN) and LSTM. This model effectively
addresses the challenge of small sample size encountered in Li-ion battery performance
evaluation tasks. Chou et al. [22] proposed a fine-tuning model for predicting the future
capacity of lithium-ion batteries with TL. The authors demonstrated the potential of this
model for performing predictive maintenance of lithium batteries using actual battery
charge/discharge data.

In summary, transfer learning enhances the learning of the model by increasing the
available data, thereby improving its generalization ability. This approach is particularly
beneficial when dealing with limited data for lithium battery prediction. Therefore, this
paper introduces an ITL-Mogrifier LSTM model based on ITL to address the RUL prediction
problem for lithium batteries with small samples. The experimental results demonstrate
the effectiveness of the proposed ITL-Mogrifier LSTM model in accurately predicting the
RUL of Li-ion batteries, as validated using datasets from the Center for Advanced Life
Cycle Engineering (CALCE) and NASA-Ames Prediction Center of Excellence (PCOE).
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Additionally, a comparison with other prediction methods confirms the superiority of the
proposed approach. The primary contributions of this paper can be summarized as follows:

(1) The VMD algorithm decomposes the non-stationary signal in the time series into
the primary degenerate trend and the remaining noise. To address the stability and
accuracy of the VMD decomposition, the SSA is used to optimize the VMD structure
parameters and achieve adaptive parameter selection. The maximum information
factor is used to filter and reconstruct the highly correlated IMF components to
characterize the battery capacity degradation information to avoid the battery capacity
regeneration problem and improve the RUL prediction accuracy of the model.

(2) The capacity degradation information of the source domain battery dataset is in-
put to the Mogrifier LSTM through iteration to form a pre-training model, and fi-
nally, the target domain battery capacity degradation information is input to the
pre-training model through transfer learning to effectively suppress the impact of sig-
nificant data distribution differences on the model and achieve multi-source domain
transfer learning.

The rest of this paper is organized as follows: Section 2 gives the SSA-VMD, MIC, and
Mogrifier LSTM theories. Section 3 describes the source domain, target domain battery
data, and the ITL-Mogrifier LSTM model prediction process, and the experimental results
and error analysis are presented in Section 4. Section 5 summarizes the main conclusions.

2. Theoretical Basis
2.1. Sparrow Search Algorithm-Variational Modal Decomposition

VMD is an adaptive signal processing method based on Wiener filtering, which has
significant advantages in dealing with nonlinear and nonsmooth signals [23]. Therefore,
the VMD model is used to decompose the battery capacity sequence [24].

The VMD algorithm differs from EMD in that it is defined as follows:{
uk(t) = Ak(t) cos( fk(t))
ωk(t) = φ′k(t) =

dφk
dt

(1)

where Ak(t) is the instantaneous amplitude of uk(t) and ωk(t) is the instantaneous phase
of uk(t). The original signal is decomposed into k modal functions, each with a central
frequency uk(t). To achieve the decomposition of the original signal the constrained
variational problem is defined as follows:

min
{uk},{ωk}
s.t.∑

k
uk= f

{
∑
k
‖ ∂t

[(
δ(t) +

j
πt

)
· uk(t)

]
e−jωk(t) ‖2

2

}
(2)

where t is the time script and δ(t) is the Dirac distribution. uk and ωk are the set of all modes
and their corresponding central frequencies, respectively. By introducing the Lagrangian
multiplier λ, the transformed expression is obtained as follows:

L({uk}, {ωk}, λ) = α∑
k
‖ ∂t

[(
δ(t) + j

πt

)
· uk(t)

]
e−jωkt ‖2

2 n

+ ‖ f (t)−∑
k

uk(t) ‖2
2 +

〈
λ(t), f (t)−∑

k
uk(t)

〉 (3)

where α is the second penalty factor to reduce the interference of Gaussian noise. λ(t)
is the Lagrange multiplication operator, 〈〉 is the inner product operation, and the other
parameters have the same meaning as above.

When employing the VMD decomposition steps, setting the appropriate values for two
parameters: the number of modes (K) and the penalty parameter (α), is essential. A K value
that is too large will result in over-decomposition, while a K value that is too small will lead



Batteries 2023, 9, 448 4 of 22

to under-decomposition. Similarly, a sizeable α value will cause the loss of valuable band
information, whereas too small of an α value will introduce redundancy in the information.
Thus, it is crucial to determine the optimal combination of these parameters (K, α) [25].

A new optimization algorithm called the sparrow search algorithm was proposed in
2020 [25]. In the SSA, individuals are divided into three categories: discoverers, followers,
and vigilantes, and the position of each individual corresponds to a solution. The algorithm
obtains the position of the optimal solution by continuously updating the positions of these
three categories of individuals and calculating the fitness value of all individuals at each
cycle, with the main update iteration steps shown below [26].

Step 1: Initialize the population, the proportion of predators and joiners, and the
number of iterations.

Step 2: Calculate the fitness values and sort them from largest to smallest.
Step 3: Update the finder position (1).
Step 4: Update the follower position (2).
Step 5: Update the vigilante position (3) (Aware of Danger Sparrow).
Step 6: Calculate the fitness value and update the sparrow position.
Step 7: If the requirements are met, output the result; otherwise, repeat steps 2–6.

(1) Finder position update.

The finder checks for predators in the foraging area and if not, searches exten-
sively for food; if there are predators, it flies to a safe area. The expression is shown
in Equation (4) below.

Xt+1
i,j =

Xt
i,j· exp

(
−i

α·itermax

)
i f R2 < ST

Xt
i,j + Q·L i f R2 ≥ ST

(4)

where Xt
i,j denotes the location information of the ith sparrow in the jth dimension.

t denotes the current number of iterations. R2 ∈ (0, 1] and ST(0.5, 1.0] denote the warning
value and the warning threshold, respectively. L is a d-dimensional column vector whose
element is 1. Q is a normally distributed random number.

(2) Follower position update.

When a follower joins, it is determined whether it is eligible to compete with the
finder for food, i.e., whether its location is better. If its location corresponds to a lower
fitness level, then it is not eligible to compete and it needs to fly to another area to forage;
otherwise, the joiner will forage in the vicinity of the best individual Xp. The expressions
are shown below.

Xt+1
i,j =

Q· exp
(

Xt
worst−Xt

i,j
i2

)
i f (i > n/2)

Xt+1
p +

∣∣∣Xt
i,j − Xt+1

p

∣∣∣·A+·L otherwise
(5)

where Xt
worst denotes the position of the worst adapted individual in generation t, Xt+1

p denotes
the position of the best adapted individual in generation t + 1, and A is a matrix of the same
dimension as L with elements that are subsequently pre-defined as 1 or −1 and satisfy
A+ = AT(AAT)−1.

(3) Vigilante position update.

When individuals are at the periphery of the population, they need to adopt anti-
predatory behavior to achieve a higher degree of adaptation; when they are at the center of
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the population, they need to move closer to their peers to stay away from the danger zone.
The expressions are as follows.

Xt+1
i,j =


Xt

best + β·
∣∣∣Xt

i,j − Xt
best

∣∣∣ (
i f fi > fg

)
Xt

i,j + B·
( ∣∣∣Xt

i,j−Xt
worst

∣∣∣
( fi− fw)+ε

) (
i f fi = fg

) (6)

where Xt
best is the current best position. β is a random number with a mean of 1 and

variance of 0, obeying a normal distribution. B (B [0, 1]) is a random number. fi denotes
the fitness of the sparrow in the current situation, fg is the best fitness in the current global
situation, fw is the worst fitness, and ε is the smallest constant.

The objective function chosen by SSA-VMD is the mean envelope entropy (MEE). The
expression of the objective function MEE is:

MEE = mean{EP1, . . . , EPk} =
1
K

K

∑
i=1

EPi (7)

where K denotes the number of IMF components obtained through VMD. EPi is the en-
velope entropy value of each IMF component. When the value of MME is smaller, the
complexity of IMF is lower, and the signal is more stable. Figure 1 shows the flowchart of
SSA-VMD.
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2.2. Maximum Information Coefficient

The maximal information coefficient is developed based on mutual information and
is a kind of maximal information-based nonparametric exploration (MINE) in statistical
analysis [27]. The MIC is defined as follows: the current two-dimensional space is divided
into X intervals and Y intervals in the x and y directions, respectively, to form an x× y grid;
the grid with the same partition interval can be divided in a variety of ways. Suppose the
set of grids formed by different partition ways is Ω; then, it is defined as:

I · (D, x, y) = max
G∈Ω

I(D|G) (8)

MIC(D) = max
x,y<B(n)

I · (D, x, y)
log min{x, y} (9)

where D|G represents the distribution of the dataset D on the grid G; I(D|G) is mutual infor-
mation of D|G ; n is the number of dataset samples; and B(n) is the upper limit of the number
of mesh divisions. The general value range of B(n) is ω(1) ≤ B(n) ≤ O

(
n1−ε

)
, 0 < ε < 1.

The increase in the upper limit of the number of grid divisions will make the measure-
ment of the correlation degree of MIC more accurate, but the computational complexity
will also increase. The optimal effect can be obtained when B(n) = n0.6 [28].

2.3. Mogrifier LSTM

At the 2020 International Conference on Learning Representations (ICLR), Gabor Melis,
Tomas Kocisky, and others at the University of Oxford, UK, presented the Mogrifier LSTM
deep learning algorithm [11], which improves the algorithm. The improved algorithm
extends the original LSTM algorithm by adding two gating units on top of the original
algorithm, increasing the interaction space of network input and output, making full
use of the intrinsic connection between input and output, and improving the dynamic
approximation capability of the network. Figure 2 shows the structural unit of the Mogrifier
LSTM network.
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The Mogrifier LSTM is an extension of the LSTM where the input x(t) and the previous
moment output h(t− 1) are screened against each other in an alternating manner before
entering the conventional LSTM cell. The dashed box in Figure 3 shows the interactive
control process of input and output. x(t) is transformed by the sigmoid threshold unit
to obtain the control state u(t). The sigmoid function makes the values of the elements
in u(t) between [0 and 1], and the dotted multiplication of u(t) and h(t− 1) transforms
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each element in h(t− 1) to different degrees, if u(t) corresponds to an element with a value
of 1, the corresponding element of h(t− 1) flows into the network according to the original
value; if u(t) corresponds to an element value of 0.5 in h(t− 1), it causes the corresponding
element in h(t− 1) to flow into the neural network after halving the value of each element
in u(t). The value of each element in x(t) is derived from the weight of x(t) flowing into
that layer, which is continuously updated during the training process of the network to
reduce the network loss value.
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The update process for u(t) and h(t− 1)′ in Figure 3 is shown below:

u(t) = σ(Wu·x(t) + bu) (10)

h(t− 1)′ = 2h(t− 1) · u(t− 1) (11)

where Wu is the weight of the input x(t) on the control of h(t− 1), and bu is its bias. h(t− 1)
is transformed into u(t) by h(t− 1)′.

The final output of the network in the recurrent neural network is obtained from c(t).
During the training process of the network, the network uses the time series to update
c(t). If an element in the input time series changes more drastically, the network should
learn how to deal with it. To solve this problem, the Mogrifier LSTM adds h(t− 1)′ to
the threshold unit of x(t) control. As shown in Figure 4 h(t− 1)′ is processed by the
sigmoid threshold structure to achieve the control state v(t). Using v(t) to achieve the
transformation of each element in x(t), the network uses the loss value obtained after the
transformation to fine-tune the weights of the layer to achieve the gradient update. v(t)
and x(t− 1)′ update process is as follows:

v(t) = σ
(

Wv·h(t− 1)′ + bv

)
(12)

x(t)′ = 2x(t) · v(t) (13)

where Wv is the weight of the input h(t− 1)′ on the x(t) passability control and bv is its
bias matrix. x(t) is transformed into v(t) through x(t)′.
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3. Predictive Model Construction
3.1. Introduction of the Experimental Dataset
3.1.1. Source Domain Cell Dataset: CALCE Dataset

The source domain battery dataset used in this study was obtained from the lithium-
ion battery dataset provided by the Center for Advanced Life Cycle Engineering Research
(CALCE) at the University of Maryland, USA [29]. Four battery charge and discharge
experimental datasets, CS2_35, CS2_36, CS2_37, and CS2_38, were selected as the source
domain data for the model. The CS2 series batteries are lithium cobalt-acid batteries with
LiCoO2 mixed with carbon as a conductive additive as the anode and layered graphite
bonded with polypropylene fluoride as the cathode [30,31]. At the same room temperature
(24 ◦C) environment, all batteries underwent the same charge/discharge pattern using a
constant current of 0.5 C to charge when the voltage reached 4.2 V. Then the voltage was
kept at 4.2 V for constant voltage charging, and when the charging current dropped to
0.05 A, a constant current discharge was performed using a current of 1 C. The discharge
was stopped when the voltage was 2.7 V. The same charging and discharging experiments
were performed for the battery several times and stopped when the capacity of the battery
dropped from 1.1 Ah to 0.88 Ah. Figure 5 shows the capacity degradation trend of the
CALCE lithium battery.
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3.1.2. Target Domain Battery: NASA Dataset

This study’s target domain battery dataset is derived from the lithium battery data in
the NASA-Ames Prediction Center of Excellence (PCOE) data [32,33]. Batteries numbered
B5 and B6 were selected to validate the proposed method. The corresponding batteries
have a rated capacity of 2 Ah. The battery aging experiments are performed at room
temperature. The procedure is as follows: First, a constant current of 1.5 A is applied to
charge the battery. When the battery voltage reaches 4.2 V, the charging is finished. A
constant voltage mode is applied to charge the battery in another cycle. When the charging
current drops to 20 mA, the charging is completed. NASA battery packs are ternary lithium
batteries, with lithium nickel-cobalt-aluminate as the anode material and graphite as the
cathode material [34]. Then, the battery packs corresponding to B5 and B6 are discharged
in constant current mode at 2 A. The discharge is completed when the battery voltage
drops to 2.7 V and 2.5 V, respectively. The battery failure threshold line is reached when
the battery capacity drops to 70% of the rated capacity. Figure 6 shows the NASA lithium
battery capacity degradation trend.
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3.2. Specific Experimental Procedures

(1) In the data pre-processing stage: The actual battery capacity decay leads to a decreas-
ing trend of the overall SOH and battery aging. Therefore, the battery capacity can
be used as a direct HI to assess the degree of battery aging [35]. The capacity degra-
dation data from NASA and CALCE lithium battery historical life experiment data
are extracted separately. The CALCE lithium battery capacity degradation dataset is
used as the source domain battery dataset, and the NASA lithium battery capacity
degradation dataset is used as the target domain dataset. The parameters K and α
of VMD are optimized using the SSA, and the source domain and target domain
battery capacity degradation data are decomposed to obtain several IMF components,
and the highly correlated feature components are selected by the MIC for capacity
sequence reconstruction and input to the model as characterizing lithium battery
capacity degradation information.

(2) In the degradation modeling phase: the reconstructed full-life capacity degradation
data of the source domain battery dataset is iteratively pre-trained on the Mogrifier
LSTM model, and a pre-trained model with high prediction accuracy is obtained after
several iterations.

(3) In the RUL prediction stage: The optimal Mogrifier LSTM pre-trained model obtained
from the training is transferred to the target domain, and the capacity degradation
curve is predicted for the target domain battery after fine-tuning the target domain
training set, where the prediction step is 5; then the RUL of the target domain battery
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is calculated. To verify the prediction performance of the model, different prediction
starting points are chosen to evaluate the prediction effect of the model.

(4) In the error analysis stage: using CRA, MAPE, RULError, and PRULError the model
performance is evaluated, and the results show that the proposed method has better
prediction accuracy than Mogrifier LSTM and LSTM neural network models for RUL
of Li-ion batteries. The flow chart is shown in Figure 7:
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4. Experimental Verification
4.1. SSA-VMD

To enhance the accuracy and reliability of lithium battery life prediction, the dataset
undergoes SSA-VMD decomposition, aimed at reducing noise and interference. Specifically,
the battery capacity degradation data from both the source and target domains are subjected
to this analysis. The decomposition process involves determining the optimal modal
number, K, for VMD. Inadequate decomposition occurs with excessively small K values,
while excessive decomposition occurs with excessively large K values. To address this
issue, the VMD parameters, K and α, are optimized through SSA. In this paper, the SSA
parameters [36] adopted are presented in Table 1, encompassing the number of populations
(Num), maximum number of iterations (Iter), upper and lower boundaries (Lb and Ub),
and search dimension (Dim). The optimal parameter combination resulting from SSA-VMD
decomposition is [5, 171], [5, 200].
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Table 1. SSA parameter setting.

Num Iter Lb Ub Dim

30 20 [10, 200] [2, 100] 2

Figure 8 shows the IMF components after the decomposition of the source domain
battery (with CS2_35 as an example), and the target domain battery dataset (with B5 as an
example). In the figure, IMF1 is the main trend degradation component. IMF2 can reflect
capacity regeneration. IMF3~5 are random components, which can reflect the random
disturbance caused by the battery degradation [37].
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components and (b) B5 IMF component.

In order to assess the decomposition performance, the commonly used Index of
Orthogonality (IO) [38] is employed. This index serves to evaluate the effectiveness of
sequence decomposition techniques. A smaller IO value indicates better orthogonality
between the components, thus implying higher sequence decomposition accuracy. The
definition of the orthogonality index is presented below:

IO =
n

∑
t=0

(
n

∑
i=1

n

∑
j=1,j 6=i

ui(t)uj(t)/
[
ui(t)uj(t)

]2)
(14)

where ui and uj represent the indexes of the ith and jth IMFs, respectively, by utilizing
Equation (14), the IO values for the decomposition results of the B5 battery’s capacity data
are obtained and presented in Table 2. It is observed that the SSA-VMD decomposition
exhibits smaller IO values compared to the EMD decomposition for the B6 battery’s capacity
data, suggesting a superior decomposition performance.

Table 2. SSA-VMD and EMD decomposition of IO values.

Decomposition Methods IO

WOA-VMD 0.1184
EMD 0.0631

4.2. Maximum Information Coefficient (MIC)

Compared with the original signal, it can be seen that the IMF component can effec-
tively capture and can reflect the performance degradation trend of Li-ion batteries more
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obviously. To reduce the effects of capacity regeneration and noise, the maximum informa-
tion factor is used to measure the correlation of each modal component after decomposition
with the original capacity degradation data, and some modal features with low correlation
can be discarded as noise. Table 3 shows the results after normalization of the maximum
information coefficients of each IMF component in the source and target domain battery
datasets and the average value of the calculated maximum information coefficients of each
IMF component. The IMF components with maximum correlation coefficient values more
significant than the average value are screened out for capacity series reconstruction.

Table 3. IMF maximum information coefficient.

Battery
Type IMF1 IMF2 IMF3 IMF4 IMF5 Mean

CS2_35 1.0000 0.3879 0.1683 0.1599 0.1718 0.3776
CS2_36 1.0000 0.2837 0.2064 0.2143 0.2207 0.3850
CS2_37 1.0000 0.1904 0.1951 0.1573 0.1560 0.3398
CS2_38 1.0000 0.2624 0.1467 0.1338 0.1509 0.3388

B5 1.0000 0.3180 0.2358 0.1941 0.1560 0.3808
B6 1.0000 0.9183 0.3286 0.3508 0.2234 0.5642

The reconstructed capacity degradation information is highly correlated with the
original capacity information. The degradation trend is more obvious, so the reconstructed
capacity degradation information is used to characterize lithium battery capacity degra-
dation information. Figure 9 shows the capacity degradation curves of the reconstructed
source domain and target domain cell datasets.
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4.3. ITL-Mogrifier LSTM

Li-ion batteries No. CS2_35, CS2_36, CS2_37, and CS2_38 are used as source domain
data, and batteries No. B5 and B6 are used as target domain data.

The reconstructed source domain battery capacity degradation data are all input
as training sets into the Mogrifier LSTM for iterative training to obtain the pre-training
model, and the pre-training model is transferred to the target domain. To verify the
model prediction effect, the capacity sequence data of the reconstructed target domain
battery capacity degradation data under 100-cycle operating conditions, 80-cycle operating
conditions, and 60-cycle operating conditions are selected as training sets and compared
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with the Mogrifier LSTM after SSA-VMD and with the LSTM after SSA-VMD. Figures 10–12
show the RULs of the target domain battery dataset under different starting points (ST).
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To verify the effectiveness of the proposed method in the RUL prediction of Li-ion
batteries, the final obtained experimental results were compared with the Mogrifier LSTM
and LSTM, and the error between the actual and predicted values when the capacity of the
Li-ion battery drops to the failure threshold is defined as follows:

RULError =
∣∣RULTrue − RULpre

∣∣ (15)

PRULError =

∣∣RULTrue − RULpre
∣∣

RULTrue
× 100% (16)

where RULTrue denotes the actual RUL, i.e., the number of cycles for which the capacity is
below the failure threshold (1.4 Ah), and the actual RUL for B5 and B6 batteries are 124 and
108 cycles, respectively. RULpre is the capacity prediction value, and RULError denotes the
absolute error between RULTrue and RULpre. PRULError is the relative error percentage.

The prediction results from Figures 10–12 reveal significant improvements in the
ITL-Mogrifier LSTM method compared to the LSTM method. The ITL-Mogrifier LSTM
approach produces prediction results that closely align with the natural capacity decay
curve of Li-ion batteries. This improvement can be attributed to the Mogrifier LSTM’s ability
to address the low convergence efficiency of unidirectional neural networks and effectively
utilize temporal context information, resulting in more accurate predictions. Furthermore,
when comparing the prediction results of the ITL-Mogrifier LSTM and Mogrifier LSTM,
it is observed that iterative migration learning allows the model to learn features more
comprehensively, leading to better prediction results than the Mogrifier LSTM. These
improvements hold true even under different cycling conditions. Specifically, the predicted
remaining useful life (RUL) of the lithium battery under 100 cycling conditions, utilizing
the reconfigured capacity sequence, is significantly better than predictions under 80 and
60 cycling conditions. This increase in accuracy can be attributed to the larger amount of
training data, resulting in predictions that align closely with the actual battery capacity
degradation curve. Additionally, the proposed method demonstrates higher stability, as
the failure threshold is reached faster compared to the original capacity degradation curve,
further confirming its effectiveness.

Tables 4–7 show the quantitative representation of the prediction errors of the model
in which the RUL prediction errors for different conditions of battery B5 have a MAPE of
not more than 6.5% and an RULError of not more than 1, and the RUL prediction errors
for different conditions of battery B6 have a MAPE of more than 9.0% and an RULError of
not more than 1. From the algorithmic analysis, firstly, this paper adopts the SSA-VMD
algorithm, reduces the complexity of the data, enables the model to learn the intrinsic
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information of the data thoroughly, discards the noise component, and reconstructs the
capacity sequence by screening the maximum information coefficient so that the model
can capture the capacity regeneration fluctuation. Second, the iterative transfer learning
increases the amount of data for model training, the amount for model learning also
increases and its prediction results are more accurate. In summary, the quantitative analysis
of the error and the analysis from the algorithm’s perspective can prove that the proposed
algorithm in this paper has better accuracy.

Table 4. B5 battery RULError and PRULError analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 100 24 24 0 0
Mogrifier LSTM 100 24 21 3 12.5

LSTM 100 24 16 8 33.3
ITL-Mogrifier LSTM 80 44 44 0 0

Mogrifier LSTM 80 44 41 3 6.81
LSTM 80 44 34 10 22.7

ITL-Mogrifier LSTM 60 64 63 1 1.56
Mogrifier LSTM 60 64 61 5 7.81

LSTM 60 64 52 12 18.75

Table 5. B6 battery RULError and PRULError analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 100 8 8 0 0
Mogrifier LSTM 100 8 10 2 25

LSTM 100 8 7 1 12.5
ITL-Mogrifier LSTM 80 28 28 0 0

Mogrifier LSTM 80 28 30 2 7.14
LSTM 80 28 31 3 10.7

ITL-Mogrifier LSTM 60 48 48 0 0
Mogrifier LSTM 60 48 50 2 4.17

LSTM 60 64 52 12 18.75

Table 6. B5 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 100 0.9265 5.346
Mogrifier LSTM 100 0.9116 6.835

LSTM 100 0.8744 10.71
ITL-Mogrifier LSTM 80 0.9153 6.471

Mogrifier LSTM 80 0.8889 9.112
LSTM 80 0.8696 10.89

ITL-Mogrifier LSTM 60 0.9243 5.643
Mogrifier LSTM 60 0.8788 10.55

LSTM 60 0.8542 12.11
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Table 7. B6 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 100 0.9116 6.835
Mogrifier LSTM 100 0.8182 15.17

LSTM 100 0.8133 16.67
ITL-Mogrifier LSTM 80 0.8904 8.952

Mogrifier LSTM 80 0.8629 11.71
LSTM 80 0.8047 17.53

ITL-Mogrifier LSTM 60 0.8985 8.145
Mogrifier LSTM 60 0.8325 14.75

LSTM 60 0.7853 21.47

To quantitatively evaluate the prediction performance, the cumulative relative ac-
curacy (CRA) and the mean absolute percentage error (MAPE) of different methods are
compared with their formulae as follows [39]:

CRA =
1
K

K

∑
k=1

(
1−

∣∣l′k − lk
∣∣

lk

)
(17)

MAPE =
K

∑
k=1

∣∣lk − l′k
∣∣

lk
× 100% (18)

where K is the length of the samples, l′k and lk represent the predicted and true values at
moment tk. The higher the CRA value, the better the performance, and the smaller the
MAPE value, the better the performance.

This study utilizes the continuous multi-step sliding window prediction method with a
prediction step length of five steps. This implies that the earliest prediction moment occurs
five cycles prior to reaching the failure threshold cycle point. Figures 10–12 illustrate that the
accuracy of the prediction result improves as the failure threshold cycle point approaches.

In order to verify the robustness and stability of the proposed method, we utilize
5-fold cross-validation [40] and select different training and test sets for RUL prediction of
lithium batteries, respectively. Specifically, within the test set of the target domain dataset,
the test data from CALCE’s lithium batteries constituted 60% of the total cycling data.
The data obtained from NASA was selected to have a starting point of the 100th cycle for
B5 batteries and the 90th cycle for B6 batteries.

Figures 13–16 showcase that the proposed method’s robustness can be adequately
determined using 5-fold cross-validation. Additionally, the battery degradation trend of
CALCE displays significant volatility, which poses a challenge for modeling using a simple
linear relationship. Consequently, a robust and stable model is required. Tables 8–23 demon-
strate that the prediction method proposed in this paper outperforms other prediction
methods in terms of battery RUL prediction. This superiority is evident in both RULError,
PRULError, and CRA evaluation, as well as in MAPE evaluation. Furthermore, regardless
of the choice of source dataset or target domain dataset, the proposed method consistently
performs better than the comparison methods in cross-validation. The proposed method
improves by approximately 46.94% compared to Mogrifier LSTM and 65.79% compared
to LSTM in terms of RULError. Moreover, it exhibits about a 50.28% improvement over
Mogrifier LSTM and 67.03% over LSTM in terms of PRULError. In terms of CRA, the
proposed method shows an improvement of around 1.98% compared to Mogrifier LSTM
and 5.44% compared to LSTM, while in terms of MAPE, it improves by approximately
25% compared to Mogrifier LSTM and 41.37% compared to LSTM. The results consistently
demonstrate significant robustness and stability.
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Table 8. B5, B6, CS2_37, and CS2_38 are source domains for CS2_35 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 361 156 155 1 0.641
Mogrifier LSTM 361 156 158 2 1.28

LSTM 361 156 165 9 5.77

Table 9. B5, B6, CS2_37 and CS2_38 are source domains for CS2_35 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 361 0.9267 5.342
Mogrifier LSTM 361 0.9245 5.641

LSTM 361 0.8745 10.72

Table 10. B5, B6, CS2_37 and CS2_38 are source domains for CS2_36 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 381 108 110 2 1.85
Mogrifier LSTM 381 108 100 8 7.41

LSTM 381 108 117 9 8.33

Table 11. B5, B6, CS2_37 and CS2_38 are source domains for CS2_36 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 381 0.9247 5.639
Mogrifier LSTM 381 0.8739 10.75

LSTM 381 0.8740 10.76
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Table 12. B5, B6, CS2_35 and CS2_36 are source domains for CS2_37 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 381 115 115 0 0
Mogrifier LSTM 381 115 105 5 4.35

LSTM 381 115 99 16 13.91

Table 13. B5, B6, CS2_35 and CS2_36 are source domains for CS2_37 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 381 0.9268 5.34
Mogrifier LSTM 381 0.9005 9.152

LSTM 381 0.7849 21.52

Table 14. B5, B6, CS2_35 and CS2_36 are source domains for CS2_38 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 397 158 158 0 0
Mogrifier LSTM 397 158 163 5 3.17

LSTM 397 158 168 10 6.33

Table 15. B5, B6, CS2_35 and CS2_36 are source domains for CS2_38 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 397 0.9268 5.34
Mogrifier LSTM 397 0.9005 9.152

LSTM 397 0.8696 10.89

Table 16. B6, CS2_35, CS2_36 and CS2_37 are source domains for CS2_38 battery and PRULError and
PRULError analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 397 158 164 6 3.80
Mogrifier LSTM 397 158 164 6 3.80

LSTM 397 158 162 4 2.50

Table 17. B6, CS2_35, CS2_36 and CS2_37 are source domains for CS2_38 battery CRA and MAPE
analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 397 0.9006 9.156
Mogrifier LSTM 397 0.9006 9.156

LSTM 397 0.9004 9.15

Table 18. B6, CS2_35, CS2_36 and CS2_37 are source domains for B5 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 100 24 21 3 12.5
Mogrifier LSTM 100 24 18 6 25.0

LSTM 100 24 17 7 29.2
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Table 19. B6, CS2_35, CS2_36 and CS2_37 are source domains for B5 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 100 0.9116 6.835
Mogrifier LSTM 100 0.8788 10.55

LSTM 100 0.8788 10.55

Table 20. B5, CS2_36, CS2_37 and CS2_38 are source domains for CS2_35 battery RULError and
PRULError analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 361 156 169 13 8.33
Mogrifier LSTM 361 156 171 15 9.62

LSTM 361 156 173 17 10.90

Table 21. B5, CS2_36, CS2_37 and CS2_38 are source domains for CS2_35 battery CRA and MAPE
analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 361 0.7853 21.47
Mogrifier LSTM 361 0.7851 21.5

LSTM 361 0.7849 21.52

Table 22. B5, CS2_36, CS2_37 and CS2_38 are source domains for B6 battery RULError and PRULError

analysis.

Prediction Method ST RUL RULpre RULError PRULError

ITL-Mogrifier LSTM 90 18 17 1 5.56
Mogrifier LSTM 90 18 16 2 11.1

LSTM 90 18 14 4 22.2

Table 23. B5, CS2_36, CS2_37 and CS2_38 are source domains for B6 battery CRA and MAPE analysis.

Prediction Method ST CRA MAPE (%)

ITL-Mogrifier LSTM 90 0.9267 5.342
Mogrifier LSTM 90 0.9245 5.641

LSTM 90 0.8889 9.112

5. Conclusions

In this paper, an ITL-Mogrifier LSTM method is proposed to implement the prediction
of RUL for Li-ion batteries. The main findings of this paper are as follows:

(1) The VMD algorithm is capable of accurately capturing the overall decreasing trend
of battery capacity and fluctuations. However, the accuracy and stability of the
decomposition results can be influenced by the optimization parameters K and α.
To obtain more precise decomposition results, SSA was utilized to explore optimal
parameter combinations. SSA-VMD analysis was conducted on both the source
and target domain battery capacity degradation data. The correlation between each
IMF component and the original capacity degradation data was evaluated using the
maximum information coefficient. The highly correlated IMF components were then
reconstructed, effectively characterizing the battery health information and mitigating
the phenomenon of capacity regeneration. These reconstructed signals exhibited a
strong correlation with the original capacity degradation data. Hence, it is viable to
employ these data as the input for Li-ion battery RUL prediction models.
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(2) Although the LSTM neural network can achieve the RUL prediction of the Li-ion
battery, its prediction error is large, and it is easy to cause gradient disappearance
and gradient explosion phenomenon. The Mogrifier LSTM algorithm can increase
the interaction between the data to enhance the effective features and weaken the
secondary features, and the optimization search effect is better. Using ITL-Mogrifier
LSTM to extract useful knowledge from multiple source domain battery data and
suppress the effects of large data distribution differences on the model, transfer
learning with the multi-domain transfer is achieved, and reliable models can be
constructed with the help of a small amount of target data.

By using the CALCE and NASA Li-ion battery datasets, the prediction results of the
proposed method and other methods are compared, and the experimental results show
that the ITL-Mogrifier LSTM has a small prediction error for Li-ion battery RUL and that
the model effect is better than other models. In addition, the proposed method not only
has better prediction accuracy but also can effectively reduce the cost of lithium-ion battery
aging data collection.
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