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Abstract: The wide application of lithium-ion batteries (LIBs) brings along with it various safety
problems, such as fire and explosion accidents. Aiming at the thermal runaway (TR) and fire
problems of LIBs, we reviewed the evolution of TR within LIB and the release of TR gases and their
hazards, as well as the research progress in recent years in the area of fire separation of LIBs. To
begin with, physical, electrical, and thermal abuse are the three main factors leading to TR and
the thermal stability of aging batteries significantly deteriorates. Furthermore, the decomposition
of the electrolyte and the reaction between the active materials generates CO, CO2, H2, HF, and a
variety of hydrocarbons. These TR gases have serious toxic and explosive hazards. In addition, fire
separation can effectively delay the occurrence and propagation of TR within LIB modules. As a good
heat-absorbing material, phase-change materials are widely used in the thermal management system
and have a great prospect of wide applications in the fire separation of LIBs. Finally, the research on
the TR gases’ hazards of aging LIB and safer and more effective fire separation are prospected.

Keywords: Li-ion battery; thermal runaway; vent gas; explosion; toxicity; phase-change material

1. Introduction

Due to their high energy density, being environmentally friendly, and long cycle life,
LIBs have been widely used in mobile communications, transportation, new energy storage,
and other fields. However, fire incidents caused by LIBs have become more and more
frequent, with TR being a significant accident cause. TR is prone to occur during the
mechanical, electrical, and thermal abuse of LIBs. The heat released by the internal short
circuit of the battery and the chemical reaction between battery components are the primary
heat sources that cause TR [1]. The LIBs in a TR state release a large amount of heat and gas.
Some gases are toxic and explosive. As TR continues to intensify, with heat accumulation
and gas bursts, it is easy to cause fire and explosion accidents in the batteries, causing
severe damage to humans and the environment. Understanding the TR mechanism and
gas-production behavior of LIBs is crucial for enhancing the internal material composition
and safety management protocols of LIBs.

So far, some researchers have summarized and reviewed the research status of the
TR of LIBs [2–5]. Huang et al. [2] provided a comprehensive overview of the causes,
identification, and prevention of internal short circuits. Liao et al. [3] conducted a thorough
examination of the potential causes and mechanisms of TR and various methods to monitor
and detect its occurrence. Mallick et al. [4] delved into the origin and transmission of TR in
LIBs. They also highlighted the significance of implementing multiple cooling techniques
or preventive measures to avert fire risk. Tran et al. [5] discussed recent developments
in approaches to LIB TR modeling, along with the prediction and detection of TR events.
Zhang et al. [6] reviewed LIBs’ thermal behavior, as well as TR modeling. The authors also
delved into the underlying mechanisms of heat production, dispersion, and buildup within
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the battery. Cui et al. [7] reached conclusions regarding the fire suppression mechanism
and the effectiveness of water mist and analyzed a series of processes that further caused
a fire after the TR of the battery, indicating that water mist is particularly well suited to
contain and extinguish LIB fires.

Some researchers have reviewed the TR gas production of LIBs [8–10]. For example,
Chen et al. [8] reviewed the flue-gas composition of LIB TR but did not discuss the harm of
flue gas. Cui et al. [9] summarized the research status of TR gases in LIBs and only focused
on the research progress of gas explosion hazards. Li et al. [10] discussed the research status
in three aspects: gas-production mechanisms, gas analysis methods, and gas characteristics
of TR gas of LIBs, without mentioning the influence of battery aging on TR gas of LIBs.

The existing review literature primarily uses common indexes, such as TR onset
temperature and heat release rate, to summarize the characteristics and laws of TR, and
lacks a summary of the effect of aging on the TR of LIBs. However, studies have shown
that battery aging also causes TR and the TR characteristics of aging batteries differ from
those of new batteries [11]. In order to comprehensively understand the characteristics
and hazards of LIBs’ TR vent gas, with aging batteries as the main research object, this
paper provides a comprehensive assessment of the literature on current TR gas from two
aspects. First, from the perspective of gas generation, the mechanism of TR gas generation
is analyzed and the effects of different factors on gas generation are considered; second, in
terms of the gas-generation hazards, the gas’s toxicity and explosive hazards are examined.
In addition, the recent research progress in LIB fire separations is also reviewed. Finally, the
possible future direction of LIB’s TR gas and fire separation is analyzed and prospected.

2. Li-Ion Battery Thermal Runaway
2.1. Li-Ion Battery Thermal Runaway Mechanism

With the wide application of LIBs, the safety problems it brings cannot be ignored,
among which the TR problem is more prominent. TR is the phenomenon of uncontrollable
rising battery temperature caused by the exothermic chain reaction of LIBs [12]. Generally,
a LIB possesses a stable structure, allowing for the smooth exchange of Li+ between the
anode and cathode during the charging and discharging process. However, the battery’s
inherent stability is vulnerable to various abusive influences, which may cause thermal
hazards. As illustrated in Figure 1, the sources of such harm can be categorized into three
main types, namely mechanical, electrical, and thermal factors. Manufacturing defects and
battery aging can also result in TR [13].
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Figure 1. Diagram outlining the reasons for LIB fire incidents.

Mechanical abuse refers mainly to external forces, such as collision, acupuncture, and
extrusion, when the battery is used, which cause destructive deformation. A mechanical
failure in the separator or electrodes has the potential to initiate a short circuit, resulting
in increased pressure, gas production, and an increase in temperature. In the most severe
cases, TR can lead to ignition and, ultimately, to fire due to elevated temperature [14]. Jia
et al. [15] conducted an extrusion test on the battery. As the extrusion speed increases, the
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change rate of the battery voltage with the extrusion displacement also increases. In other
words, the faster the impact speed on the battery, the greater the possibility of thermal
safety accidents.

Electrical failure commonly involves external and internal short circuits, overcharg-
ing, and overdischarge. If the battery persists in charging beyond its upper charge limit,
deposition of lithium metal may occur on the negative electrode surface [16]. At elevated
temperatures, the presence of deposited lithium will elicit a reaction with the electrolyte,
generating significant amounts of heat and gas [17]. The accumulation of such heat will
result in a substantial spike in battery temperature, causing the destruction of the separa-
tor, decomposition of the electrode/electrolyte, and the initiation of other side reactions,
resulting in serious TR. Wang et al. [18] analyzed the thermal diffusion path and high-
temperature gas spillover path of overcharged lithium batteries. The heat produced by the
exothermic reaction between the deposited lithium and electrolyte during the overcharge
was found to be greater than 43%.

In addition to mechanical or electrical factors, thermal collapse can also be induced by
external high temperatures and overheating. Excessive heat can cause the breakdown of the
solid electrode interface (SEI) on the graphite surface and the depletion of the electrolyte
in batteries. When the heat generated from internal reactions exceeds the dissipation, the
internal temperature and pressure gradually increase, eventually leading to battery rupture
and the emission of flammable gases. These gases can ignite spontaneously and cause a
fire [19]. Clearly, battery TR stems from thermal abuse [13]. Peng et al. [20] simulated and
analyzed the TR of batteries with various cathode materials. Their findings revealed that
the cathode decomposition reaction played a significant role in the generation of heat within
the batteries, with lithium manganate (LMO) exhibiting the highest initial decomposition
temperature and most excellent stability. In particular, lithium iron phosphate (LFP)
emerged as the safest cathode material because of its comparatively lower heat production
rate compared to other materials, as illustrated in Figure 2. In addition, the excellent safety
of LFP is also reflected in its good thermal stability, which is attributed to the stable olivine
structure of LFP cathode material. The solid covalent bond in LFP enables it to maintain
a highly stable crystal structure during charging and discharging, so it has higher safety
performance and longer cycle life than LCO, LMO, and other cathode materials.
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batteries of various cathode materials [20].

Apart from the above external factors, internal defects of the battery caused by poor
manufacturing processes, such as poorly designed separators, material contaminations,
and other manufacturing processes, can also cause battery breakdown and TR [21].
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2.2. Aging Li-Ion Battery Thermal Runaway

LIBs are extensively used in various industries and the actual working environment is
complex and changeable, which can easily cause different degrees of aging problems, such
as increased internal resistance and capacity attenuation. It is widely recognized that the
longevity of LIBs can be constrained by undesirable side reactions, such as the formation
and rupture of SEI film, lithium precipitation, and so on. These reactions can impact various
components of the cell, such as the electrolyte, active material, binder, conducting agents,
current collectors, and separator, resulting in reduced capacity and/or increased overall
cell impedance [22]. In addition, such side reactions may have a bearing on the safety of
the cells. Capacity attenuation and increase in internal resistance are only the external
manifestations of the aging of LIBs. The internal aging attenuation mechanism of LIBs
mainly comprises two categories: the loss of electrode active material (LAM) and the loss of
lithium inventory (LLI). This aging mechanism is visually depicted in Figure 3, as presented
by Han et al. [23], through the use of a dual-tank model. This model compares the cathode
and anode of the battery to two tanks and lithium ions to water. During charging, the
movement of lithium ions from the cathode to the anode causes a decrease in the lithium
density of the cathode and an increase in that of the anode, similar to the flow of water
between two tanks. On the contrary, lithium ions move from the anode to the cathode
during discharge. The fundamental aging mechanisms of LIBs are the LAM and LLI, which
can be likened to changes in the tank and loss of water, respectively. In particular, the
aging attenuation path of LIBs differs between cycle aging and calendar aging, leading to
different external characteristics and safety performance.
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In the battery-cycle test, the performance of new and old batteries is different. After
the battery is aged at room temperature/high temperature, the battery’s resistance to
overcharge, short circuit, and other electrical abuse is reduced and the phenomenon of fire
and explosion occurs during the experiment. In contrast, the new battery can withstand
the above electrical abuse tests [24–26]. Some studies have shown that the thermal stability
of the battery will deteriorate after the overcharge cycle, mainly reflected in the decrease
in the initial temperature of the self-generated heat and the trigger, and the increase in
maximum temperature [27]. Friesen et al. [28] tested the adiabatic TR of ternary LIBs
after low-temperature cyclic aging at 0 ◦C. It was found that the initial temperature of the
self-generated heat of the decaying battery was reduced from 90 ◦C to 30 ◦C. The rate of
self-generated heat increased significantly in the temperature range of 30~100 ◦C and a
new heat generation peak appeared, which was independent of SOC. In the research work
of Zhang [29], it was also found that the battery was more likely to enter a TR state after
aging. With the increase in the number of cycles, the TR behavior of the battery became
more and more intense and the TR ejected more products. When the battery is cycled up
to 300 times, the battery capacity decreases by about 10% (90% SOH) and the impedance
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(series resistance) increases by about 10% [30]. The positive and negative electrodes of the
battery after dissection were analyzed by SEM (scanning electron microscope) and XRD
(X-ray diffractometer), respectively [26]. By comparing the LIB with 400 cycles and without
cycles, it was found that there were lithium and lithium compounds on the surface of the
anode after the cycle and the graphite structure partially collapsed. These phenomena have
an adverse effect on the safety of LIBs. The solid electrolyte interface (SEI film) determines
the thermal stability of the battery [31]. The thickness, morphology, and composition of the
SEI affect the heat generated during the TR prebreakdown. Rapid charge and discharge of
the battery during the cycle lead to rupture of the SEI film, which promotes the reaction
between graphite and electrolyte, and then the thermal stability of the battery decreases [32].

The calendar aging process involves storing cells under specific conditions, commonly
influenced by temperature and time. To obtain varying degrees of aging, cells were
subjected to accelerated aging through storage at 55 ◦C and 100% SOC for durations ranging
from 10 to 90 days. The samples were collected at intervals of 10, 20, 40, 68, and 90 days
to obtain different aging states. Research shows that the self-heating temperature and TR
temperature of the battery increase, while the exothermal rate during TR decreases [33].
This demonstrates that the thermal safety of the battery improved after calendar aging.

3. Li-Ion Battery Thermal Runaway Gas Production
3.1. Gas-Production Mechanism and Composition and Content

The phenomenon of TR of LIBs is commonly characterized by the generation of sub-
stantial amounts of gas and heat. At elevated temperatures, the electrochemical processes
within the battery are incredibly intricate, involving reactions such as the decomposition of
the SEI film, the interactions between the electrode active material and the electrolyte, the
decomposition of the electrolyte, and the reaction between the anode active material and
the binder (see in Figure 4) [34,35].
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Although these reactions do not occur sequentially or singularly, many occur simulta-
neously. The reactions are accompanied by a large amount of heat and gas generation. It
has been tested that the production of TR gas of LIBs mainly contains CO, CO2, H2, CH4,
C2H4, C3H6, C3H8, C4H10, C4H8, and other olefins and alkanes [36,37], of which CO, CO2,
and H2 generally account for more than 70% [8].

O2 is an important intermediate product of CO and CO2 gas generation and the
decompositions of SEI membrane components and cathode materials are accompanied
by the generation of O2 [1]. O2 reacts with the electrolyte to produce CO2 when O2
is sufficient. Otherwise, the reaction produces CO. In addition, some reactions during
TR also generate CO and CO2, such as the decomposition of SEI membrane, complete
or incomplete combustion of negative graphite, the reaction of CO with H2O at high
temperatures, combustible gas combustion, etc. [9].
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The reactions of lithium with the binder are the main ways to generate H2. Polyvinyli-
dene fluoride (PVdF) and carboxymethyl cellulose (CMC) are the most commonly used
binder materials. Defoliation of graphite particles occurs at or above 230 ◦C, where Li
gets exposed to the electrolyte and the binder. Elevated temperatures of 260 ◦C or more
may lead to a reaction between PVdF and Li, releasing H2 in the process, as reported by
Golubkov et al. [38]. Similarly, a comparable reaction between CMC and Li may occur
beyond 250 ◦C.

Both the generation and decomposition of SEI film are accompanied by the generation
of C2H4 gas. When the temperature of TR of LIBs continues to rise, the reaction of Li
on the anode surface with the organic solvent of the electrolyte generates more gaseous
hydrocarbons, such as C3H6, C3H8, C4H10, etc. [10].

In addition to the above gases, phosphoryl fluoride (PFO3) and HF gases are also
critical concerns in the TR gas production of LIBs. Based on an early assessment of battery
composition, electrolyte salt (LiPF6) and the binder (PVdF) were found to be the primary
sources of fluorine [39].

The experimentally measured release of the production of TR gas from LIBs can be as
high as 0.27 mol, with a significant difference in the percentage of various gases [40]. In the
case of a LiNixMnyCozO2 (NCM) power LIB with 20–80 Ah as an example, six gases, CO,
CO2, H2, CH4, C2H4, and C3H6, account for about 99% of the total exhaust fraction, with
CO2 accounting for 36.56%, CO for 28.38%, H2 for 22.27%, C2H4 for 5.61%, CH4 for 5.26%,
C2H6 for 0.99%, and C3H6 for 0.52% [41].

3.2. Influencing Factors of Gas Production

The concentration of components and the amount of gas released by TR of LIBs are
influenced by the SOC, electrode material, electrolyte, battery aging, and other factors.

3.2.1. Electrode Material and Electrolyte

From the mechanism of TR gas production, it can be seen that the gas mainly comes
from the reaction between the internal components of the battery. Therefore, the internal
material composition of the battery affects the composition of TR gas. Under the same con-
ditions (capacity or mass), the gas production of batteries with NiCoMn2O4 and NiCoAl2O4
systems is higher than that of LiFePO4 batteries [38,42]. Golubkov et al. [38] conducted a
comparative study on the TR gas-production characteristics of batteries with NCA and LFP
as two different cathode materials. It was found that the gas production of the two batteries
was quite different (see Figure 5). The gas released by the NCA battery was up to 317 mmol,
while the gas released by the LFP battery was 61 mmol, and the NCA battery produced
more CO and H2 than the LFP battery. Huang et al. [42] found that the total amount of
flammable gas released from the TR of NCM and LFP batteries was very different and
the NCM module was much higher than that of the LFP module. The total combustible
gases generated by the two were 21.09 g and 4.17 g, respectively. Combustible gases in
LIBs were generated for a variety of reasons, including reactions between the electrolyte
and lithium electrolyte, reactions between lithium and the binder, incomplete combustion
of carbonate solvents, and reduction of carbon dioxide by lithium in the anode insert.
Compared to the NCM battery, the LFP battery released a significantly lower amount of
oxygen during cathode decomposition. This low amount of available oxygen limited the
extent of electrolyte oxidation during TR, ultimately reducing the heat generated. This
led to a noticeable difference in temperature between NCM LIB and LFP LIB during TR.
The higher temperature of NCM LIB made its internal reaction more thorough and intense.
Therefore, the combustible gas production in NCM LIB was higher than that in LFP LIB.
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3.2.2. The State of Charge

The concentration of the TR gas components and gas production are influenced by
the SOC of the battery. The higher the SOC of the battery, the more gas is generated, and
the gas components will change with the variation on the SOC. Somandepalli et al. [37]
showed that the amount of TR gas released by the battery was proportional to the SOC.
With the TR gas of the battery at 50%, 100%, and 150% SOC, the volume of the released
gas was 0.8 L, 2.5 L, and 6.0 L, respectively. Usually, the higher the SOC of the battery, the
higher the reactivity of the cathode and anode materials and the lower the thermal stability,
which can easily trigger more internal chemical reactions. Therefore, the increase in SOC
will result in a larger gas production under the same conditions. Koch et al. [41] came to
a similar conclusion that the total amount of TR gas produced in the battery was closely
related to the capacity of the battery, with an average of 1.96 L of gas occurring per Ah of
capacity. Taking combustible gases CO and H2 as examples, when the SOC value of the
nickel-cobalt aluminate (NCA) battery was greater than 50%, the volume fraction of CO
accounted for 40–50% of the total volume. For LFP batteries, H2 was the most important
combustible component and the volume fraction of H2 also increased with the increase of
the SOC value. When the SOC value was greater than 50%, the volume fraction of H2 was
about 20–30% of the total volume. There was no apparent correlation between other small
molecules, including CH4 and C2H4, and the battery SOC value. The sum of the two was
less than 10% of the total gas volume [38].

3.2.3. Battery Aging

With the study of the factors that influence the TR gas production of LIBs, from
the perspective of the mechanism of gas production, there is no doubt that the electrode
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material and electrolyte of the battery itself will be considered. In terms of the process of
gas production, the capacity of the battery becomes the preferred factor to be considered. In
addition to this, the effect of the battery’s circumstances during use on TR gas production
should also be considered as an important research point.

After the battery is cyclically aged, its safety performance will be reduced to a certain
extent. The main manifestations are the lower onset temperature and the earlier onset of
TR of the battery [28,32]. Figure 6 depicts the relationship between the number of cycles
and the TR onset time, temperature, and ignition time. In this study, 18650-type batteries
with a positive electrode material of LiNi0.5Co0.2Mn0.3O2 were used and five cycle numbers
were selected to study the corresponding TR behavior. The data in Figure 6a show that
TR occurs earlier and more easily as the cycle number increases. The decrease in battery
safety is further illustrated by the phenomenon in the graph in Figure 6b, where the interval
between gas release and ignition is 21 s for a cycle number of 0, and that time is reduced to
only 1 s when the cycle number is increased to 60. The decrease of TR temperature and
the advance of the TR gas release time further increase the gas production. Fleischhammer
et al. [43] carried out battery aging experiments at 25 ◦C and found that the aged battery
experienced an earlier jet valve time and more gas production during TR tests. Röder
et al. [22] also conducted similar experiments. According to their experimental results, the
reaction between the anode and the electrolyte of the battery after aging was advanced,
resulting in increased gas production during the TR test.
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From the gas-production mechanism perspective, the decomposition reaction of SEI
film, the reaction between electrolyte and electrode, and the decomposition reaction of the
electrolyte itself are essential ways to generate TR gas. For the aging battery, in addition to
the main reaction of Li+ insertion and extraction, more parasitic side reactions occur inside
the battery during its working process; for example, the lithium precipitation reaction of
the battery on the surface of the graphite anode, the formation and rupture reaction of the
SEI film, etc. Furthermore, the lithium metal precipitated from the graphite anode is very
active. It can react with the electrolyte at a lower temperature, resulting in a decrease in the
initial temperature of self-generated heat and a sharp increase in the rate of self-generated
heat, which is also an important reason for the decrease in the thermal stability of aging
LIBs [11].

In the study of the TR gas production of LIBs, most of the batteries used in the
experiments are new batteries and there is a certain lack of research related to the TR gas
production of aging batteries. LIBs currently in use have different degrees of aging, and
the performance of the battery after aging occurs is different from that of a new battery
for most of its life cycle [44]. The effect of aging on TR gas production in LIBs, and the
mechanism of it, should be further investigated.
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3.3. Hazard Characteristics of Gas Production

The gas produced by the TR of LIBs contains toxic and flammable gases, which can
harm the safety of people’s lives and properties. Therefore, the toxicity and explosive
hazards of the gas produced by the TR of LIBs are the key concerns of current researchers.

3.3.1. Gas Toxicity Hazards

It is found that the common toxic gases detected in the TR release gas of LIBs are
CO, HF, SO2, POF3, organic compounds, and so on. The types of toxic gases produced
are closely related to battery materials, such as electrode materials, electrolytes, solvents,
additives, flexible packaging, and the SOC of the battery [45].

The widely used LiPF6 and binder PVdF in the battery electrolyte make the presence
of HF and fluoride gas inevitable in the TR gas. At high temperatures, fluorine in the
electrolyte and PVdF can produce gaseous byproducts such as hydrogen fluoride HF,
phosphorus pentafluoride (PF5), and POF3 to a limited degree. In the fire tests, HF gas was
detected in all tests, whether a soft pack battery, a cylindrical battery, or a laptop battery
pack, but the amount of gas produced differed [46]. For every 1 g of weight reduction in
the battery, 16 mg, 15 mg, and 7.3 mg of HF gas were produced by the soft pack, cylindrical,
and Lenovo laptop battery packs, respectively. In addition, phosphorus fluoride gas can
be detected in the TR gas production of the LiCoO2 (LCO) cell at 0% SOC, which acts as
an intermediate compound in the chemical reaction [47]. POF3 has been identified as a
reactive intermediate [48] that will undergo reactions with various organic substances or
water, leading to the eventual production of HF.

The effect of SOC on the toxicity of TR gases is reflected in the fact that the concentra-
tion and yield of each toxic gas vary with SOC. For CO, the production of CO increases as
the SOC increases. That is because, the more energy stored in the cell, the more conducive
to incomplete combustion [49]. Interestingly, the trend observed in total HF gas differs
from the expected trend observed in CO versus SOC and previous researchers [39,46] have
followed a similar opposite trend (increased HF with decreased SOC).

In addition to the internal cell materials mentioned above, externally applied water
spray also affects the toxic gas. According to research by Yuan et al. [50], using water as
an agent resulted in higher maximum concentrations of toxic gas emissions, including
HF, CO, and H2. The primary source of HF is the thermal decomposition of LiPF6 and
electrolyte solvents, which occurs at higher temperatures. The addition of water triggers
a reaction with PF5, subsequently initiating carbonate electrolyte decomposition based
on LiPF6. The outcome of this process is a significant increase in the production of HF,
as illustrated in Figure 7 [51]. Despite increasing the rate of HF production, it is worth
noting that the overall production of HF is not altered [47]. It is also essential to recognize
that water mists with surfactants positively reduce the potential for explosions of TR
gas [50]. There are two distinct mechanisms by which water mist effectively suppresses
explosions. Firstly, it provides a cooling effect on flames, effectively preventing heat transfer
to unburned gas. Second, the mist dilutes the concentrations of combustible gases, such as
CO, rendering them less reactive. That leads to weakening gas-reaction and transmission
rates, culminating in preventing any chain reactions that may lead to an explosion [7].

According to statistics from the International Association of Fire and Rescue Services
(CTIF) on related fire accidents, toxic smoke from fires is the main culprit of fire-related
deaths and injuries. Smoke from LIB fires has been shown to contain a large amount
of poisonous gases, so it is necessary to analyze and evaluate the toxicity of these gases
quantitatively. According to the different mechanisms of action of various gases on the
human body, toxic gases can be divided into asphyxiating and irritating. Therefore, the
fractional effective dose (FED) method for asphyxiating gases and the fractional effective
concentration (FEC) method for irritating gases are commonly used to evaluate the toxic
hazards of toxic gases quantitatively. The effects of asphyxiating gases (CO, CO2) have a
cumulative effect. Their hazards are not only related to the gas concentration but also to
the exposure time of escapees. The principle of FED is shown in Equations (1) and (2) [52];
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the effects of irritant gases (HF, HBr, HCl, SO2, NO2, Acrolein, Formaldehyde, etc.) are
immediate and only related to the gas concentration. There are diverse irritant gases and
their combined toxic effects can be calculated by Equation (3). In this evaluation method, a
FED or FEC value equal to one means that 50% of the people in this fire scenario will lose
the ability to escape [53].

FED = ∑ t2
t1

VCO2 ϕCO

35000
∆t + ∑ t2

t1

(
VCO2 ϕHCN

)2.36

1.2 × 106 ∆t (1)

VCO2 =
exp([CO2])

5
(2)

where ϕ is the concentration of each gas in µL/L, [CO2] is the volume fraction of CO2, and
∆t is the time increment.

FEC =
[HCl]
ICHCl

+
[HBr]
ICHBr

+
[HF]
ICHF

+
[SO2]

ICSO2

+
[NO2]

ICNO2

+
[CH2 = CH − CHO]

ICCH2=CH −CHO
+

[HCHO]

ICHCHO
+ ∑

[Irritant gases]
ICi

(3)

Concentrations in the formula are expressed in 10−6.
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The two models mentioned above in the present studies are often used to evaluate the
toxicity of gases released from LIB TR. When the severity of gas toxicity is calculated, the
gas is divided into two types of irritation and asphyxiation for independent consideration,
making the calculation results more effective. Based on the validity of the above models,
Zhang et al. [54] combined the FED equation with the ignition parameter (Equation (4))
to establish a kinetic model of the TR gas toxicity of the battery to characterize the conse-
quences caused by gas toxicity.

V = SP =
1

TI
× LFED

tXFED=1
(4)

where V is the risk rate, S is the probability of TR of the battery, P is the toxicity hazard,
and tXFED = 1 is the time elapsed from the start of TR to an XFED value of 1.

The types and concentrations of toxic gases in TR gases are influenced by factors such
as SOC and cell internal materials, and there is no doubt that the degree of toxicity of these
gases will vary with these factors. The FED and FEC values of the gases will increase with
the increase of SOC for both large-size power cells and small-size cells. Peng et al. [55]
conducted a systematic study of thermal and gaseous toxicity hazards of large-size power-
cell fires by experimental platform and FTIR. It was found that both FED and FEC values
increased with increasing SOC. Under well-ventilated conditions, the FEC value from
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single-cell combustion was as high as 0.8. This result was similar to the findings of Lecocq
et al. [49]. High SOC cells are at increased risk of toxicity from releasing TR gases. When
comparing the hazards of asphyxiating and irritant gases, the irritant gas dominates the
total gas toxicity level and HF contributes the most prominently. In addition to the two
evaluation models, FED and FEC, Ribière et al. [39] evaluated the toxicity hazard of each
gas using the French industrial standards, namely the irreversible effect threshold (IET)
and the first lethal effect threshold (FLET), for the main gas products HF, CO, NO, SO2, and
HCl. The results also showed that HF gas has the most significant toxicity hazard.

In addition, the toxicity of gases changes accordingly after the battery has been cycli-
cally aged. Aging battery TR is stronger and releases less heat, resulting in low combustion
efficiency, and, then, generates more toxic gases. Based on the FED model, analyzing the
final TR gas toxicity with different aging degrees [29], it was found that the cumulative
effect of asphyxiating gases in aging batteries was higher than that in fresh batteries and
more quickly reached the catastrophic concentration.

From the above analysis, it is clear that fluorine-based molecules are vital points in
the field of battery safety. At the same time, it is also challenging to study how to reduce
the toxic hazards of TR gas in LIBs. Nowadays, LiPF6 and PVdF are widely used in the
production of LIBs. How to find a balance between meeting demand and reducing the
harm they cause is a challenging issue.

The disadvantage of using IET and FLET values to evaluate LIB TR gas compared to
the FED and FEC models is that the time factor is not considered. Comparatively, the FED
and FEC models provide more comprehensive results. However, it also has shortcomings.
Both models have some assumptions, such as no reaction between toxic gases, which limits
the application of these models. Future studies should further refine and improve them.
The LIB TR gas compositions are complex and influenced by multiple factors. Therefore,
an evaluation model should be able to consider all gases comprehensively and reflect
their toxic contribution values. With the change of time and space, the toxic hazards of
the gases will keep changing under certain circumstances. For example, in a confined
space, the longer the time, the greater the accumulation of gases. And, in an open external
environment, there are wind and obstructions. Thus, when evaluating the battery TR
gas toxicity hazard, it also needs to be discussed in terms of classification depending on
the scenario.

3.3.2. Gas Explosive Hazards

In the recent study conducted by Cui et al. [56] on a full-scale battery electric vehicle
(BEV), a substantial white smoke emanated from the EV’s battery pack (as depicted in
Figure 8a). The smoke was released intermittently and it took only 7 s to induce a severe
explosion. The fixed structure of the hood of the automobile was damaged by the shock
wave (Figure 8b). This explosion phenomenon was similar to that observed in the previous
experiment [57]. The white smoke comprised electrolyte vapors, CxHy, CO, and H2
emitted from the TR batteries. Lamb et al. [58] measured the amounts and species of
gas produced during the thermal decomposition of the common electrolyte components
ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl
methyl carbonate (EMC). All tests showed the production of flammable gases in quantities
sufficient to render the resulting mixture flammable in air. Therefore, among the gases
released from the TR of LIBs, in addition to toxic gases, the hazard of explosive gases is
also one of the key concerns. The current study usually uses the explosion limit, explosion
overpressure, and laminar flow flame speed as three indicators to describe the battery TR
gas ignition and explosion hazards.
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There are three methods to study the explosion limit of TR gas in LIBs: the formula
calculation method, the experimental measurement method, and the simulation method.
Scholars currently use the formula calculation method and the practical measurement
method more. According to the literature, three ways are commonly used to calculate the
explosion limit [59]. The first is for calculating the explosion limit of a single combustible
gas, often referred to as the empirical formula method. The second is used to calculate the
explosion limit of multiple flammable gas mixtures, known as the Le-Chatelier formula
method (L-C formula), see Equation (5). Third is to calculate the explosive limit of the
combustible gas mixture containing inert gases. When there is an inert gas in the mix,
the explosion limit of the mixture can still be calculated using the L-C formula. But it
requires the combination of an inert gas and a combustible gas in one group, after which
the group of recombinant gases is used as a new flammable gas. The volume fraction of
the recombinant gas in the mixture is the sum of the volume fraction of the inert gas and
the flammable gas. The explosion limit of the recombinant gas needs to be redetermined.
First, calculate the volume ratio of inert gas to combustible gas in the group of gases. Then,
find out the explosion limit of the group of gases in Figure 9. Finally, substitute it into the
L-C formula for calculation. LIB TR gas composition is complex, containing a variety of
combustible and inert gases, often using the third calculation method to determine the
explosive limit of the gas.

(LEL)mix =

[
n

∑
i=1

Xi
(LFL)i

]−1

× 100 (5)

where (LEL)mix is the explosion-limit value of the mixture; (LFL)i is the explosion-limit
value of component i; Xi is the volume fraction of component i.
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Guo et al. [61] used the above mathematical model to calculate the TR explosion limit
of LIB. The lower explosion limit (LEL) was 6.22% and the upper explosion limit (UEL)
was 38.4% of LIB at 100% SOC. In fact, the explosion limit of LIB TR gas is not a fixed
value. SOC and electrode material of the battery are important influencing factors and, of
course, different experimental conditions and methods will lead to different results. The
LEL values are less sensitive to changes in the battery SOC. On the contrary, the UEL of
the gas is more affected by the SOC and it usually becomes larger as the SOC increases. It
can be concluded that the explosion-limit range of the gas expands with the increase of
SOC. Li et al. [60] used the L-C model to calculate the explosion-limit values of TR gas at
different SOCs for NCA and LFP cells and the calculated curve between the explosion limit
and the SOC formed a peninsula (see Figure 10). The trend of the explosion-limit range
in the figure is roughly the same as that of the above findings. It also can be found that
the explosion range of different types of batteries is also different. In particular, when the
battery SOC is at 25%, the explosion range of an NCA battery is about twice as large as that
of an LFP battery. But both achieve the maximum at 100% SOC.
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Based on the results of Zhang et al. [62], the LEL follows the same trend as the
alkane content, while the UEL shares a similar trend with the unsaturated hydrocarbon
content. Compared to saturated hydrocarbons, the stability of the double bond structure of
unsaturated hydrocarbons is worse and its reaction activation energy is higher. When the
content of unsaturated hydrocarbons in TR gas increases significantly, the gas explosion-
limit range will increase.

In terms of experimental studies, Karp [63] used a constant volume incendiary bomb
device to test the explosive limit of thermally uncontrolled gases and judged flammability
based on a pressure rise rate greater than or equal to 5% within the incendiary bomb after
ignition. Compared with the experimental results and calculated outcomes through the L-C
formula, the differences are less than 5%, indicating that the L-C formula can accurately
calculate the TR gas explosion limit. Chen et al. [64] conducted a test on the TR gas LEL
using the FRTA explosion-limit apparatus. The test results were also compared with those
calculated by Equation (5), with a maximum error of 2.1%. In fact, the theoretical calculation
formula ignores the effects of binding energy, incomplete combustion, and decomposition
of burn products. Errors may also arise due to the influence of instrumentation. However,
the experimentally measured gas explosion limit is relatively more reflective of the real
situation of thermally uncontrolled gases.

Simulation is also helpful in determining the gas explosion limit and evaluating the
explosive hazard. Notably, Ma et al. [65] conducted a comprehensive numerical investi-
gation on the explosion limit of TR gas derived from NCA batteries using the CHEMKIN
2.0 code. This numerical analysis revealed that the UEL exponentially increases with rising
SOC and peaks at 62% SOC. As SOC continues to grow, the UEL subsequently drops.
Conversely, the LEL remains relatively constant when SOC is greater than 75%. Finally, LEL
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reaches its minimum at 75% or 100% SOC. Baird et al. [66] used the open-source program
Cantera to calculate the explosion limit, the laminar flame propagation velocity, and the
maximum overpressure of the TR gas to comprehensively assess the explosion hazard.
TR gas from NCA and LCO batteries produced a higher flame velocity and maximum
overpressure, while LFP batteries had a lower flammable limit. Simulations can be used
to accurately calculate the explosion limits of TR gas production at different initial condi-
tions with detailed chemical-reaction kinetics, which is more tractable and compensates
for the shortcomings of equation calculations and experimental measurements [65]. In
addition, the explosion simulation software FLACS has commonly been used in simulating
gas explosions. Regarding LIB explosion, it is mainly used to simulate the explosion of
energy-storage plants [67]. In future studies, FLACS can be considered for the explosion
simulation of small LIB modules.

In addition to the explosion limit, explosion overpressure, and laminar flame velocity,
the explosive hazard of TR gases in LIBs can be assessed by combining minimum ignition
energy, temperature, TR time, explosion-power index, and total explosion energy. Kan
et al. [68] formulated a specific type of LIB TR gas according to its components and
concentration and measured the minimum ignition energy of the gas to be 0.3 MJ, which is
closer to the minimum ignition energy of acetylene, propane, and other gases. Studying
the explosive hazards of LIB TR gas is vital to improving LIB’s safety in the application.
In future research, the explosive hazards of LIB TR gas can be considered from more
perspectives and the explosion hazard evaluation model should be more comprehensive
and practical.

4. Fire Separation

As mentioned in the previous sections, LIB TR releases many gases. In some specific
scenarios, the toxicity threat and explosion hazard of the gases greatly exacerbate the
consequences of TR accidents. In addition to the gases, the large amount of heat released
during the TR process is also a threat that cannot be ignored. The accumulation of heat
leads to a rise in battery temperature, which, in turn, triggers more exothermic reactions,
further increasing the release of heat and causing TR to become more and more severe.
LIBs are always present in the form of battery modules in numerous applications. It is
well known that LIB TR is propagating. When a TR occurs in one of the cells of the battery
module, it is likely to trigger TRs in neighboring cells, or even in more distant cells, due to
heat transmission. Cui et al. [69] found in their experiments that, when the first cell in a
LIB module experienced an overheating TR, it caused the TR of the cells in the module to
propagate discretely, as shown in Figure 11. The consequences of a single cell’s TR could
be catastrophic when the TR is completely propagated to the whole battery pack. As LIBs
are widely used in electric vehicles, fire, and explosion accidents due to battery TR become
more frequent. According to incomplete statistics, between 2019 and 2020, 223 combustion
events occurred in multiple types of electric vehicles across the country [70]. It can be
seen that, for the safe use of LIBs, it is crucial to keep the batteries at a suitable operating
temperature and, if necessary, take effective heat dissipation and insulation measures to
prevent the propagation of TR and other means of protection. Common protective measures
include battery thermal management systems and fire-separation measures. A thermal
management system aims to improve the thermal performance of the battery and control
the operating temperature and temperature difference of the battery system under normal
operating conditions. Fire separation is a means of protection to inhibit the propagation
of TR batteries within the module to the surrounding batteries. The inhibition method
is divided into two aspects. On the one hand, heat insulation materials can be added
between the batteries to prevent the heat of the runaway battery from spreading to the
surrounding area and to isolate the combustible ejecta and flames. On the other hand,
materials capable of absorbing heat can be used to prevent heat from accumulating and to
improve the heat-dissipation performance.
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4.1. Insulation Technology

TR propagation within a battery pack usually results from multiple forms of heat
transmission, such as heat conduction, heat radiation, and heat convection, from the cell
that first experiences TR to the other cells. It can be seen that establishing a thermal
barrier between batteries to prevent TR batteries from transferring heat to other batteries
is an effective means to inhibit TR propagation and avoid fire and explosion accidents in
LIBs [71].

In order to achieve thermal transmission between batteries, the method of filling heat-
insulating and flame-retardant materials between batteries is usually adopted. Berdichevsky
et al. [72] inserted adiabatic flame-retardant plates and radiation-reflecting metal plates
between the battery layers, blocking the heat propagation during TR by reducing the heat
conduction and radiation between different battery layers. Mehta et al. [73] designed a
thermal barrier using expansion materials, effectively preventing the heat from spreading.
Lopez et al. [74] placed insulating materials, radiation barriers, and refractory expansion
blocks between the cells. Chen et al. [75] sandwiched epoxy-resin plates between square alu-
minum shell batteries. The result showed that the epoxy-resin plates reduced the maximum
temperature of the battery module and prolonged the propagation time of TR between
adjacent batteries. Qin et al. [76], on the other hand, used fiberglass to separate cylindrical
batteries. Fiberglass panels can significantly improve the safety of LIBs.

With good thermal insulation performance and low dosage, aerogel is widely used
to inhibit the spread of TR in battery modules [77]. When TR occurs in the cell in the LIB
module, the aerogel heat insulation sheet can play the key role of heat insulation, delaying
or blocking the accident. In case of overheating and combustion, the nanopore structure of
SiO2, which is the main component of the aerogel heat insulator, can effectively block or
delay the spread of fire, providing enough time for escape [78]. Hu et al. [79] placed a 1-mm-
thick aerogel between batteries and found that the presence of aerogel thermal insulation
blocked the effect of TR ejecta on other monomers and weakened thermal radiation and
thermal convection effects. Shen et al. [80] investigated the barrier effect of aerogel on the
TR of battery packs and compared the barrier effect of different thicknesses of thermal
insulation interlayers. The TR propagation was effectively blocked when a 6-mm-thick
aerogel thermal insulation sandwich was used.

Adding insulation materials with low thermal conductivity between batteries can block
heat transfer between batteries. Still, it relatively reduces the heat-dissipation conditions of
the batteries, which can easily lead to the accumulation of heat.

4.2. Phase-Change Material

Considering the drawbacks of thermal insulation, there is a need to reduce the heat
accumulation in the battery and improve the heat-dissipation ability of the battery. Due
to their excellent ability to absorb heat, phase-change materials (PCM) have been widely
studied and applied in the thermal management and fire separation of LIBs. According to
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the molecular structure, PCM can be categorized into inorganic materials (e.g., hydrated
salts) and organic materials (e.g., paraffin) [81].

Due to its low corrosiveness and cost, organic PCM is the most widely used PCM in
electrical systems. Wike et al. [82] used a 18650 LIB pack as a research object, filled the
battery-pack gap with PCM, and triggered one of the cells to undergo TR. It was found that
the presence of PCM can effectively inhibit the thermal impact of the triggered battery on
the surrounding batteries. When the cell temperature reaches the melting point of the PCM,
the material melts and absorbs heat as a way to prevent TR propagation.

However, PCM has a critical drawback; it is flammable, especially paraffin-based
organic PCM. The latent heat of the phase transition is limited. Although it can do well
to inhibit the cyclic heat generation of the battery, it is not easy to fully absorb the heat
released during the TR. Zhi et al. [83] investigated the effect of PCM on the propagation of
TR. They found that the battery module with PCM rather enhances the heat transfer and the
risk of ignition of the failing cell. To solve these problems, people try to combine PCM with
other flame retardant/insulation materials to design safer thermal protection materials.
Weng et al. [84] developed and studied composite PCM (CPCM) containing flame-retardant
additives. The cooling performance of CPCM was reduced when a larger mass fraction
of flame-retardant additives was added but it positively delayed the cell fire time and
reduced the heat release rate. Dai et al. [85] added hydroxide flame retardant to organic
PCM to minimize the fire hazard. Talele et al. [86] applied ceramic-coated heat-resistant
liners to the walls of PCM to delay the TR triggering time. Weng et al. [87] investigated
the heat dissipation and insulation ability of the combination of PCM and aerogel felt (see
Figure 12). The results show that PCM can play a significant role in quenching the flame
but it will lead to the acceleration of the TR propagation process, while the addition of
aerogel can effectively retard the TR propagation. When facing modules with large-size
cells, the coupling of aerogel and PCM can also effectively inhibit TR propagation and
improve the heat-dissipation conditions [88].
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Inorganic PCM (IPCM) is corrosive and has defects such as supercooling, dehydra-
tion, leakage, and phase separation during the phase-change process, which restricts its
application in batteries. However, compared with organic PCM, inorganic PCM features
nonflammability and high latent heat of phase change. Given these advantages, Galazut-
dinova et al. [89] added IPCM (mixture of MgCl2·6H2O and Mg(NO3)2·6H2O), for the
first time, to LIBs and tested it in TR tests, which confirmed the effectiveness of the IPCM
in preventing the propagation of TR. Subsequently, Cao et al. [90] investigated and de-
signed a composite IPCM by doping IPCM (sodium acetate trihydrate, SAT) into expanded
graphite (EG). Numerical TR-simulation experiments using the numerical thermochemical
heat-storage (TCHS) model were performed and the results showed that SAT/EG could
completely suppress TR propagation (see Figure 13). In order to solve the above defects of
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IPCM, in the study of Ping et al. [81], nanoencapsulation of IPCM (EIPCM) was proposed
to avoid the problems of leakage and water evaporation during the phase-change process.
It was found in the experiments that the EIPCM has good thermal management effects and
TR-suppression performance (see Figure 14).
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In summary, it can be seen that PCM has a good development prospect in thermal
management and fire separation of batteries. Although using organic PCM as a fire-
separation material increases the fire hazard of battery packs, the safety and thermal
insulation performance of organic PCM can be improved by coupling it with thermal
insulation materials such as aerogel. The shortcomings of IPCM severely limit its wide
application in electrical systems. However, its incombustibility, high heat-storage density,
and low cost are fully compatible with the requirements for battery fire-separation materials.
Several studies have also verified their feasibility for inhibiting the propagation of battery
TR. That shows that IPCMs have a great prospect of wide application. Future research
should address these shortcomings, improve the performance of IPCM, and develop a safer
and more efficient fire-separation material.
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5. Conclusions and Outlook

The safety issue brought by LIB TR has become a key problem to be solved in its wide
application. Numerous scholars have conducted in-depth and comprehensive research on
this issue. In this paper, the toxic and explosive hazards of TR gases and the fire separation
of batteries are reviewed.

Mechanical, electrical, and thermal abuse are the three main factors leading to TR in
LIBs. Irreversible exothermic reactions occur inside the battery during abuse. The internal
short circuit and the reaction between electrolyte and electrodes are the primary heat
sources. When TR occurs in aging batteries, their thermal stability decreases significantly.
It is mainly manifested in decreasing initial temperature, advancing beginning time, and
increasing gas production of TR. The chain reaction of the TR process generates a large
amount of gases, mainly including CO, CO2, H2, CH4, C2H4, C3H6, etc. Various aspects,
such as SOC, electrode materials, electrolytes, battery aging, and other factors, affect the
concentration of the gas components, release amount, and other characteristics.

The TR gases include a range of hazardous and potentially explosive gases that have
raised concerns among researchers. The FED and FEC models are effective methods used to
evaluate the toxicity hazard of LIB TR gases quantitatively. They can estimate the hazards
of the asphyxiating effects of CO and HCN, and the irritating impact of HF and SO2 on
escapees. It was found that HF is the most toxic hazard among TR gases. Fluorine is
derived from LiPF6 and PVdF binders, widely used in battery electrolytes. In the future,
safer and more environmentally friendly lithium salts and binders are yet to be developed
and researched. TR gases contain a large amount of flammable gases, which pose severe
fire and explosion hazards. After experimental measurements and formula calculations,
the explosion-limit range of TR gas is roughly 6–40%. The larger the SOC of the battery, the
higher the risk of explosion. In comparing several common types of batteries, the thermal
safety performance of LFP is the best but it also has the disadvantages of low energy density
and poor electrical conductivity.

To prevent TR cells from spreading within the module and thus causing major fire and
explosion accidents, people try to set up fire separation within the battery module. Effective
fire separation can block the TR heat and flame, extend the TR propagation time, avoid the
occurrence of large-area TR in the battery pack, and reduce the risk of secondary ignition
of LIBs. Placing insulation and heat-absorbing materials between cells is a commonly used
fire-separation measure. Expansion materials, fiberglass, aerogels, and PCMs are some of
the commonly used materials, but each has different severity of defects. Currently, CPCMs
seem to be the most desirable materials for thermal insulation and fire retardation. Future
research could be more targeted to address the issues arising from the application of organic
PCMs and IPCMs.

In conclusion, the following aspects could be taken into consideration during fur-
ther research.

First, current experimental studies on the TR of LIBs and their gas-production-related
characteristics are mostly conducted on fresh batteries and few experiments are considered
using aged batteries. The TR characteristics and related safety performance of aged LIBs
differ significantly from those of new batteries. Exploring the countermeasures and man-
agement methods for TR of LIBs requires an extensive comprehension and exploration of
the mechanisms of battery aging. The species and volume fraction of TR gas are the basis
for conducting gas hazards and other related studies. Various factors affect the gas species
and volume fraction. The current research on the influence of each element is relatively
simple and the influence mechanism should be further explored, especially the impact of
battery aging on TR gas production.

Second, research on the toxicity of TR gas mainly focuses on common toxic gases,
such as CO and HF. The results obtained from GC-MS analysis demonstrate that more than
100 distinct species of organic compounds were detected during combustion [91]. These
organic products from combustion (COPs) have been identified as potent irritants to the
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human skin, eyes, and nasal passages. Therefore, organic toxic gases, such as toluene,
should also be considered.

Third, the evaluation indicators are relatively single in gas explosion risk evaluation,
usually only considering the two parameters of explosion limit and explosion overpressure.
Also, the flame propagation speed and temperature of flame propagation, the temperature
of smoke, etc., should be considered.

Finally, a more in-depth study on the mechanism and heat generation process of
battery TR is needed to apply CPCM to battery thermal management and TR mimicry.
More practical battery experiments and theoretical calculations should be taken to examine
the feasibility of CPCM extension.
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