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Abstract: Due to global warming issues, the rapid growth of electric vehicle sales is fully expected to
result in a dramatic increase in returned batteries after the first use. Naturally, industries have shown
great interest in establishing business models for retired battery reuse and recycling. However, they
still have many challenges, such as high costs from the logistics of returned batteries and evaluating
returned battery quality. One of the most important characteristics of a returned battery is the battery
storage capacity. Conventionally, the battery’s energy capacity is measured through the low current
full charging and discharging process. While this traditional measurement procedure gives a reliable
estimate of battery storage capacity, the time required for a reliable estimate is unacceptably long to
support profitable business models. In this paper, we propose a new algorithm to estimate battery
storage capacity that can dramatically reduce the time for estimation through the partial discharging
process. To demonstrate the applicability of the proposed algorithm, cylindrical and prismatic cells
were used in the experiments. Initially, five indicators were selected from the voltage response
curves that can identify battery storage capacity. Then, the five indicators were applied to principal
component analysis (PCA) to extract dominant factors. The extracted factors were applied to a
multiple linear regression model to produce a reliable estimation of battery storage capacity.

Keywords: lithium-ion battery; battery storage capacity; state of health; second use; voltage response
curve; principal component analysis; multiple linear regression

1. Introduction

As the number of electric vehicles sharply increases every year around the world,
it is fully expected that the number of retired batteries from electric vehicles that have
reached the end of life (EOL) will surge [1]. Since retired batteries are quite harmful to the
environment and extremely fire hazardous, they must be properly disposed of. Nonetheless,
it is not easy to handle the batteries from electric vehicles since they are packaged in bulky
and heavy protective cases and are usually installed deep inside the vehicle for further
protection. While the dire need for the proper disposal of retired batteries exists, it certainly
requires a serious amount of resources, including heavy tools and safety-enhanced facilities.
Therefore, it is quite hard to find economic incentives to serve the need for appropriate
battery disposal processes. Recently, as the demands for raw materials of lithium-ion
batteries such as lithium, cobalt, and manganese are sharply increasing along with the
expansion of the electric vehicle market around the world and as the amount of materials
is limited, the competition to secure raw materials from these batteries has become more
intense. With this development of strong competition to secure the raw materials, finally,
the economic advantages of recycling returned batteries start to become attractive. Initially,
the focus has been on complete recycling, which extracts precious raw materials from the
batteries. This process requires dismantling the batteries literally down to powder level
before recouping the selected raw materials. While battery recycling seems attractive at
first, further consideration of carbon production from the recycling process itself brings
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up another alternative idea, namely battery reuse, which indeed repurposes battery usage
after evaluating the battery’s health state, especially battery storage capacity. Battery reuse
can definitely minimize carbon production compared to battery recycling, and on top of
that, if performed properly, it can shorten the time to bring the retired battery back into
action with appropriate repurposing, such as energy storage systems and more. With all
these backgrounds, retired battery reuse and recycling ideas are gaining great attention in
terms of sustainable resource management and further carbon neutrality [2].

One of the most important steps in deciding whether to follow the recycling process or
to go through the reuse process is the reliable assessment of battery storage capacity. If the
battery storage capacity has decreased too much, then the battery should be recycled, and
if not, the battery should be reused for appropriate applications. Conventionally, battery
storage capacity can be measured through low current full charging and discharging
processes. While this traditional measurement procedure gives a reliable estimate of battery
storage capacity, the time required for the reliable estimate is unacceptably long to support
profitable business models. Therefore, techniques for dependable and rapid evaluation
of battery storage capacity have been at the core of recent battery research activities [2,3].
Typically, in the field of electric vehicle applications, when the battery storage capacity
decreases down to 80% or less of its initial capacity, it is determined to have reached the end
of life or service for that specific purpose as the reduced capacity directly means reduced
driving range and indirectly implies limited power output due to the increased internal
resistance of the battery [4]. However, these batteries certainly have considerable storage
capacity. They can be utilized in other applications, such as household or industrial energy
storage systems or personal mobility, where the requirements for energy storage capacity
are relatively soft [5]. Although the retired battery reuse industries have advantages in
terms of environmental contribution and carbon neutralization, it is still critical to secure
price competitiveness compared to new batteries. Therefore, it is extremely important to
minimize the time to assess battery storage capacity and the costs involved in the process [6].
With all these backgrounds, a methodology for rapid evaluation of battery storage capacity
is presented in this paper.

1.1. A Brief Review of Battery Storage Capacity Evaluation Methods

Various methods for the assessment of battery performance exist, and they can deter-
mine the reusability of the battery by examining different aspects of battery performance
characteristics. As mentioned earlier, one of the most important performance characteristics
is battery storage capacity, and it can be measured quite reliably through a conventional
measurement technique. This method relies on the current integration, i.e., coulomb count-
ing during the slow discharging process from the fully charged state down to the voltage
cutoff state, in other words, the fully discharged state. The battery under test is charged
and discharged at a slow speed, typically at a 0.1 C rate, to help the stable operation of the
evaluation process. Although it has the disadvantage of long measurement time resulting
in high operating costs in terms of time, it has excellent accuracy and high reliability since
it directly measures the battery storage capacity through current integration during the
stable discharge process [7].

In an effort to reduce the time required for conventional battery capacity measurement,
a partial discharge method was studied utilizing the relationship between the state of
charge (SOC) and the open circuit voltage (OCV). Firstly, a stabilized OCV at state 1 is
measured (OCV1), and the SOC at the corresponding state (SOC1) is looked up through the
SOC–OCV relationship typically provided by the cell manufacturer or prepared by direct
preparation experiments. Secondly, a set amount of energy, denoted by ∆Q, is discharged
during the set time period. After the completion of energy discharge (∆Q), a reasonable
amount of relaxation time is spent to obtain a stable OCV at state 2 (OCV2). Thirdly, based
on the measured OCV2, the SOC at the corresponding state (SOC2) is again looked up
through the SOC–OCV relationship. By equating the difference of SOC1 and SOC2 with
∆Q using the definition of SOC, which is the current amount of energy stored in the battery
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(typically denoted by Q) divided by the battery storage capacity (typically denoted by
Qmax) and a little bit of algebra, the battery capacity can be estimated faster than the
conventional technique [8]. It certainly has the advantage of faster measurement of battery
storage capacity compared to the full discharge method. However, it still requires a certain
amount of time to obtain reliable OCV values in two different states.

Another method for evaluating battery storage capacity is to utilize an improved
Kalman filter algorithm with a hybrid pulse power characterization (HPPC) test. This
test provides battery storage capacity according to a power level through resistance and
power measurement in each section by applying a pulse current to a battery [9]. Both
methods generally have the advantage of shorter estimation time than the conventional
measurement technique. Yet, there is a disadvantage: the accuracy of capacity estimation
often depends on the quality of SOC estimation during the processes.

1.2. Organization of Paper

The rest of this paper is structured as follows. In Section 2, experimental setups
for the battery data collection are explained. In addition, descriptions for the correlation
analysis between the features extracted from the partial discharge experiments and the
corresponding capacity measurements are provided. They are followed by a description
of the multiple linear regression model using two principal components selected through
principal component analysis. In Section 3, the results of the estimated battery storage
capacity of cylindrical and prismatic cells are presented along with the actual measured
corresponding battery storage capacity. Finally, in Section 4, a discussion about the strengths
and limitations of the proposed method with concluding remarks is provided.

2. Experimental Setups and Methodologies
2.1. Description of Experimental Setup and Battery Cell Data

In this work, two cylindrical 4.0 Ah and two prismatic 94 Ah battery cells of lithium
nickel cobalt manganese (NCM) oxide cathode series were tested with two different battery
charge/discharge cyclers located in the same lab, as shown in Figure 1.
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The battery cells under investigation were tested and aged under the following condi-
tions. Firstly, all battery cells were given a one-hour relaxation time to stabilize after the
standard charging process. After that, a partial discharge of six minutes corresponding
to ten percent of SOC was performed, and a one-hour relaxation period was given again.
This process was repeated down to zero percent of SOC. Secondly, the standard charging
process was performed. After that, all battery cells were discharged with a constant cur-
rent (CC) of 0.1 C from the fully charged state down to the fully discharged state for the
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measurement of battery storage capacity. Thirdly, for accelerated battery degradation or
aging, the charge–discharge aging protocol of battery cells was repeated with a current rate
of 2 C, along with the depth of discharge (DOD) set at 100%. The ambient temperature was
maintained at 25 ± 1 ◦C. Note that all the experiments were conducted by setting the upper
limit and lower limit voltages according to the datasheet provided by the manufacturers. In
addition, the frequency of data acquisition for voltages and currents was set at 10 Hz. Each
dataset was named C1 for cylindrical cell #1, C2 for cylindrical cell #2, P1 for prismatic cell
#1, and P2 for prismatic cell #2, respectively.

2.1.1. Definition of State of Charge (SOC)

The battery SOC is defined in this paper as shown in Equation (1). The SOC is defined
as the ratio of the remaining capacity and the maximum allowable capacity at a certain
time [10]. In Equation (1), Qr represents the remaining capacity, QM and It stand for the
maximum capacity of the battery and the measured current during the charge or discharge
process, respectively.

SOC =
Qr

QM
× 100% =

QM −
∫

Itdt
QM

× 100% (1)

2.1.2. Definition of State of Health (SOH)

While the battery SOH can be a combination of many factors, including storage
capacity, internal resistance of alternate current (AC) and direct current (DC), and more, in
this paper, the battery SOH is defined as shown in Equation (2) for the current study. The
ratio between the maximum capacity at a certain time and the maximum capacity at the
start of life is Qnom. Generally speaking, especially in the automotive industries, when the
battery SOH starts to fall below 80%, which means that the battery storage capacity falls
below 80% of the battery storage capacity at the start of life, that battery is declared to be
out of service. In the current study, both cylindrical cells were aged below 80% of SOH.
However, prismatic cells were aged down to around 84%, where the experiments had to
stop due to battery swelling that could have caused accidents if continued.

SOH =
QM

Qnom
× 100% (2)

2.2. Transient Response Analysis (TRA) of Voltage

In order to estimate the SOH, it is important to identify features that might reflect and
quantify battery storage capacity as battery capacity degrades. On top of that, the features
that will be used to quantify battery capacity fade, have to be selected with values that can
be easily obtained during battery operation, such as voltage, current, and temperature [7,8].
In this section, a description of the feature extraction used in the current research is provided.
In order to quantify battery storage capacity after some battery degradation, a transient
response of the voltage curve was used from a partial discharge experiment. As illustrated
in Figure 2, t0 is right at the start of discharging with a known current, t1 is at the rapid
voltage drop right after the start of discharging, t2 is at the end of discharging, and finally,
t3 is right after the end of discharging.

As illustrated in Figure 3, the transient responses of voltage curves display the different
voltage levels and curves for each SOH and each SOC. When the battery is near the start
of life (near 100% of SOH), the voltage curves are positioned at high voltage ranges, and
as the battery degrades or ages (less than 100% of SOH), the voltage curves are located
at lower voltage ranges, respectively, according to SOH levels. These phenomena can be
explained as follows. With the use of batteries over many cycles, it is well known that the
internal resistance of the battery increases gradually, together with the decrease in battery
storage capacity. With increased internal resistance, the voltage drop increases during
discharge at the same current level [11–13]. In Figure 3, it is easy to see that the falloffs of
transient responses of the voltage curve from the initial transient response of the voltage
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curve increase, respectively, as the SOH of the battery weakens due to aging over many
cycles of charge and discharge. This voltage falloff can also be observed at other SOC levels.
In the current study, transient responses to voltage curves were analyzed at various SOC
levels from 100% down to 30% of SOC.
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2.3. Feature Extraction and Correlation Analysis
2.3.1. Feature Extraction Based on Transient Response of Voltage Curve

In the automotive industry, battery capacity and DC internal resistance are regarded
as representative features for quantifying battery degradation, as those estimates are
the basis for driving distance and power output, respectively. However, if microscale
changes are considered, lithium-ion batteries undergo various aging phenomena in their
electrochemical characteristics as they are used over a long time, so in order to quantify
battery state, it seems important to consider many parameters as indicators [14]. Based on
the understanding of electrochemical processes, five indicating parameters were initially
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selected from the transient response of the voltage curve for the estimation of battery storage
capacity in the current research. These indicators are readily measurable or obtainable
through simple algebra while representing increasing or decreasing features as the batteries
degrade, as displayed in Figure 3. Furthermore, these indicating parameters were selected
to capture the commonly accepted characteristics of an equivalent circuit model of battery
electrochemistry. Following the variable naming conventions shown in Figure 2, the internal
resistance Rs was calculated through Ohm’s law using the certain voltage drop at the start
of partial discharging. Another resistance Rp was calculated using a voltage after the certain
initial drop and the voltage at the end of partial discharging. Due to global warming issues,
the rapid growth of electric vehicle sales is fully expected to result in a dramatic increase in
returned batteries after the first use. The overall voltage gradient during partial discharging,
∆V
∆t , denoted as M, was calculated in order to estimate the battery aging effect. Another

parameter for the aging effect, ∆V
∆Q was selected, which represents the voltage drop over

the integrated amount of current during the partial discharging process. Finally, ∆Q
∆V was

considered to explain the decrease in discharging capacity over the voltage drops during
the partial discharging process. All the extracted features are shown in Equations (3) to (7),
and the representative values of indicating features are illustrated in Figure 4.

Rs =
Vt0 −Vt1

It
[Ω] (3)

Rp =
Vt1 −Vt2

IT
[Ω] (4)

M =
∆V
∆t

=
Vt0 −Vt2

360

[
mV

s

]
(5)

∆V
∆Q

=
Vt0 −Vt2

∆Q

[
mV

mAh

]
(6)

∆Q
∆V

=
∆Q

Vt0 −Vt2

[
mAh
mV

]
(7)
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2.3.2. Correlation Analysis

While the features for estimation of battery capacity were selected based on careful
observations of the transient responses of the voltage curves, it was still important to verify
that the selected features are assessable indicators of battery capacity fades. The correlation
between features and discharge capacity was analyzed systematically through Equation (8),
indicating the Pearson correlation coefficient. The correlation coefficient, ρ, represents the
degree of the linear relationship between two variables as a value between −1 and 1 where
COV(X, Y) is a covariance of X and Y, σX is a standard deviation of X, and σY is a standard
deviation of Y [15]. When ρ is positive, it means a positive linear correlation; in the opposite
case, it means a negative linear correlation.

ρX; Y =
COV(X, Y)

σXσY
− 1 ≤ ρ ≤ 1 (8)

The correlation coefficients of cylindrical and prismatic cells are shown in Figure 5. As
anticipated, while the five selected features displayed various coefficients spreading from
−1 or 1, most were near −1 or 1, indicating somewhat reliable correlations. Based on the
results of correlation analysis, five selected features were regarded as efficient indicators
that could reasonably provide quantitative estimates of battery capacity fades. However, it
should be noted that the correlation coefficients do not explain the casual relationships, so
it is necessary to be careful in its interpretation [16].

2.4. Feature Reduction

When applying a regression model to the estimation of battery capacity as the battery
degrades, it is important to consider various input features to determine the accurate state
information of the battery. However, considering too many input features can sometimes
lead to unexpected overfitting issues. Furthermore, in the regression analysis, estimated
results could become too sensitive due to multicollinearity that occurs when input features
have high correlations among each other. In order to alleviate these concerns, principal
component analysis (PCA) was employed in the current study. With this analysis, initially
selected input features were linearly transformed to come up with a reduced number of
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newly constructed input features based on PCA results. By utilizing PCA, more stable re-
sults from the regression model were expected while considering all of the initially selected
input features based on understanding the electrochemistry of the battery reactions [16].
For example, the nth dimensions with the mth dataset can be formulated as in Equation (9),
each variable of X means standardized value, and the covariance matrix, C, for the vector
X, is given in Equation (10). Here, i and j are the order numbers corresponding to the nth
dimension, T represents the transposed matrix, and µ is the mean value of all data. Then,
eigenvalues and eigenvectors can be calculated as in Equation (11), where λ is an eigen-
value, and E is an eigenvector. The eigenvector E can be formulated as an eigenvector V, as
shown in Equation (12), by arranging the number of variables (k) in order of magnitude.
Finally, the principal component (Z) linearly transformed through PCA can be calculated
as Equation (13), and the number of principal components will be K ≤ n, respectively [17].
Typically, the number of principal components can be determined as less than the number
of features, and the principal components can be calculated through eigenvalues ( λn) and
the cumulative contribution of the features [18]. In the current research, two principal
components were selected based on the cumulative contribution of 95% or more, which
are shown in Tables 1 and 2. The decision was made to consider only the major contribu-
tors among principal components as a sharp decrease in the contributions was observed
between the second and the third principal components.

X =


x11
x21

x12
x22

. . .

. . .
x1n
x2n

...
xm1

...
xm2

. . .
. . .

...
xmn

 (9)

Cij =
1
m

m

∑
l=1

(Xil − µi )
(
Xil − µj

)T , µn =
1
m

m

∑
i=1

Xni (10)

CE = λE (11)

V = [V1, V2, . . . , Vk] (12)

Z = VTX (13)

Table 1. Eigenvalues and contributions of each principal component (cylindrical cell).

PC Eigenvalue Percentage of Variance Cumulative

1 4.4274 88.55% 88.55%
2 0.4623 9.24% 97.79%
3 0.0893 1.79% 99.58%
4 0.0207 0.41% 99.99%
5 0.0004 0.01% 100.00%

Table 2. Eigenvalues and contributions of each principal component (prismatic cell).

PC Eigenvalue Percentage of Variance Cumulative

1 4.5590 91.18% 91.18%
2 0.4117 8.23% 99.41%
3 0.0244 0.49% 99.90%
4 0.0049 0.10% 100.00%
5 0.0001 0.00% 100.00%
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Figure 5. Correlation matrix of selected features and discharge capacity (a) Cylindrical cells (b) Pris-
matic cells.

2.5. Multiple Linear Regression Model

Based on the results from PCA, two principal components were reconstructed through
a linear combination of initially selected five input features. With these two transformed
features (Z1, Z2), a multiple linear regression process was performed for the estima-
tion of battery capacity. The multiple linear regression model can be formulated as
Equations (14) and (15) where ε follows N

(
0, σ2), normal distribution with variance σ2.

The difference between the actual discharge capacity and the fitted regression line is ex-
pressed by errors, and the regression coefficient β0, β1, and β2 are calculated to minimize
the sum of squared error (SSE) [19–21]. In this work, Z1 and Z2 are used as independent
variables to calculate the regression coefficient, and the battery capacity measured through
the coulomb counting method is used as the dependent variable of the multiple linear
regression (MLR) model that minimize the SSE for each SOC range.

Yk = β0 + β1Z1k + β2Z2k + εk, (k = 1, 2 . . . n) (14)

Y =


Y1
Y2
...

Yk

, X =


1
1
...
1

x11
x21

...
xk1

x21
x22

...
xk2

. . .

. . .
. . .
. . .

x1n
x2n

...
xkn

, β =


b̂1
b̂2

...
b̂k

, ε =


ε1
ε2
...

εk

 (15)

3. Estimated Battery Storage Capacity and Comparison with the Measured Capacities

The coefficient of determination, R2, is calculated to evaluate the performance of the
regression model. It is a measure of the degree to which the estimated linear model fits
the given dataset. The adjusted coefficient of determination, Radj

2, is a scale to compen-
sate for the problem that R2 increases as the training dataset and independent variables
increase [22,23]. R2, Radj

2, and the percentage of error of the model’s estimated value are
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shown in Equations (16) to (18), where n is the number of samples and k is the number of
independent variables.

R2 =
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi − y)2 (16)

Radj
2 = 1−

(n− 1)
(
1− R2)

(n− k− 1)
(17)

error =
|yi − ŷi|

yi
× 100% (18)

3.1. Case Study1: Cylindrical Cells

The training dataset for the MLR model used the datasets of C1 and C2 up to 1000 cy-
cles, and the 1000th cycle dataset was used as a test dataset. The results in Table 3 show
that the errors were within 4% of C1 and C2. Based on the results, it can be regarded
that the proposed SOH estimation model shows high performance over the SOC 100% to
30% range.

Table 3. The result of SOH estimation (Cylindrical cells).

Cell No. SOC β0 β1 β2 R2 R2
adj

Estimated
SOH
(%)

Measured
SOH
(%)

Error (%)

C1

100% to 90% 0.3325 0.3524 0.5194 0.8788 0.8654 71.47

72.85

1.90
90% to 80% 0.3325 −0.4384 0.1065 0.9356 0.9284 70.35 3.43
80% to 70% 0.3325 −0.4301 0.0037 0.9274 0.9194 69.97 3.96
70% to 60% 0.3325 0.4264 0.4695 0.9072 0.8969 69.99 3.92
60% to 50% 0.3325 −0.4382 0.2635 0.9684 0.9649 71.44 1.94
50% to 40% 0.3325 −0.4212 −0.4515 0.9498 0.9442 71.13 2.37
40% to 30% 0.3325 0.3457 −0.5935 0.8934 0.8816 71.57 1.76

C2

100% to 90% 0.3325 0.3524 0.5194 0.8788 0.8654 71.53

72.78

1.72
90% to 80% 0.3325 −0.4384 0.1065 0.9356 0.9284 71.65 1.55
80% to 70% 0.3325 −0.4301 0.0037 0.9274 0.9194 71.09 2.32
70% to 60% 0.3325 0.4264 0.4695 0.9072 0.8969 71.05 2.38
60% to 50% 0.3325 −0.4382 0.2635 0.9684 0.9649 72.20 1.04
50% to 40% 0.3325 −0.4212 −0.4515 0.9498 0.9442 71.34 1.98
40% to 30% 0.3325 0.3457 −0.5935 0.8934 0.8816 71.83 1.30

3.2. Case Study2: Prismatic Cells

For the prismatic cell training dataset, data of up to 1200 cycles were used, and the
dataset with the 1200th cycle was used as the test dataset. The SOH estimation results in
Table 4 show that the errors were within 3% in most SOC ranges (100% to 30%) except for
the range of SOC 100% to 90% of the P1 case and the range of 70% to 60% of the P2 case.
As both R2 and Radj

2 are reasonably high in 10 SOC ranges and among 14 SOC ranges, it
shows that the estimation algorithm for SOH for prismatic cells is reasonably dependable.

Table 4. The result of SOH estimation (Prismatic cells).

Cell No. SOC β0 β1 β2 R2 R2
adj

Estimated
SOH
(%)

Measured
SOH
(%)

Error (%)

P1

100% to 90% 0.3150 −0.3695 0.4582 0.7291 0.7044 88.7724

84.93

4.52
90% to 80% 0.3150 0.3883 0.7084 0.8955 0.8860 87.2357 2.71
80% to 70% 0.3150 −0.3787 −0.8117 0.8564 0.8433 88.3708 4.05
70% to 60% 0.3150 −0.3062 −0.8693 0.6577 0.6265 85.2296 0.35
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Table 4. Cont.

Cell No. SOC β0 β1 β2 R2 R2
adj

Estimated
SOH
(%)

Measured
SOH
(%)

Error (%)

P1
60% to 50% 0.3150 −0.3486 −0.3250 0.6882 0.6598 86.2033

84.93
1.50

50% to 40% 0.3150 0.4128 0.5551 0.9430 0.9378 86.6941 2.08
40% to 30% 0.3150 0.3995 0.4877 0.9598 0.9561 86.8859 2.30

P2

100% to 90% 0.3150 −0.3695 0.4582 0.7291 0.7044 85.9919

84.23

2.09
90% to 80% 0.3150 0.3883 0.7084 0.8955 0.8860 86.5929 2.81
80% to 70% 0.3150 −0.3787 −0.8117 0.8564 0.8433 85.4828 1.49
70% to 60% 0.3150 −0.3062 −0.8693 0.6577 0.6265 89.1034 5.79
60% to 50% 0.3150 −0.3486 −0.3250 0.6882 0.6598 85.3956 1.39
50% to 40% 0.3150 0.4128 0.5551 0.9430 0.9378 84.0964 0.16
40% to 30% 0.3150 0.3995 0.4877 0.9598 0.9561 83.9711 0.30

4. Discussion and Concluding Remarks

Through the partial discharging experiment along with the proposed estimation
algorithm of battery capacity, the battery capacities of all cells were assessed and compared
with the actual obtained true values. While the proposed algorithm could evaluate battery
capacity only after 6 min of partial discharging, the results showed that the SOH of the
battery cells was estimated within the range of 6% at the maximum error in all SOC ranges.

To improve regression model performance, it is obvious that more partial discharge
datasets are required for the estimation reliability and accuracy. Nonetheless, the perfor-
mance of the proposed algorithm demonstrated with limited data that the methodology
is quite unique and meaningful. Based on the results of cylindrical cells and prismatic
cells, the SOH evaluation algorithm proposed in this paper showed a powerful advantage
in the assessment of SOH in terms of evaluation speed, as only the partial discharging
process of target batteries is required. It is strongly believed that the current approach will
improve as the datasets for the regression model increase by securing additional partial
discharge datasets.

As a notable remark about the current approach, the importance of the use of PCA
should be mentioned since the input features or parameters leading to reliable estimation of
battery capacity can be numerous, and the number of them is far more than five compared
to the five features used in the current study. With the PCA approach, under any number
of initial features, a systematic approach can be followed to establish a reduced number
of independent input parameters. This is done through a linear combination of initial
parameters. Multiple regression analyses can then be performed for the reliable estimation
of battery capacities after dimensionality reduction.
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