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Abstract: Battery life management is critical for plug-in hybrid electric vehicles (PHEVs) to prevent
dangerous situations such as overcharging and over-discharging, which could cause thermal runaway.
PHEVs have more complex operating conditions than EVs due to their dual energy sources. Therefore,
the SOH estimation for PHEV vehicles needs to consider the specific operating characteristics of
the PHEV and make calibrations accordingly. Firstly, we estimated the initial SOH by combining
data-driven and empirical models. The data-driven method used was the incremental state of charge
(SOC)-capacity method, and the empirical model was the Arrhenius model. This method can obtain
the battery degradation trend and predict the SOH well in realistic applications. Then, according
to the multiple characteristics of PHEV, we conducted a correlation analysis and selected the UF as
the calibration factor because the UF has the highest correlation with SOH. Finally, we calibrated
the parameters of the Arrhenius model using the UF in a fuzzy logic way, so that the calibrated
fitting degradation trends could be closer to the true SOH. The proposed calibration method was
verified by a PHEV dataset that included 11 vehicles. The experiment results show that the root mean
square error (RMSE) of the SOH fitting after UF calibration can be decreased by 0.2–14% and that the
coefficient of determination (R2) for the calibrated fitting trends can be improved by 0.5–32%. This
provides more reliable guidance for the safe management and operation of PHEV batteries.

Keywords: utility factor; plug-in hybrid electric vehicle; state of health calibration; Arrhenius curve

1. Introduction

Plug-in electric vehicles (PEVs) have reached new sales worldwide despite the COVID-
19 pandemic and supply chain challenges. Among these vehicles, the plug-in hybrid electric
vehicle (PHEV) is welcomed by consumers because it is free of the challenges of range
anxiety and charging infrastructure construction difficulty. Sales of PEVs doubled in 2021
from the previous year to a new record of 6.6 million. About 1.9 million new plug-in hybrid
electric vehicles were sold worldwide in 2021. In 2021, nearly 30% of electric vehicle sales
were attributed to plug-in hybrid electric vehicles (PHEVs), indicating its acceptance by
different countries [1,2]. In the largest PEV market, China, PHEV sales numbered 148,000
in 2022, accounting for 22.8% of the light-duty vehicle sector, which was due to the battery
electric vehicle (BEV)-favored policy in effect in China. PHEVs have two kinds of onboard
energy storage, the electricity stored in the battery and the chemical energy stored in
the fuel (e.g., gasoline, diesel), which drive its operation either alone or simultaneously;
therefore, it can help consumers free themselves from the challenges of range anxiety and
charging infrastructure construction difficulty. According to a consumer survey in China,
over 50% of consumers accept PHEVs [3,4]. However, the battery durability of PHEVs has
become the bottleneck of PHEV promotion. Currently, the lifespan of lithium-ion batteries
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in different material systems ranges from 500 to 2500 complete charge–discharge cycles [5].
However, there is still a strong demand from consumers for lithium-ion batteries to have
even greater durability, as this can lead to better stability and economy [6]. Fundamentally,
battery lifespan extension requires breakthroughs in the materials used for lithium-ion
batteries [5,7,8]. For the battery management aspect, reasonable lifespan estimation, predic-
tion, and control can also contribute to the reduction of battery degradation during actual
vehicle operation, thus extending battery lifespan [9–13].

The state of health (SOH) is defined to quantify a battery’s durability and lifespan [14].
There has been plenty of battery SOH research. For instance, Berecibar et al. [15,16] applied
differential voltages for capacity estimation, which requires obtaining the differential
voltage curve under a small constant current charging condition. Similarly, Li et al. [17–19]
applied incremental capacity curves for capacity estimation, which also require constant
current charging conditions. Both methods, while having high estimation accuracy, are
limited by complex actual vehicle operating conditions and are hence hard to apply to reality.
Some researchers have also used machine learning algorithms for capacity estimation.
For example, Zhu et al. [20] used the relaxation voltage as a feature and achieved an
accurate capacity estimation by using support vector regression algorithms. However,
obtaining the relaxation voltage requires long-term rest, so it is also limited by the actual
vehicle conditions. Qian et al. [21–23] used a convolutional neural network to effectively
estimate the capacity using random charging segments. The most common method is the
incremental state of charge (SOC)-capacity method [24]; this method is easy to implement
and is more suitable for actual driving conditions, but its estimation accuracy is limited by
the SOC range and current sampling accuracy. Some researchers have also used the open-
loop Arrhenius model to estimate the SOH. Although the Arrhenius model can be applied to
any operating condition, it is prone to parameter mismatching during battery aging. Thus,
to address the problem of the Arrhenius model, Zheng et al. [25] estimated the capacity
based on the fractional charge curve and calibrated the Arrhenius model parameters using
the sequential extended Kalman filter algorithm. Finally, the two methods were fused to
achieve an accurate capacity estimation.

Despite the limited precision of the incremental SOC-capacity method that is at-
tributable to the restricted range of SOC values, the temporal dynamics of this approach
conform to the underlying aging patterns of batteries. Consequently, by leveraging the
incremental SOC-capacity method to derive the battery capacity and by subsequently
fitting an Arrhenius model, it becomes feasible to perform an SOH estimation that mitigates
parameter mismatching issues [26]. However, the above methods are often applied to BEVs;
there is still a research gap for PHEV SOH research, which is mainly due to the lack of
empirical data.

In the charging mode, both PHEVs and BEVs have the capability of fast charging
and slow charging [27]. In the discharge mode, BEVs are solely electric-driven, whereas
PHEVs can adopt two types of onboard energy storage—the electricity stored in the battery,
as well as the chemical energy stored in fuels such as gasoline or diesel—to power its
operation either independently or simultaneously [28,29]. Based on this most essential
difference, and when compared with BEVs, PHEVs have many factors to be considered in
the lifetime estimation that are not necessary for BEVs. The main factors related to PHEV
battery lifetime may include pure electric driving range, average daily vehicle kilometers,
vehicle kilometers travelled during two charging sessions (CVKT), electric-driven vehicle
kilometers travelled during two charging sessions (E-CVKT), utility factor (UF) [30], and so
on. Among them, the UF [31] is usually adopted by PHEVs to evaluate the distance ratio
that is driven by electricity, perhaps because it is the most distinct feature between PHEV
and BEV. The complexity of the energy sources makes it difficult to directly evaluate the
distance driven by electricity as well as the condition of battery; therefore, its impact on
PHEV battery SOH remains uncertain. Hence, this work attempts to identify the influence
of these factors on PHEV battery lifetime, then take the factor influence into consideration
for battery SOH prediction.
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The first and main contribution of this work is the calibration of the traditional SOH
Arrhenius equation to better fit PHEVs, including their driving patterns, in the calculation.
Correlations among several factors of battery SOH were also investigated, and the main
factor was selected for the calibration of the SOH Arrhenius equation. The calibration was
based on the empirical driving data of the PHEV, which is another contribution of this
work. The research on the battery SOH of PHEVs will help optimize the battery capacity
and size from the durability perspective for auto companies; it will also guide users to
drive the vehicle in a better way to extend the battery life. The main research content and
structure of this paper are as follows. Section 2 introduces the capacity estimation method
and empirical dataset. Section 3 introduces the SOH calibration method and calibration
results; lastly, the summary and discussion are provided.

2. Method and Dataset
2.1. PHEV Data Description

Considering the complexity of PHEV energy sources, actual driving data are needed
to investigate the battery degradation of PHEVs. Therefore, we conducted the SOH calcula-
tion using empirical data obtained from real-world PHEV driving scenarios. The actual
driving data were directly collected from the onboard system from the original equipment
manufacturer (OEM) data platform. The data collected from the OEM’s platform adheres to
the GB/T 32960.3-2016 standard [32]. The dataset includes eight distinct data fields, which
are summarized in Table 1.

Table 1. Data introduction.

Data Meaning and Provisions

Battery charge status 1—Parking charge; 2—Driving charge; 3—Uncharged
Total odometer Vehicle’s total mileage (km)
Speed Speed of a vehicle (km/h)
SOC State of charge
Terminal time Running time

Vehicle operation state The type of power used to propel the vehicle during
operation: 1—Pure electric; 2—Hybrid electric; 3—Oil fuel

Total voltage Battery voltage (V)
Total current Battery current (A)

In order to specifically analyze the battery degradation of PHEVs while mitigating the
influence of other factors such as temperature, we selected vehicles from the same compact
brand and model that have been in operation in the same city for over 6 months from
the platform. Therefore, a total of 11 vehicles running in Chongqing, China, were chosen,
providing a dataset of 13,590 km for the calculation. The PHEVs are geographically located
between 28◦10′–32◦13′ N and 105◦11′–110◦11′ E, as depicted in Figure 1.

The selected vehicle is a domestically manufactured compact PHEV model equipped
with a 1.5 T engine and 220 kW motor. In accordance with the New European Driving
Cycle (NEDC), the fuel consumption of this vehicle is recorded as 1.6 L per 100 km. The
battery system installed in this PHEV consists of a 12.96 kWh lithium nickel manganese
cobalt (NMC) cathode battery, which enables an all-electric range of 60 km. Regarding the
NMC battery, the battery pack structure is denoted as 1P96S, indicating a configuration of
1 cell in parallel and 96 cells in series. The battery has a capacity of 37 Ah, rated voltage of
350 V, and peak power of 120 kW. These specifications contribute to the performance and
capabilities of the PHEV, allowing for efficient and reliable electric propulsion.
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Figure 1. Data distribution.

The data processing included data cleaning, segmentation, and data storage into a
designated dataset, which was categorized according to individual trips. In this work,
the date was recorded every 10 s. Note that this 10-s interval is not a definite standard.
As vehicles drive in Chongqing, a city with tall buildings and a high housing density,
data transmission between the vehicle terminal and the data collection platform may be
blocked, resulting in data loss. To ensure data accuracy and reliability, it was imperative to
preprocess the raw data using the environment of MATLAB (ver. R2020b) by Mathworks®.
Data processing included the following three steps [4]:

(1) Data cleaning

Missing data points may occur due to various reasons, such as the obstructions of
buildings in the cities of tunnels or other network issues. These missing points can be
rectified through smoothing techniques.

(2) Trips segmentation

Any two adjacent data points were divided into two segments if the time interval
between them was longer than 30 min. The segment of charge status = 1 was defined as the
parking charging segment, and the parking charging segment with constant mileage was
merged into one segment because of the data losses. After that, the segment between two
parking charging segments was the driving segment.

(3) Outlier trip deletion

In this step, the data was further filtered on a trip-by-trip basis. To strike a balance
between preventing data drift and including as much of the available data as possible, trips
lasting less than 5 min or 1 km were excluded to avoid possible deviations in the data.

After the data processing, the single-charging event data and the travel data between
two charging sessions were extracted. Based on these segments, the data for 11 vehicles
were calculated, such as the total mileage, average daily vehicle kilometers travelled
(DVKT), and UF, as shown in Table 2.



Batteries 2023, 9, 321 5 of 24

Table 2. Data summary.

Data Description

Number of vehicles 11
Total mileage 13,590 km
Average driving days 233
Average DVKT 41 km
Average utility factor 0.87
Average start charging SOC 22%
Average end charging SOC 86%
Percentage of miles traveled above 60 km/h 22%

The travel and charging pattern of the PHEVs are primarily summarized in Figure 2.
The average daily vehicle kilometers traveled (DVKT) for the PHEVs was recorded as
41 km. Additionally, the CVKT was 79 km, with 48 km being attributed to electric driving
(E-CVKT). Based on the theoretical all-electric range of 60 km, it can be inferred that
approximately 59% of the PHEV’s driving mileage was powered by electricity, as depicted
in Figure 2a. The average start charging SOC was 22%, while the average end charging
SOC was 86%. As shown in Figure 2b, the PHEVs started charging when the battery was
0–20% (at a low level) and ended charging when the battery was 80–100% (at a high level).
These PHEVs can be charged at up to 3.5 kW (slow charging) and 7 kW (fast charging).
Compared with slow charging, PHEVs used fast charging more, and their ratio reached
78%, as shown in Figure 2c. The charging frequency, which was defined according to the
charging sessions gap, is quantified in Figure 2d. From the charging frequency, the PHEVs
were basically charging once within two days. The proportion that were charging once a
day (gap between two adjacent charging sessions was less than 24 h) was 49%, and the
number charging once within two days (gap between two adjacent charging sessions was
less than 48 h) reached 77%.
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To further illustrate the ratio of electric distance in this PHEV SOH research study, the
utility factor, which is intuitively defined by dividing the electric driving range (typically
the charging depleting range or CD range) by the total distance traveled was adopted. The
UF was primarily defined by Society of Automotive Engineers (SAE); it can be calculated
by summing the minimum value between the charging depleting (CD) range (D) and daily
travel distance (dk) and then dividing the value by the sum of all distances traveled [33]:

UF(D) =
∑dk

min(dk, D)

∑dk
dk

(1)

The UF can be directly referred to from the travel data, as the power to drive the
vehicle at each moment is offered. A simplified way of understanding the UF is as the ratio
of the CD range to the total distance traveled. The distribution and average of the UF are
summarized and presented in Figure 3. Specifically, for the PHEVs with a 60-km all-electric
range in the analyzed case, approximately 42% of the trips exhibited a UF in the range of
0.9–1.0. Moreover, over 87% of the trips had a UF exceeding 0.5, as depicted in Figure 3a.
From the average vehicle UF perspective, as shown in Figure 3b, the average UF for each
vehicle was above 0.5. Notably, 82% of the PHEVs in this dataset demonstrated an average
UF exceeding 0.7. This indicates that, in most trips, the proportion of mileage driven using
electricity was significantly higher compared with that driven using gasoline.
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In order to study the attenuation rules of the PHEV battery capacity, we needed to
process the charging segment data to obtain the fitting trends of the SOH, and we also
needed to obtain the variation of battery SOH. The calculation process of the SOH included
the following steps:

(1) Discrete calculation of SOH

According to the charging snippets obtained from the vehicle, the ampere-hour integral
between two points was divided by the difference value of its corresponding SOC to obtain
the capacity in every snippet. The least square method was added to achieve a set of
discrete SOH points, with SOH ≥ 100 being deleted.

(2) Fitting trends of SOH

The SOH estimation was modified using Kalman filtering and fuzzy logic, and it was
fitted using an Arrhenius model to obtain the SOH fitting trends. The fitting curves of SOH
are shown in Figure 4. From the curves, the SOH fitting curves of two vehicles were lower
than the 80% level, while the SOH fitting curves of seven vehicles were higher than the 90%
level. Hence, the battery health level of these two vehicles was significantly lower than that
of the other vehicles.
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2.2. Correlation Analysis between Each Travel Feature

This work attempted to find out which features have an effect on SOH attenuation.
According to the divided parking charging segment and driving segment, the following
vehicle features can be extracted: the start charging SOC, charging duration, percentage of
miles traveled above 60 km/h (PTA60), rate of charge, rate of discharge, DVKT, E-CVKT,
UF, and depth of charge (DOC); DOC is the range of SOC change during charging. Starting
from the position where the slope of the SOH fitting curves gently changes, the real-time
estimation of SOH was shred with 30 days as a unit, and the mean value of all travel features
and SOH difference in each unit were calculated to find out the possible parameters that
could be adopted to calibrate the SOH calculation, as shown in Table 3. In general, the
correlation between the travel features and SOH difference were relatively low. Among
them, the correlation coefficients between the UF and SOH difference were 0.41 and 0.31,
respectively, which were higher than the others. The correlation coefficient of 0.41 between
the UF and SOH difference indicated a moderate correlation between them. On the other
hand, the correlation coefficient between the charging duration and SOH difference was
0.06, which was very low and suggested no significant correlation between them.

Table 3. Correlation analysis between SOH difference and each travel feature.

Start
Charging

SOC

Charging
Duration

(h)
PTA60 Charging

Rate
Discharging

Rate
DVKT
(km)

E-CVKT
(km) UF DOC

Correlation
coefficients

−0.19 0.06 −0.22 −0.16 −0.17 0.13 −0.19 0.41 0.31

To examine the correlation among different parameters, we utilized the Pearson
correlation coefficient to assess the linear correlation between various travel pattern pa-
rameters/features. Based on the findings presented in Figure 5, the correlation coefficient
between the UF and other variables was relatively low, indicating weak or even no corre-
lation. As the ampere-hour integral of the SOH estimation reflects the DOC, we did not
specifically discuss the correlation between the DOC and SOH difference. Instead, we
focused on analyzing the impact of the UF on the SOH.
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2.3. SOH Prediction of PHEVs
2.3.1. Degradation Calculation

(1) SOH estimation

The SOH quantifies the health status of a battery, ranging from a fresh battery to a
battery with degradation, up until battery retirement. The quantification of the SOH can be
represented by either the battery capacity or internal resistance. In this study, the SOH was
calculated based on the battery capacity, as shown in Equation (2) [26].

SOH =
Qα

Qrate
× 100% (2)

where Qα is the available capacity, Qrate is the battery rated capacity, and SOH is the ratio
of available capacity Qα and rated capacity Qrate. An accurate determination of the battery
capacity is crucial for obtaining precise SOH measurements. The accumulated state of
charge (SOC)-capacity method, which utilizes battery charge and SOC, can be employed for
battery capacity estimation. The accumulated charge, denoted as ∆Ah, is obtained through
the ampere integral method (Ah method). The capacity is then derived by dividing the
accumulated charge ∆Ah by the variation in the SOC (∆SOC) [34]:

Qα,β =
∆Ah

∆SOC
=

∫ tβ

tα
I(τ)dτ

SOC
(
tβ

)
− SOC(tα)

(3)

where Qα,β is the battery capacity, tα and tβ are the start time and end time of a period of time
[tα, tβ], and I(τ) is the battery input current. The C-rate means the charging/discharging
current speed to its rated capacity in an hour. From Equation (3), the Ah method and
SOC are key for the estimation accuracy of the capacity. Moreover, the battery working
temperature T can also affect the battery charging process and estimation accuracy. Hence,
capacity Qtemp_corr(T) with temperature calibration [26] is also applied as

Qtemp_corr(T) = Qα,β ×
(

1− 2 · 10−3 × (T − 25 ◦)
)

(4)

(2) Degradation prediction

Battery health and degradation can be predicted by applying the Arrhenius empir-
ical aging model with the battery capacity estimated values. In general, the Arrhenius



Batteries 2023, 9, 321 9 of 24

empirical aging model is applied to calculate the real-time capacity loss [34], which can be
presented as

Qloss = Ae−
Ea
RT ·nz (5)

where Qloss is the capacity loss in n cycles, A is the coefficient for exponential function,
Ea is the activation energy, R is the gas constant, T is the operation temperature, and z is
the exponent. Because the capacity is already calibrated by the temperature equation in
Equation (4) to 25 ◦, the influence of temperature can be ignored in Equation (5). Hence,
the Arrhenius empirical aging model in Equation (5) can be simplified as

Qloss = η·nz (6)

where η is a constant coefficient, and n is the time or cycle. It should be noted that n can
also be expressed as mileage, which corresponds to only battery cycling life. If n is the time
or cycle, it not only considers battery cycling life but also battery calendar life. In this work,
n was presented as cycles. As for the degradation index z, it was always set as a constant for
degradation ratio, which was considered as unchanging with time. Especially, for battery
degradation that is mainly caused by solid electrolyte interphase (SEI), z is usually set as
1/2. However, in this work, the degradation index z was corrected by the UF to achieve a
more accurate battery degradation prediction for the PHEVs.

2.3.2. Degradation Calibration with PHEV Pattern

(1) Discrete Arrhenius model

From the previous analysis, the UF acts as a key factor influencing the battery life of
the PHEVs. In this work, we propose a UF correction to the Arrhenius aging model for
a better prediction of battery life. As presented in Section 2.3.1, the Arrhenius empirical
aging model (Equation (5)) has limitations when applied to dynamic operating conditions
involving changing currents or varying temperatures. Hence, our research group has
proposed a discrete aging model called the discrete Arrhenius aging model (DAAM) [35].
For the Arrhenius empirical aging model in Equation (6), the derivation of Equation (6)
with cycle n can be presented as

dQloss
dt

= z·η·nz−1 = z·η·
(

Qloss
η

) z−1
z

= z·Q
z−1

z
loss ·η

1
z (7)

Hence, the corresponding DAAM is presented as

Qloss,n = Qloss,n−1 + z·Q
z−1

z
loss,n−1·η

1
z (8)

where Qloss,n is the capacity loss after n battery cycles, Qloss,n−1 is the capacity loss after
(n− 1) battery cycles, and η is a pre-set constant in Equation (6). According to Equation (8),
the capacity loss can be calculated for each cycle considering that the battery’s operating
conditions may change over time, as depicted in Figure 6. Assuming that a battery un-
dergoes two primary operation conditions, ranging from being fresh to aging (condition1
and condition2 in Figure 6), the battery’s aging trajectory may transition between these
two conditions, resulting in the observed degradation curve illustrated in Figure 6. In
conjunction with the previous analysis, the battery lifetime of the PHEVs is influenced
by the UF. Therefore, the UF can be regarded as a dynamic condition within Figure 6. To
account for the impact of the UF, the degradation index z in Equation (7) was adjusted by
the UF.
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(condition1 and condtion2) illustrate two different operation conditions to present the dynamic
working situations of the battery in PHEVs. The real degradation illustrates the real degradation
trajectory from a fresh battery to an ageing battery.

(2) Calibration by UF

For the degradation index z correction of DAAM, a specific relationship between the
UF and z would be constructed. Combined with fuzzy logic method [26], the calibration
approach was proposed as

znew = z + z× (UF−UF0) (9)

where znew is the corrected degradation index, UF is the averaged UF value calculated by a
certain period, and UF0 is the threshold value for UF to influence the battery degradation
in a fuzzy logic. With the threshold UF0 in Equation (9), the capacity loss and degradation
trajectory would be calibrated by the UF in a fuzzy logic way; thus, the DAAM with
corrected degradation index znew can be presented as

Qloss,n = Qloss,n−1 + znew·Q
znew−1
znew

loss,n−1·η
1

znew (10)

Combining Equation (9) and (10), if UF > UF0, the degradation index z increases and
the battery aging ratio is enlarged by UF, thus causing the capacity loss to be enlarged
to achieve more serious battery degradation. In contrast, if UF < UF0, the degradation
index z decreases and the capacity loss is relieved to achieve slower battery degradation. In
this way, with the UF changing in various cycles, the battery degradation is calibrated by
different UF operation conditions. To illustrate the calibration effects, Figure 7 is provided.
Figure 7a presents the schematic diagram of the UF calibration effects on the Arrhenius
curve. Because a threshold UF0 during UF changing needed to be pre-determined for
accelerating degradation, a fuzzy logic in a certain UF range was applied. Figure 7b
presents the working details of the UF calibration in a fuzzy logic way. To showcase the
practical calibration effects on PHEVs, an example is presented in Figure 8. A PHEV from
our dataset, which was introduced in Section 2.1, was selected to calculate the discrete
Arrhenius curves through the proposed UF calibration method.
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3. Experiment Results and Evaluation
3.1. Experiment Results

We obtained the discrete SOH value SOHo for every vehicle introduced in Section 2.1
(there are 11 vehicles, with the numbers ranging from 1 to 11) using the accumulated SOC-
capacity method shown in Equation (2) and (3), and then we fitted the SOH prediction curve
using the Arrhenius equation. As described in Section 2.3.2, PHEVs operate under dynamic
conditions rather than pure electric drive; as such, the parameter z in the Arrhenius equation
can be adjusted by different UF conditions with the fuzzy logic algorithm to further refine
the SOH.

3.1.1. Optimal UF Selection

Because the SOH is a low-frequency parameter that can be estimated (excluding
sudden drops of capacity), it does not rapidly change within every cycle. Hence, even
though every charge and discharge cycle has a UF value, we only apply the average of all
discrete UF values in a fixed cycle range. Therefore, for the value of the UF, we calculate
the average of all discrete UF values within a fixed cycle interval N0 as the final UF value
to be used for calibration, as shown in the equation below:

UFC =
∑ UF

N0
(11)

where UFC represents the average UF value within a fixed cycle range and N0 represents a
fixed number of cycles, which can be divided into 10, 20, 30, 40, and 50. The sum of UF
within every fixed cycle number is denoted by ∑ UF, and one cycle means a charge or
discharge cycle.

For the optimization of the effects of threshold UF0 and UFC on the calibration results,
we designed a verification scheme as follows.

(1) Step 1: the average UF values UFC are calculated according to Equation (11) using
different fixed cycle intervals (10, 20, 30, 40, and 50).

(2) Step 2: the vehicle dataset is divided into two datasets as the calibration dataset and
testing dataset. Based on the two datasets, the optimal threshold UF0 was determined
using a certain optimal index that was calculated on the two datasets and the whole
vehicle dataset.

(3) Step 3: the calibration effects on the two datasets and the whole vehicle dataset were
discussed. Then, the calibration effects of the optimal threshold UF0 in different fixed
cycle intervals were also compared.

(4) Step 4: the average UF values UFC in different fixed cycle intervals were discussed to
choose the optimal fixed cycle interval for practical calibration.

In Step 1, the average UF values are calculated and presented in Figure 9 according to
Equation (11) using different fixed cycle intervals (10, 20, 30, 40, and 50). From Figure 9a, the
original UF point distribution is relatively messy and has no obvious distribution pattern.
The change in the trend of UF mean values in the different cycle intervals is generally the
same, but the difference lies in the change in amplitude of UF mean values in different
cycle intervals.
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In Step 2, the UF0 value range was set to [0.06, 0.09] with an interval of 0.001, which
was based on the UF variation range of all vehicles. On the above settings, we used all
11 vehicles as the entire set to search for the optimal threshold UF0; we also randomly
divided the 11 vehicles into a calibration set and a validation set. Six vehicles were selected
as the calibration set, which were numbered 1–6, and five vehicles were selected as the test
set, numbered 7–11. The two methods of using the entire set and distinguishing between
the calibration and validation sets were employed to validate the effectiveness of this
calibration approach. With the pre-determined UF fixed cycle numbers N0 (10, 20, 30, 40,
50), the optimal threshold UF0 for the entire set was searched; then, the optimal threshold
UF0 for the calibration set and validation set was also searched, respectively. The root
mean square error (RMSE) was used as the criterion for determining the optimal threshold
UF0. The RMSE was calculated from the discrete points of calibrated SOH values and the
original SOH, as shown in Equation (12).

RMSE =

√
∑n

i=1
(SOHci − SOHoi)

n
(12)
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where SOHci is the i-th calibrated SOH value, SOHoi is the i-th original SOH discrete value,
and n is the vehicle operation cycles. The calculated optimal UF0 values are shown in
Table 4.

Table 4. The optimal results of UF0.

Sets

N0
10 20 30 40 50

Entire set 0.765 0.764 0.764 0.764 0.764
Calibration set 0.776 0.775 0.775 0.776 0.774

Test set 0.760 0.759 0.759 0.759 0.760

In Table 4, it can be seen that the results for N0 = 20 and N0 = 30 are the same, while
the values for N0 = 10, N0 = 40, and N0 = 50 in the same dataset are close to equal. However,
this method only seeks an optimization through a comparison of different UF0 values, and
the actual calibration effect needs to be verified by comparing it with the uncalibrated
results, i.e., by verifying the calibration effect of the selected optimal UF0 on the validation
set. The verification parameters are the RMSE and the coefficient of determination (R2);
RMSE represents the absolute error of the fit, and R2 represents the goodness of fit. The
specific approach used was to compare the RMSE between the fitted values before and
after calibration and the original discrete SOH values, as well as with the R2 values before
and after calibration. Smaller RMSE and a larger R2 values are preferred.

R2 = 1− ∑n
i=1(SOHoi − SOHci)

2

∑n
i=1
(
SOHoi − SOHo

)2 (13)

where SOHci represents the i-th calibrated SOH value, SOHoi represents the i-th original
discrete SOH values, n is the vehicle operation cycles, and SOHo is the mean value of the
original discrete SOH values.

In Step 3, after the determination of optimal threshold UF0, the effects when using
two different datasets and the whole dataset were discussed; the optimal threshold UF0
in different fixed cycle intervals were also discussed. The RMSE results for all fixed
cycles are presented in Figure 10, where the orange bars are the results for the calibration
and validation sets. Vehicle1–6 were calibrated using the optimal threshold UF0 of the
calibration set, while vehicle7–11 were calibrated using the optimal threshold UF0 of the
validation set. The green bars represent the results for the entire set, with vehicle1–11
being calibrated using the optimal threshold UF0 of the entire set. The blue bars are the
uncalibrated vehicles. Figure 11 shows the R2 results for all fixed cycles: the orange lines
indicate the results from the calibration and validation sets, where vehicle1–6 used the
optimal threshold UF0 from the calibration set and vehicle7–11 used the optimal threshold
UF0 from the validation set. The green line represents the overall results, with all vehicles
(1–11) using the optimal threshold UF0 from the entire dataset for calibration. The blue
line illustrates the results without any calibration. It can be seen from the figure that, for
the vehicles having a smaller RMSE after calibration compared with before, their R2 after
calibration was larger than before.

In Step 4, after the analysis of the calibration effects of optimal threshold UF0 values,
the next step involves determining the fixed cycle interval for practical calibration. The
statistical analysis of the calibration effect of different cycle intervals is shown in Table 5.
From Table 5, it can be noted that when N0 = 30, there are five vehicles with a positive
calibration effect, which is the highest number of fixed cycles with a positive calibration
effect among all N0 values. Therefore, N0 = 30 was chosen as the optimal fixed cycle
number.
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Table 5. Calibration effects at different cycle intervals.

Effects
N0

10 20 30 40 50

Vehicle with positive calibration 3, 6, 9 3, 6, 7, 9 2, 3, 6, 9, 10 3, 6, 9, 10 3, 6, 8, 9

Vehicle with negative calibration 1, 2, 4, 5, 7, 8,
10, 11

1, 2, 4, 5, 8, 10,
11 1, 4, 5, 7, 8, 11 1, 2, 4, 5, 7, 8, 11 1, 2, 4, 5, 7, 10,

11
Amount of positive calibration 3 4 5 4 4

3.1.2. Calibration Results on Vehicle SOH Prediction

After reviewing Figures 10 and 11 it can be observed that when searching for the
optimal threshold UF0 for calibration through the entire set, there were five vehicles with
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positive calibration effects at N0 = 30. When searching for the optimal threshold UF0 by
distinguishing between the calibration set and the validation set, the vehicles with positive
calibration effects at N0 = 30 were the same as those obtained by using the entire set, which
verifies the effectiveness of using the UF to calibrate the SOH of PHEVs. Therefore, the
optimal threshold UF0 obtained from the calibration set was used as the final UF0 for
calibrating the SOH of the validation set.

Figure 12 depicts the SOH curves of vehicles exhibiting a positive calibration effect;
Figure 13 shows the SOH curves of vehicles displaying a negative calibration effect. From
Figure 12, it is evident that the discrete SOH values fluctuate due to variations in the operat-
ing conditions of the vehicles. Despite the fluctuations in the discrete SOH values, the initial
Arrhenius curve gradually decreases, which aligns with the expected characteristics of SOH
change. Through the process of discretization and calibration of the original Arrhenius
fitting curve, the discrete Arrhenius curves for different cycles will either converge closer
or diverge farther away from the discrete SOH values.
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after calibration, the purple solid line is the UF value, and the pink dotted line is the UF0.
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Figure 13. Negative calibration effect vehicle curve. (a) Vehicle1. (b) Vehicle4. (c) Vehicle5. (d) Vehi-
cle7. (e) Vehicle8. (f) Vehicle11. The red circles are the discrete values of SOH under different cycles,
the black dashed line is the original Arrhenius fitting curve, the green dotted line is the Arrhenius
fitting curve after calibration, the purple solid line is the UF value, and the pink dotted line is the
UF0.

By comparing Figures 12 and 13, it becomes evident that if a greater number of
discrete Arrhenius curves align closely with the SOH discrete values, it indicates a positive
calibration effect. Conversely, if a larger proportion of discrete Arrhenius curves deviates
further from the SOH discrete values, it indicates a negative calibration effect. From the
analysis of the curve change, it can be inferred that the relationship between UF and UF0
is the factor that affects the deviation direction of the discrete Arrhenius curve. If UF is
smaller than UF0, the calibrated parameter z is smaller than the original value, and the
final discrete Arrhenius value will be larger than the original value. If UF is larger than
UF0, the calibrated parameter z is smaller than the original value, and the final discrete
Arrhenius value will be smaller than the original value.
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3.2. Calibration Effectiveness

From Figures 12 and 13, it is evident that UF calibration can have both positive and
negative effects on the fitting degradation curve of PHEV batteries. However, aside from
the UF, other factors may also influence the effectiveness of UF calibration. In this section,
we aim to explore the underlying reasons and suitable conditions for UF calibration. To this
end, we conducted a correlation analysis, shown in Figure 5, and calculated the mean values
(presented in Table 6) and variances (presented in Table 7) of nine factors/dimensions that
are related to the SOH. We compared these mean and variance values to identify any
significant differences. For illustrative purposes, we divided the 11 vehicles in the dataset
into two groups: vehicles with positive UF (vehicle2, vehicle3, vehicle6, vehicle9, vehicle10)
and vehicles with negative UF (vehicle1, vehicle4, vehicle5, vehicle7, vehicle8, vehicle11).
The comparison of the mean and variance values between these two groups is presented in
Figures 14 and 15.

Table 6. Mean of nine factors related to the SOH for the vehicle dataset (including the SOH).

Vehicle
Number

Start
Charging

SOC

Charging
Duration PTA60 Charging

Rate
Discharging

Rate DVKT E-CVKT DOC SOH UF

Vehicle1 18.3333 3.0907 0.1830 −90.2240 0.4113 27.6833 51.6140 77.7544 88.4334 0.6654
Vehicle2 * 31.2151 1.3422 0.2745 −0.2714 0.7077 34.4961 66.9247 37.9677 98.3576 0.7650
Vehicle3 * 18.8022 2.4672 0.3492 −0.2641 0.5434 36.8714 56.4286 70.3132 91.6116 0.7867
Vehicle4 41.0091 2.9802 0.3585 −0.0864 0.6386 41.8517 39.7039 50.6707 88.1795 0.8484
Vehicle5 19.8045 2.4352 0.4264 −0.2628 0.6197 31.3655 46.7263 68.9050 91.8248 0.7708
Vehicle6 * 36.4857 1.6542 0.1682 −0.2689 0.4479 67.7194 114.5714 45.3143 98.0118 0.6869
Vehicle7 21.3000 5.6298 0.0865 −0.0880 0.4593 55.1220 61.9500 60.0500 74.8514 0.7984
Vehicle8 27.3054 2.4416 0.1552 −0.2517 0.4370 42.4369 38.4483 64.2365 90.3339 0.7688
Vehicle9 * 21.3386 2.6462 0.2336 −0.2641 0.4946 47.3295 57.7402 71.7087 93.7153 0.8166
Vehicle10 * 19.8154 2.5214 0.1560 −0.2683 0.4252 61.9287 50.3846 74.2308 91.9104 0.7253
Vehicle11 11.0403 5.4652 0.0707 −0.1027 0.4461 21.6249 39.2500 61.6774 74.6177 0.7838

* Rows in blue color are the vehicles with positive calibration, that is, Vehicle2, Vehicle3, Vehicle6, Vehicle9, and
Vehicle10.

Table 7. Variance of nine factors related to the SOH for the vehicle dataset (including the SOH).

Vehicle
Number

Start
Charging

SOC

Charging
Duration PTA60 Charging

Rate
Discharging

Rate DVKT E-CVKT DOC SOH UF

Vehicle1 313.9764 0.5984 0.0048 0.0001 0.0131 334.8532 7975.6550 401.8683 0.0308 0.0371
Vehicle2 * 636.7576 1.0926 0.0156 0.0000 0.0610 315.9398 4548.3747 906.4881 0.1291 0.0575
Vehicle3 * 425.1098 0.8166 0.0100 0.0001 0.0182 652.7748 4736.5114 709.0561 0.6200 0.0310
Vehicle4 392.5302 2.6077 0.0310 0.0000 0.0544 1871.7027 826.2454 620.2640 0.1366 0.0810
Vehicle5 270.3941 0.7513 0.0174 0.0001 0.0248 365.9159 617.7168 630.7943 0.0401 0.0670
Vehicle6 * 966.6302 1.2820 0.0173 0.0002 0.0112 9389.7177 18,610.7702 994.2766 0.0408 0.0496
Vehicle7 363.4462 7.5441 0.0194 0.0002 0.0164 6124.3277 4429.4846 945.7410 1.1835 0.0532
Vehicle8 611.4607 1.6979 0.0271 0.0024 0.0237 4011.1059 1080.0010 767.7854 0.2517 0.0510
Vehicle9 * 307.5273 1.2750 0.0143 0.0011 0.0279 3289.4916 16,368.9240 451.8906 0.6160 0.0522
Vehicle10 * 242.1827 0.4657 0.0303 0.0005 0.0096 3302.4934 988.7346 496.4890 1.3840 0.0629
Vehicle11 152.7219 7.7078 0.0021 0.0016 0.0075 539.0179 306.5630 907.7488 0.2238 0.0185

* Rows in blue color are the vehicles with positive calibration, that is, Vehicle2, Vehicle3, Vehicle6, Vehicle9, and
Vehicle10.

In Figure 14, vehicles with a positive UF are in the blue series, while vehicles with
a negative UF are in the orange series. Due to various value ranges, the nine factors are
divided into two subfigures as Figure 14a,b. Except for the UF, DVKT, E-CVKT, and SOH in
Figure 14a, the charging duration and charging rate in Figure 14b exhibit obvious difference.
Vehicles with positive UF effects hold a smaller charging duration, while vehicles with
negative UF effects hold smaller DVKT, E-CVKT, charging rate, and SOH values. The SOH
of the vehicles with negative UF effects were even lower than 80%, which were considered
as retired vehicles. The difference of all factors shows that the vehicles with negative UF
effects are vehicles with heavier degradation. Hence, when the vehicle gradually falls into
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an unhealthy state, the Arrhenius method cannot fit the battery degradation well; thus, the
UF calibration may also not bring positive calibration effects. In conclusion, the proposed
UF calibration method may not be suitable for vehicles with heavy degradation, and future
work should focus on the heavy degradation conditions.
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Figure 14. Comparison of the mean of the nine selected factors/dimensions when the UF was positive
(blue series) and the UF was negative (orange series). In the figure, the x-axis consists of the nine
dimensions as shown in Table 6; the y-axis is the mean value of every dimension. The nine factors are
divided into two subfigures due to the y-axis range: (a) start charging SOC, DVKT, E-CVKT, DOC,
and SOH; (b) charging duration, PTA60, charging rate, discharging rate, and UF. In every subfigure,
the 11 vehicles in the vehicle dataset are compared as vehicles with a postivie UF (vehicle2, vehicle3,
vehicle6, vehicle9, and vehicle10), and vehicles with a negative UF (vehicle1, vehicle4, vehicle5,
vehicle7, vehicle8, and vehicle11).

As for the variance comparison shown in Figure 15, it can be obtained that the start
charging SOC, DVKT, E-CVKT, and DOC hold large variance values, while the PTA60,
charging rate, discharging rate, and UF hold small values. Only the E-CVKT variance
of Vehicles with positive UF effects were larger than that of vehicles with negative UF
effects. The other eight factors did not show obvious rules between positive UF and
negative UF effects. Because variance means the discrete extent of the dataset, the larger
E-CVKT variance does not bring significant change to the UF calibration effects. Hence, in
the variance aspect, we did not find any determined influence of the nine factors on the
calibration effects.
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Figure 15. Comparison of the variance of the nine selected factors/dimensions when the UF was
positive (left) and the UF was negative (right). In the figure, the x-axis is the vehicle number, and
y-axis is the variance value of every dimension. Only eight factors were divided into two subfigures
due to the y-axis range: (a) start charging SOC, DVKT, E-CVKT, and DOC; (b) PTA60, charging rate,
discharging rate, and UF. The charging duration is not shown in the figure due to its irregularity.

3.3. Discussion

Several key points for the results part are presented as follows:

(1) For the 11 PHEVs in this work, the best UF calibration value was 0.776 and the best
calibration cycle interval was 30. Using the best UF value and best cycle interval,
the proposed calibration scheme can achieve an optimized calibration effects of SOH
prediction for any set of PHEVs with a realistic dataset.

(2) The results show that a discrete Arrhenius curve is achieved after UF calibration, and
the Arrhenius curve is no longer monotonous like a traditional battery degradation
curve. We believe that the battery SOH should be discrete and fluctuant in every
certain range after considering UF’s influence.

(3) According to Section 3.1.1, the UF threshold was optimized by using a pre-designed
scheme that included the training vehicle dataset. It was found that the value of the
UF threshold can be in a range to generate homogeneous calibration effects (positive
or negative).

(4) The proposed UF calibration method did have positive effects (smaller RMSE and
larger R2) on some of the PHEVs. However, it showed negative effects for PHEVs
with heavy degradation due to the inapplicability of Arrhenius fitting when the PHEV
has large capacity loss.

4. Conclusions

In order to better predict the battery degradation of PHEVs, this work included
actual PHEV driving patterns into the SOH calculation by calibrating using the SOH
Arrhenius method. Using the realistic operation data of a set of 11 PHEVs in Chongqing
with 13,590 km and 233 average driving days, most of the vehicles’ travel mileage was
determined to be driven by electricity, which stresses the importance of PHEV battery
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degradation research. By comparing the correlation coefficients between each driving
feature parameter and the SOH, the UF was selected to calibrate the SOH of the PEHVs due
to the highest coefficient. The calibration method introduced a fuzzy UF relationship to
the Arrhenius equation. By setting up test sets, validation sets, and whole sets, the discrete
Arrhenius trend of battery SOH was formed using UF average values under different
cycle intervals. By comparing the RMSE and R2 of the calibrated SOH with those of the
uncalibrated SOH, the calibration results under different cycle intervals were statistically
analyzed to determine the best UF calibration value and the best correction cycle interval.
The experiment results showed that the root mean square error (RMSE) of the SOH fitting
after UF calibration could be decreased by 0.2–14%, and the coefficient of determination (R2)
for calibrated fitting trends could be improved by 0.5–32%. The results also showed that
some vehicles (five vehicles) could be positively calibrated, while the others (six vehicles)
could only be negatively calibrated. In response to this result, we conducted a comparative
analysis from multiple dimensions and found that the proposed UF calibration method
may not always be suitable for PHEVs with heavy degradation.

Based on the summary of the work content above, we can see that the SOH estimation
calibration method proposed in this paper for the complex operating conditions of PHEVs
has a good calibration effect, which can make the estimated SOH closer to the true value,
and this provides a guarantee for more reasonable battery safety management. However,
this method still has some room for improvement so that it can be applied to operating
conditions with severe battery aging. Therefore, our future research will consider how to
reasonably calibrate the PHEV’s SOH through the actual vehicle operation characteristics
of PHEVs in a wider life cycle. Compared with EVs, more factors that are unique to PHEVs
for SOH calibration still need further experiment and data analysis, and they are worth
exploring in the future.

Moreover, it is important to acknowledge that this research is constrained by limi-
tations in data availability, the sample size, and the absence of battery temperature data.
These factors may contribute to some fluctuations in the values obtained. However, despite
these limitations, the methodology employed in this study provides valuable insights for
estimating the SOH of PHEVs. In future research endeavors, it is recommended to incorpo-
rate a larger and more diverse dataset that includes battery temperature information; this
will allow for a more comprehensive validation of the methodology’s effectiveness by ana-
lyzing a broader range of PHEVs. By addressing these limitations and expanding the scope
of data collection, we can further enhance the accuracy and reliability of SOH estimation
methodologies for PHEVs. This would contribute to the advancement of knowledge in the
field and provide more robust guidance for PHEV battery management and maintenance
practices.
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Abbreviations

BEV Battery electric vehicle
DOC Depth of charge
CVKT Vehicle kilometers travelled during two charging sessions
DAAM Discrete Arrhenius aging model
DVKT Daily vehicle kilometers travelled
E-CVKT Vehicle kilometers travelled during two charging sessions driven by electricity
CD charging depleting
PEV Plug-in electric vehicle
PHEV Plug-in hybrid electric vehicle
PTA60 Percentage of miles traveled above 60 km/h
RMSE Root mean square error
SOC State of charge
SOH State of health
UF Utility factor
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