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Abstract: Innovative carbon reduction and sustainability solutions are needed to combat climate
change. One promising approach towards cleaner air involves the utilization of lithium-ion batter-
ies (LIB) and electric power vehicles, showcasing their potential as innovative tools for cleaner air.
However, we must focus on the entire battery life cycle, starting with production. By prioritizing
the efficiency and sustainability of lithium-ion battery manufacturing, we can take an essential step
toward mitigating climate change and creating a healthier planet for future generations. A comprehen-
sive case study of the leading LIB manufacturers demonstrates the usefulness of the suggested hybrid
methodology. Initially, we utilized the Malmquist model to evaluate these firms’ total efficiency while
dissecting their development into technical and technological efficiency change components. We
employed the Epsilon-Based Measure (EBM) model to determine each organization’s efficiency and
inefficiency scores. The findings show that the EBM approach successfully bridged the gap in the LIB
industry landscape. Combined with the Malmquist model, the resulting framework offers a powerful
and equitable evaluation paradigm that is easily applicable to any domain. Furthermore, it accurately
identifies the top-performing organizations in specific aspects across the research period of 2018–2021.
The EBM model demonstrates that most organizations have attained their top level, except for A10,
which has superior technology adoption but poor management. A1, A2, A4, A6, A8, A9, and A10
were unable to meet their targets because of the COVID-19 pandemic, despite productivity improve-
ments. A12 leads the three highest-scoring enterprises in efficiency and total productivity changes,
while A3 and A5 should focus on innovative production techniques and improved management.
The managerial implications provide vital direction for green energy practitioners, enhancing their
operational effectiveness. Concurrently, consumers can identify the best LIB manufacturers, allowing
them to invest in long-term green energy solutions confidently.

Keywords: EBM; lithium-ion batteries; DEA Malmquist; manufacturing efficiency; green energy;
Epsilon-Based Measure (EBM); a DEA application procedure

1. Introduction
1.1. Overview of the Lithium-Ion Batteries Industry

Lithium-ion batteries have emerged as a dominant technology for portable electronics,
electric vehicles, and renewable energy storage due to their high energy density, long life
cycle, and environmentally friendly characteristics [1]. As the demand for lithium-ion
batteries continues to grow, it becomes imperative to assess the efficiency of lithium-ion
battery manufacturers to optimize their performance and ensure sustainable production
practices. The global lithium-ion battery industry has experienced remarkable growth, with
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a market value of USD 42.30 billion in 2020 [2–5]. It is projected to reach approximately
USD 160.21 billion by 2026, growing at a CAGR of around 26.04% [6,7]. This growth can be
attributed to several key factors driving the expansion of lithium-ion battery technology.

Firstly, increasing environmental concerns and the need to mitigate carbon emissions
from conventional automobiles have spurred the adoption of electric vehicles worldwide [8].
Strict emission standards imposed by the highest authorities in many countries have
accelerated the shift towards electric cars, which has fueled the demand for lithium-ion
batteries as a preferred choice for powering electric vehicles [7].

Furthermore, the decreasing lithium-ion battery prices and rising investment by
market players in research and development to launch batteries with an advanced capacity
have contributed to the market growth. Introducing new market participants and model
variations for electric vehicles has intensified competition and led to innovations to reduce
production costs, further propelling the demand for lithium-ion batteries [9].

Governments of several developing countries are also promoting the adoption of
electric vehicles through assistance and incentives for production, consumption, and the
development of public charging infrastructure [4]. This encouragement has created a
favorable environment for the expanding demand for lithium-ion batteries. Besides that,
lithium-ion batteries’ small size, excellent energy efficiency, and low price make them
an attractive choice for various applications, including manufacturing, automobile, elec-
tronic devices, healthcare gadgets, telecommunication buildings, and other sectors [3,10,11].
The expanding applications of lithium-ion batteries in diverse industries such as mili-
tary, aviation, smart grid, and passenger cars are expected to boost the market growth
further [4,12,13]. The global LIB industry is segmented based on category, structure, em-
ployment, market competition, and geographic distribution. A flourishing industry propels
the strong demand for lithium-ion battery technology in the thriving automotive sector,
an amplified allocation of electric vehicles, and a growing presence of market players in
this domain [7].

The global LIB industry is witnessing robust growth driven by increasing environ-
mental concerns, declining prices, investments in research and development, government
incentives, and expanding applications [14]. The projected growth in the automotive and
traction segment and the overall market presents significant opportunities for manufactur-
ers, investors, and other stakeholders in the lithium-ion battery industry.

1.2. Research Gap and Research Motive

Despite the increasing demand and widespread use of lithium-ion batteries in var-
ious applications, there is still a research gap in evaluating the efficiency of lithium-ion
battery manufacturers. The current research mainly focuses on assessing the performance
of lithium-ion batteries in terms of energy storage capacity, durability, and safety features.
However, limited research addresses the efficiency of manufacturers producing these types
of batteries. An efficiency evaluation is crucial for manufacturers because it provides
detailed information about their operational performance and identifies areas that need im-
provement. Traditional efficiency evaluation methods, such as Data Envelopment Analysis
(DEA) and its variations, have been widely used in various industries to measure efficiency.
However, there is still a lack of research applying DEA and other advanced methods to
evaluate the efficiency of lithium-ion battery manufacturers.

The primary motive of this study is to bridge the research gap by assessing the
efficiency of lithium-ion battery manufacturers using a DEA approach, especially the
Malmquist and the Epsilon-Based Measure (EBM) model. The DEA Malmquist model is a
widely used method for evaluating the efficiency of a Decision-Making Unit (DMU) over
time. The EBM model is a relatively new approach incorporating undesirable outputs in
the efficiency assessment process.

By employing these advanced methods, this research aims to provide a comprehensive
and accurate assessment of the efficiency of lithium-ion battery manufacturers. This assess-
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ment can help identify best practices, benchmarking targets, and areas for improvement in
the manufacturing processes of lithium-ion batteries.

Furthermore, the research motive extends to academic contributions by adding to
the existing literature on efficiency assessment methods for lithium-ion battery manufac-
turers. This research can contribute to operations management, industrial engineering,
and sustainable energy research by applying advanced efficiency assessment techniques
to a specific context, i.e., lithium-ion battery manufacturing. The findings of this study
can serve as a reference for future research and provide insights for researchers inter-
ested in efficiency assessment methods in the context of battery manufacturing and other
related industries.

This study is to fill the research gap by assessing the efficiency of lithium-ion battery
manufacturers using advanced methods such as the DEA Malmquist and EBM models. We
will compare the results obtained from this approach to provide a comprehensive and com-
pelling assessment of the efficiency of LIB manufacturers. This comparison will highlight
the similarities and differences between the two models in evaluating the efficiency of LIB
manufacturers, further enhancing the rigor and credibility of our research. The findings of
this research can have practical implications for manufacturers and policymakers in the
battery industry, as well as academic contributions to the literature on efficiency assessment
methods in the context of battery manufacturing.

The findings are presented in the study using a systematic framework. Section 2
thoroughly examines DEA models and their specific applications in the literature. Section 3
provides an overview of the research method and dives into the theoretical features of the
Malmquist and EBM models. Section 4 presents a case study concentrating on the LIB
industry as an example of the suggested methodology’s efficacy and relevance in solving
performance assessment issues in the marine industry. The report summarizes the most
relevant findings, highlights contributions, recognizes potential limits, and suggests future
research prospects in Section 5.

2. Study Process and Related Works
2.1. Study Process

This paper presents an innovative and incorporated approach for assessing the effi-
ciency of the top twelve lithium-ion battery companies from 2018 to 2021. Our proposed
model combines Data Envelopment Analysis (DEA) Malmquist and Efficiency-Based
Measure (EBM) techniques, offering a comprehensive and sophisticated framework for
evaluating efficiency in this context [15,16]. The research process for assessing the efficiency
of lithium-ion battery manufacturers using the DEA Malmquist and EBM model can be
outlined in three main phases, as demonstrated in Figure 1.

Phase 1: Problem Analysis and Objective Definition
We expect to find and examine the challenges connected to analyzing the efficiency

of lithium-ion producers throughout this phase of the research. We established a precise
research objective with specified targets and measurable outcomes.

Phase 2: Data Collection and Analysis
This phase involves selecting the appropriate inputs and outputs for the DEA

Malmquist model based on the study objectives and available data. Total assets, liabilities,
and SG&A expenses are determined for entry. Based on the study objectives and open data,
revenue and gross income are chosen as the outputs for the DEA Malmquist model at this
step. A Pearson correlation test assesses data homogeneity and isotonicity, which ensures
the study’s validity. As part of this total productivity evaluation, the DEA Malmquist model
measures lithium-ion producers’ “technical efficiency change (catch-up)” and “technolog-
ical investment (frontier shift)” [17–20]. Before proceeding to the next stage, a diversity
affinity test is run to double-check the diversity and affinity coefficient indices [16].
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Phase 3: EBM Model and Results Analysis
In this phase, we utilized the Epsilon-Based Measure (EBM) model to determine scores

for the efficiency and inefficiency of the Decision-Making Units (DMUs), also known as
lithium-ion battery producers, based on the DEA Malmquist model outputs. These scores
rank DMUs based on their ability to manufacture lithium-ion batteries. The efficiency and
inefficiency scores are evaluated, and the findings are interpreted considering the research
objectives. The implications of the results are discussed, as well as the research’s limitations
and potential paths for additional exploration. The study draws several conclusions and
makes recommendations to various stakeholders, including practitioners and policymakers
in the lithium-ion manufacturing industry.

Combining the DEA Malmquist and EBM models, this three-phase research process
offers a comprehensive approach for evaluating lithium-ion manufacturers’ efficiency,
considering total productivity change and efficiency scores while ensuring data integrity
through a correlation analysis and diversity affinity testing.
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The integrated DEA Malmquist and EBM models proposed in this manuscript offer
a cutting-edge approach for assessing efficiency in the lithium-ion battery industry, ac-
counting for technical efficiency change and technological investment. Using a Pearson
correlation analysis and diversity and affinity coefficient index verification further strength-
ens our findings’ robustness. The results of this study are expected to provide valuable
insights for stakeholders, including policymakers and researchers, in the lithium-ion battery
industry and contribute to the existing literature on efficiency assessments in the field of
battery technology.

2.2. Related Works

Some noteworthy studies implemented the efficiency evaluation problems for busi-
nesses and manufacturers by combining the Malmquist and EBM models in diverse ap-
proaches. Mykhalovskiy et al., 2004 give thoughts, reviews, and evaluations to assist
in developing more comprehensive social scientific research of EBM [21]. Li et al., 2020
utilized a modified meta-two-stage EBM Malmquist approach to investigate regional dis-
parities in thirty-one Chinese cities’ economies, energies, environments, health, and media
during 2014–2016 [22]. A quantitative method was used by Rusli et al. to evaluate the
logistics sector in Malaysia before and after the COVID-19 pandemic by comparing the
sector’s effectiveness and efficacy using the EBM and Malmquist index approaches. [23].
Data envelopment analysis is used to analyze the energy efficiency of China’s coastal
regions in terms of air emissions between 2000 and 2012 (Qin et al., 2017) [24]. Carbon
dioxide, sulfur dioxide, and nitrogen oxide emissions are all negative consequences of
energy consumption.

Under the new regulation, the process by which banks develop appropriate internal
judgments for absorbing international strategic capital becomes crucial for managing banks.
Constant productivity improvements will lead to long-term growth; thus, the goals of
this study are as follows: (1) to figure out the connection between international strategic
ventures and improvements in the output of China’s banks and to validate the effectiveness
of implementing overseas strategic investing; (2) to determine the best overseas ownership
percentage; and (3) to illustrate the impact of overseas strategic expenditures on China’s
financial institution efficiency, i.e., the way it transmits between institutions [25].

Cheng et al., 2019 discover that the Malmquist trend of total factor productivity in-
dicators corresponds with the findings from the best practice gap change (BPC) and pure
technological catch-up indexes (PTCU), indicating that the BPC and PTCU indexes’ in-
novation effects are the primary factors responsible for productivity improvement [26].
Lu et al. 2020 use a three-stage DEA model and a period neural network framework to
assess and forecast total factor productivity in Chinese petroleum enterprises [27]. From
2009 to 2018, the panel data from 50 publicly traded Chinese petroleum companies were
used. A three-stage Data Envelopment Analysis (DEA) model was used to exclude environ-
mental and random effects. As a result, the radial basis function neural network prediction
model was employed to forecast the total factor productivity of publicly traded petroleum
businesses over the following two years.

A two-phase DEA methodology based on EBM and Malmquist is used to investigate
the effectiveness of maritime transportation in European countries. The results identify
the most prosperous nations across multiple economic sectors from 2016 to 2019 and
demonstrate that the research gap in applying the EBM method to marine transport has
been successfully filled [28].

3. Resources and Procedures
3.1. The Malmquist Model Theory

It is necessary to precisely check the positive correlation between the variables utilized
for analysis to guarantee the validity and reliability of the Malmquist model. The Pearson
correlation test is the answer to this problem. Statistical analysis is a standard tool in the
academic world. The Pearson correlation coefficient, denoted by the symbol (Hpq), is a
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standardized measure of the linear association between two variables. It is computed
using Equation (1) and takes on values between +1 and −1, with larger values indicating a
stronger linear relationship. A correlation coefficient around +1 indicates an almost ideal
linear relationship between the variables, lending credence to the study. Thus, confirming
the validity and accuracy of the study data is crucial by carefully applying this Pearson
correlation test at the outset of employing the DEA Malmquist model.

All variables utilized in the analysis must have a negative correlation before the
Malmquist model can be applied successfully. A correlation test should be used to guar-
antee this criterion is met. When the coefficient of correlation between two variables is
high, they have a strong relationship. However, the Pearson correlation coefficient value
is directly proportional to the link between the two parameters. When the value of the
correlation is lower, the link is weaker. The correlation coefficient has a fixed value of −1 to
+1, which is almost perfect if it falls within a range of ±1.

Hpq =
∑n

i=1(pi − p)(qi − q)√
∑n

i=1(pi − p)2 ∑n
i=1(qi − q)2

(1)

The fundamental goal of the MPI is to investigate alterations in the performance of
the production of many DMUs during a period when assessed by the outcome of relative
efficiency change (catch-up) and “technological change (frontier)” [29]. Catch-up efficiency
refers to a DMU’s extraordinary reaction to a difference in effectiveness. The phrase
“frontier shift” relates to how DMUs withstand technological innovation from one period
to another.

The two periods in the DEA analysis are known as (mi, ni) for the first and (mi
2, ni

2)
for the second with a particular DMUi. To determine the efficiency score DMUi (mi, ni)

t1 ,
the frontier’s effectiveness is t2: dt2((mi, ni)

t1(t1 = 1, 2 and t2 = 1, 2)
With a certain DMUi, the analysis’ two-time frames have been introduced as (mi, ni)

for the initial duration and (mi
2, ni

2) for the following duration. Frontier effectiveness is
t2: dt2(mi, ni)

t1(t1 = 1, 2 and t2 = 1, 2) to evaluate the score of efficiency DMUi (mi, ni)
t1 .

The relative efficiency shift in Equations (2)–(4) will be calculated as follows using the for-
mulas for the frontier-shift index (FSI), Malmquist productivity index (MPI), and catch-up
index (CA).

CA =
d2 ((mi, ni))

2

d1 (( mi, ni ))
1 (2)

FR =

[
d1((mi, ni))

1

d2((mi, ni))
1 × d1((mi, ni))

2

d2((mi, ni))
2

] 1
2

(3)

MPI =

d1
(
(mi, ni)

2
)

d1
(
(mi, ni)

1
) ×

d2
(
(mi, ni)

2
)

d2
(
(mi, ni)

1
)


1
2

(4)

Detailed explanations of all the variables:
Catch-up Index (CI): Fare et al. divided the entire change in productivity into those

that are related to a shift in the efficiency border that separates the times of t and the t + 1
period, with the cause being due to the efficiency of the unit “catch-up The catch-up ratio
represents the change in efficiency over the cross-section of the unit operating as we go
from t to 1 + t [30,31]. The phrase “boundary shift” refers to the difference in the efficiency
boundary between period t and time 1 regarding the amount of input needed to keep a
particular output level while operating optimally.

Frontier-shift Index (FSI): FSI indicates the new research and development (R&D)
innovations and skills; for example, breakthrough creation of procedures and systems or
technological change. It is essential to know how far one is from the R&D technical frontier
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and how rapidly one may reach it via upgrading machinery and procedures. A formula
calculates the “boundary shift” in R&D advancement.

Malmquist Productivity Index (MPI): The index tracks productivity growth over time,
breaking it down into efficiency and technological advancement increases using a DEA-like
nonparametric technique, separating productivity into technological advancement and
efficiency catch-up calls for using current data and temporal adjustments in the research
period. The MPI is a distance function from the equations’ measurements at times t and
t + 1. It is calculated as the result of DEA-derived catch-up (recovery) and frontier-shift
(innovation) elements using the nonparametric approach.

Using the abovementioned methodologies, we can identify whether a DMU’s overall
efficiency factor rises or falls. There is a chance that efficiency will either increase or
decrease because of catch-up or frontier efficiency. As calculated above, the DMU’s total
effectiveness of factors reflects comparative and technologically innovative performance
improvements or decreases. CA, FSI, and MPI figures may vary by more than, less than,
or equal to one, showing if a DMU is moving forward, backward, or remaining constant
between the two periods.

3.2. The EBM Theory

Since it involves determining efficiency, DEA can handle several input and output
parameters. The Charnes–Cooper–Rhodes (CCR) model finds an optimal proportional
change in input and output quantities while ignoring the emergence of excess inputs
or deficient outputs in a DMU (known as a radical approach because it only considers
proportional changes in inputs and outputs) [32–34]. Although it does not focus on the
proportion of output and input changes (non-radial technique), the Slack-Based Measure
(SBM) must deal with slacks directly. SBM simulations (non-radial slack variable efficiency),
are based on the efficiency of slack variables but do not use the radial estimate assumption,
and aim to optimize output and input inefficiencies by picking locations farthest from
the border [16,35–37]. They lack data on the ratio used to compute the efficiency front
projection during the technique. The final findings are rarely as accurate as the estimates
because there is so much possibility for improvement. To solve this issue, Tone offered
three Epsilon-Based Measurement (EBM) models with “radial and non-radial components”
in 2010 [16]. Among the designs were “input-oriented, output-oriented, and non-oriented”
and “non-oriented” [16,25,37]. The models considered both non-radial and radial features.
When input-oriented EBM (EBM I-C) for DMUo = (xo, xo) is used, the standard “unguided
EBM calculation model” can be stated in Equation (5) as follows.

δ∗ = min
θ,λ, s−

θ − εx ∑m
i=1

ω−
i s−i
xio

Subject to
n
∑

j=1
xijλj = θxio − s−i, , i = 1, . . . , m

n
∑

j=1
yijλj ≥ yro,r = 1, . . . , s

λj ≥ 0, j = 1, 2, . . . , ns−i, ≥ 0, i = 1, 2, . . . , n

(5)

s−i, and ω−
i reflect the weight and slack present in the λj input, respectively, εx is a

variable that uses input scattering to reflect peripheral characteristics, and “o” indicates
that the DMU has been checked.

s−i, and ω−
i describe how much slack and weight are present in the input, respectively,

εx is a variable demonstrating the radial characteristics and affects the amount of scattering
present in the inputs, and “o” indicates that the DMU is being evaluated [25,38,39].

The variable εx demonstrates the radial properties and impacts the amount of scat-
tering present in the inputs, whereas s−i, and ω−

i define the slack and weight of the inputs,
respectively. An evaluation of DMU is indicated by “o”.
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When discussing the requirements of an effective EBM model, Tone and Tsutsui men-
tioned the following requirements: 0 ≤ P(c,d) = P(c,d) ≤ 1/20 ≤ . . . 1/2 and
0 ≤ Q(c,d) = 1 − 2P(c,d) 0 ≤ 1. The analyzed data with low and high scattering are
demonstrated in Figure 2

Batteries 2023, 9, x FOR PEER REVIEW 8 of 20 
 

radial features. When input-oriented EBM (EBM I-C) for DMU   = (𝑥  , 𝑥  ) is used, the 
standard “unguided EBM calculation model” can be stated in Equation (5) as follows. δ∗ = min, , 𝜃 − 𝜀 𝜔 𝑠𝑥  

Subject to 

𝑥 𝜆 = 𝜃𝑥 − 𝑠 , , 𝑖 = 1, … , 𝑚   
𝑦 𝜆 𝑦 , = 1, … , 𝑠 

𝜆 0, 𝑗 = 1,2, … , 𝑛 𝑠 ,  0, 𝑖 = 1,2, … , 𝑛 

(5)

𝑠 ,  and 𝜔  reflect the weight and slack present in the 𝜆  input, respectively, 𝜀  is a 
variable that uses input scattering to reflect peripheral characteristics, and “o” indicates 
that the DMU has been checked. 𝑠 ,  and 𝜔  describe how much slack and weight are present in the input, respec-
tively, 𝜀  is a variable demonstrating the radial characteristics and affects the amount of 
scattering present in the inputs, and “o” indicates that the DMU is being evaluated 
[25,38,39]. 

The variable 𝜀  demonstrates the radial properties and impacts the amount of scat-
tering present in the inputs, whereas 𝑠 ,  and 𝜔  define the slack and weight of the in-
puts, respectively. An evaluation of DMU is indicated by “o.” 

When discussing the requirements of an effective EBM model, Tone and Tsutsui men-
tioned the following requirements: 0 ≤ P(c,d) = P(c,d) ≤ 1/20 ≤ … 1/2 and 0 ≤ Q(c,d) = 1 − 
2P(c,d) 0 ≤ 1. The analyzed data with low and high scattering are demonstrated in Figure 
2 

 
Figure 2. Low and high scattering of the obtained statistic. 

4. Research’s Empirical Findings 
4.1. Obtaining Data 

In this paper, we evaluate and rate the productivity and efficiency of the twelve LIB 
manufacturers throughout the four years 2018–2021. The data for the study were collected 

Figure 2. Low and high scattering of the obtained statistic.

4. Research’s Empirical Findings
4.1. Obtaining Data

In this paper, we evaluate and rate the productivity and efficiency of the twelve LIB
manufacturers throughout the four years 2018–2021. The data for the study were collected
from the financial database of twelve LIB companies. Table 1 shows the list of DMUs and
market cap up to 2023.

Table 1. List of DMUs and their market cap (data up to 7 April 2023).

DMUs Company Name Market Cap (USD)

A1 Contemporary Amperex Technology Co., Ltd. 282.79 B
A2 BYD Company Ltd. 138.64 B
A3 Panasonic Corporation 29.39 B
A4 Samsung SDI Co., Ltd. 40.14 B
A5 SK Innovation Co., Ltd. 21.07 B
A6 Toshiba Corporation 18.16 B
A7 LG Chem Ltd. 48.07 B
A8 Tesla Inc. 746.27 B
A9 Johnson Controls 49.25 B
A10 Nio Inc. 95.77 B
A11 Albemarle Corp. 24.77 B
A12 Sociedad Quimica y Minera De Chile SQM SA 9.35 B

In Data Envelopment Analysis (DEA), the Malmquist model stands as a vital tool
for evaluating the performance of Decision-Making Units (DMUs) [17,40,41]. A critical
aspect of this model is the selection of the inputs and outputs used to measure the DMUs’
performance. Drawing upon a comprehensive review of the relevant literature spanning
several decades, we have identified the most pertinent financial variables to be included
in the model. According to the “thumb rule” suggested by Golany and Roll (1989) and
Homburg (2001), to ensure there are enough DMUs for a meaningful and robust comparison,
the number of DMUs should be at least twice the total number of inputs and outputs [32,42].
After examining various prior studies, we have arrived at a well-supported choice of three
inputs: total assets, liabilities, and selling general and administrative (SG&A) expenses,
and two outputs: revenue and gross income. These inputs and outputs have been carefully
selected based on their significance in capturing the underlying performance of DMUs.
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Table 2 demonstrates an overview of the various input and output variables employed in
prior studies.

Table 2. Previous studies’ input and output criteria.

Author/Reference Inputs/Criteria Outputs/Responses Methodologies Applied Areas

[43]
“Net fixed assets, Salaries and
wages, Operating expenses,
Current liabilities”

“Operating income” “CCR, BCC” Logistics

[44] “Operating expenses, Liability,
Equity, Employee”

“Net income, Net sales,
Intangible value, Market
value”

E-retailing

[45] “Assets, Capital, Number of
employees” “Total revenue” “CCR, BCC, Malmquist” Logistics

[46] “Business cost, Total assets,
Employees number”

“Business income, Gross profit,
Return on equity” “CCR, BCC” Real estate

[47] “Management fees, Operating
expenses, Interest expenses”

“Total assets, Net assets value,
Total revenue” “Malmquist model”

[48] “Assets, Equity, Employees,
Expense” “Revenue, Profit” “CCR, Malmquist Banking

[49] “Assets, Capital, Operating cost,
Employees number”

“Revenue, Gross profit, Return
on equity” SBM, Regression model” Real estate

[50] “Assets, Liabilities, Operating
Expenses” “Revenue, Gross Profit” “DEA Malmquist, DEA

Window” Aviation

This paper “Assets, Liabilities, SG&A
Expenses” “Revenue, Gross Income” “DEA Malmquist, EBM” Energy

The rigorous statistical analysis that has guided the selection of these inputs and
outputs is meticulously documented in Table 3. This descriptive input and output data
presentation further substantiates our thorough approach to constructing a robust DEA
Malmquist model. By incorporating these carefully chosen variables, we have ensured that
this model is well-founded and capable of providing valuable insights into the performance
of DMUs.

Table 3. Statistical data of LIB companies’ input and output (2018–2021).

Year Statistics Assets Liabilities SG&A Expense Revenue Gross Income

2018

Max 48,800 32,235 13,519 58,331 16,520
Min 2759 1513 96 752 (92)
Average 22,909 13,924 3271 18,811 4135
SD 14,808 10,479 3675 16,913 4403

2019

Max 43,926 28,719 13,519 58,478 15,936
Min 2094 2338 94 1138 (250)
Average 23,387 14,074 3372 19,282 3964
SD 13,469 8749 3655 16,288 4260

2020

Max 52,150 29,669 12,645 54,750 14,840
Min 4097 2314 91 1666 (251,984)
Average 26,440 15,266 3257 19,025 (16,918)
SD 14,393 8942 3412 14,835 70,986

2021

Max 62,130 30,550 11,257 53,820 13,610
Min 7153 3981 102 2523 960
Average 33,242 18,922 3596 24,236 5449
SD 16,761 9952 3097 16,464 4326

Table A1, Appendix A, displays the predicted Pearson correlation coefficient values
for 2018, 2019, 2020, and 2021. The Pearson test coefficients show positive correlations,
which are between 0 and 1. The research findings are incredibly delicate in selecting the
input and output variables and parameters.

4.2. The Malmquist Model’s Findings
4.2.1. Technical Efficiency Change

The catch-up index, as illustrated in Figure 3 and Table 4, reflects the variation in the
operational effectiveness of the DMUs across periods. Figure 3 shows the development of
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catch-up indexes across the entire range of LIB producers, and Table 4 gives specific values
for “catch-up.” The catch-up index’s worth of more significant than 1, less than 1, and
1 reflects the advancement or decrease of the DMUs’ technical effectiveness. Based on the
table, all DMUs have achieved a progressive technological efficiency on average (average
indexes for catch-up >1) throughout 2018–2021. This advanced efficiency resulted in an
average catch-up score of 1.0925. In this group, the three DMUs, A10 (1.5509), A8 (1.2874),
and A2 (1.1890), are the three DMUs that have achieved the most outstanding performance
in terms of technical efficiency from 2018 to 2021. Meanwhile, A5 (0.8326), A3 (0.9268), and
A11 (0.9278) are among the most efficient players based on the average.
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Table 4. Changes in technical efficiency for the period 2018–2021.

Catch-Up 2018 to 2019 2019 to 2020 2020 to 2021 Average

A1 1.4926 0.7567 1.0311 1.0935
A2 1.2073 1.6793 0.6804 1.1890
A3 1.0615 0.7790 0.9401 0.9268
A4 1.1338 1.3968 0.7115 1.0807
A5 0.8305 0.6389 1.0283 0.8326
A6 1.0214 1.2111 0.9754 1.0693
A7 0.7476 1.3073 0.8989 0.9846
A8 1.0839 1.4861 1.2921 1.2874
A9 1.0891 1.1091 0.9687 1.0556
A10 1.7153 1.7090 1.2283 1.5509
A11 1.1408 0.8089 0.8336 0.9278
A12 0.8964 1.1477 1.2932 1.1124

Average 1.1183 1.1692 0.9901 1.0925
Max 1.7153 1.7090 1.2932 1.5509
Min 0.7476 0.6389 0.6804 0.8326
SD 0.2679 0.3646 0.2028 0.1892

Figure 3 shows that A10-Nio, Inc. has the highest performance, 1.7153 from 2018 to
2019 and 1.7090 for 2019–2020, before a decrease to 1.2283 between 2020 and 2021. There
was a lot of fluctuation in the performance throughout the research, just as with A2. Notably,
A2, A6, A7, and A8 reached their peak technical performance during 2019–2020 and fell
in 2020–2021.
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In contrast, A2 experienced a slump in the efficiency of its technology during
2020–2021 and a catch-up index of 0.6804 and was the most inefficient manufacturer
then. Among twelve manufacturers, A7 was the first to have the poorest catch-up index
(0.7476). In 2018–2019, they surpassed seven companies and climbed fifth in the rankings
(1.3073). However, they had the fourth lowest catch-up rate in 2020–2021 (0.8989). The last
time we looked at it, A7 had the highest percentage of manufacturers showing an increase
in the efficiency of their technical changes. At the same time, A12, A3, and A11 significantly
improved the performance of technology changes. Only A12 exhibits a steady growth
trend in technical efficiency in the three intervals. It had dramatically improved its catch-up
score, going from a mere 0.8963 from 2018 to 2019 to 1.1147 during 2019–2020, before it
reached its peak efficiency at 1.2932 from 2020 to 2021.

4.2.2. Efficiency Frontiers

Frontier-shift indexes are an essential tool for assessing an organization’s technical
advancement over time, and the conclusions reported in this study are persuasive. Table 5
displays the frontier-shift values for each DMU, indicating that just one-sixth of the organi-
zations evaluated obtained progressive average frontier-shift scores. The data suggest that
most DMUs (nine out of twelve) stagnate and become poor technological performers.

Table 5. Technological change for the period 2018–2021.

Frontier 2018 => 2019 2019 => 2020 2020 => 2021 Average

A1 0.6962 1.0012 1.1840 0.9605
A2 0.7878 0.7662 1.3373 0.9638
A3 0.9876 1.0566 0.9477 0.9973
A4 0.8374 0.8130 1.4029 1.0177
A5 0.8715 0.7407 1.1971 0.9364
A6 1.0033 0.9216 0.9185 0.9478
A7 0.9183 0.7827 1.2583 0.9864
A8 0.9285 0.8318 1.1574 0.9726
A9 0.9443 0.9499 1.1775 1.0239
A10 0.8336 0.6646 1.1515 0.8833
A11 0.6845 0.9957 1.2728 0.9843
A12 0.7292 0.9426 1.1699 0.9472

Average 0.8519 0.8722 1.1812 0.9684
Max 1.0033 1.0566 1.4029 1.0239
Min 0.6845 0.6646 0.9185 0.8833
SD 0.1097 0.1221 0.1392 0.0383

Figure 4 depicts the evolution routes of technological efficiencies for all DMUs, demon-
strating a variety of shifting patterns. Interestingly, while some organizations endure a
decline in technological progress during one time, they can achieve their peak during the
next, emphasizing the need for ongoing innovation and adaptation. It is worth mentioning
that A4 stands out as a remarkable performer, with the highest score of 1.4029 achieved
over the research period. This number starkly contrasts with A3, which peaked at 1.0566 in
2019–2020 before plummeting to the second-worst score of 0.0977 in 2020–2021.

Only one-sixth of the DMUs in Table 5 attain the increasing average frontier-shift
values, including A4 (1.0177) and A9 (1.0239). Meanwhile, A1 (0.9605), A2 (0.9638),
A3 (0.09973), A5 (0.9364), A6 (0.9478), A7 (0.9864), A8 (0.9726), A10 (0.8822), A11 (0.9843),
and A12 (0.9472) lag and become poor technological achievers. Most producers (9 among
12 units) had nonprogressive average frontier-shift indexes (FSI), with an average frontier-
shift score of 0.9684 for the observed time. Figure 4 shows more fluctuating patterns of the
DMUs, demonstrating the stable progression of their technological performances compared
to Figure 3 (catch-up). Among these, A4 has the best score of 1.4029 in 2020–2021.
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A2, A4, A5, A7, A8, and A10 indicate a decline in 2019–2020 and a peak in technical
progress in 2020–2021. A3 had a maximum score of 1.0566 in 2019–2020, which was more
significant than other corporations, but subsequently dropped to the second-worst score
(0.0977) in 2020–2021.

In a continually changing corporate scene, the findings reported in this study highlight
the significance of continuous technological innovation and adaptability. The frontier-shift
indices offer a holistic view of technological advancement by considering various elements
such as competitiveness, regulatory and political settings, and inventions. As a result, firms
should take these findings to heart and seek to enhance their technological performance to
remain competitive and thrive in the long run.

The “frontier-shift” chart depicts the changes in the technical efficiency and productiv-
ity of firms or industries over time relative to the production frontier.

4.2.3. Results of Malmquist Productivity Indexes

To obtain the result for the Malmquist Productivity Indexes (MPIs) of the twelve LIB
producers, we must solve Equation (4). The granular MPI values are presented in Table 6,
and Figure 5 illustrates how the MPIs have changed over time for each company. We note
that an efficiency index of MPI = 1 represents the status of staying unchanged productivity,
that an efficiency index of MPI > 1 reflects an efficiency increase, and that an efficiency
index of MPI <1 correlates to a decrease in total productivity.

As seen in Table 6, all manufacturers operated effectively on a typical basis, except for
A3, A7, and A11, which only achieved 0.8825. This result stands out since A3, A7, and A11
all display declining performance in terms of technical and technological efficiency.

In addition, the average MPI of all producers is greater than 1 (1.0320), which indicates
a development in the overall productivity growth of the companies during the research
period and shows an improvement in the manufacturers’ efficiency. The three businesses
that have had the most significant increase in productivity are A10 (1.3267), A8 (1.2460),
and A12 (1.0828). These DMUs achieved exceptionally high technical efficiency levels,
allowing them to compensate for a modest loss of ground in technological advancement.
Figure 5 shows that, in certain instances, the DMUs almost follow the same trends as those
shown in Figure 3 (the catch-up). A1, A3, A5, and A7 have the least stable performance for
2018–2021. These organizations’ trends of catch-up efficiency are illustrated in (catch-up),
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and these organizations’ patterns are identical. These firms’ catch-up efficiency trends are
shown in Figure 3 (catch-up), and their patterns are similar.

Table 6. Total productivity change from 2018 to 2021.

Malmquist 2018 to 2019 2019 to 2020 2020 to 2021 Average

A1 1.0392 0.7576 1.2208 1.0059
A2 0.9512 1.2866 0.9099 1.0492
A3 1.0483 0.8231 0.8909 0.9208
A4 0.9494 1.1355 0.9981 1.0277
A5 0.7238 0.4733 1.2310 0.8093
A6 1.0247 1.1162 0.8958 1.0122
A7 0.6866 1.0233 1.1311 0.9470
A8 1.0065 1.2361 1.4954 1.2460
A9 1.0284 1.0536 1.1406 1.0742
A10 1.4300 1.1358 1.4144 1.3267
A11 0.7809 0.8054 1.0611 0.8825
A12 0.6536 1.0818 1.5130 1.0828

Average 0.9435 0.9940 1.1585 1.0320
Max 1.4300 1.2866 1.5130 1.3267
Min 0.6536 0.4733 0.8909 0.8093
SD 0.2131 0.2342 0.2241 0.1446
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4.3. Results of Epsilon-Based Measure Efficiency

The Malmquist approach results reflect the current operational picture of the world’s
leading twelve LIB manufacturers after calculating the total productivity via technical
efficiency change (catch-up index) and investment in technology impacts (frontier-shift
index). By applying the EBM approach in this research’s third phase, we have data on
twelve DMUs and may evaluate them according to their efficiency or inefficiency.

The EBM-I-C model, an input-oriented technique with a continuous restoration for
scaling, is intentionally applied in the current investigation. The precision and relevance of
the source to the topic at hand were the criteria that led to this selection. By constructing
an affinity matrix from the observed input and output variables, we comprehensively
investigate the diversity of production alternatives defined by EBM approaches. The
diversity and affinity index matrix generated from the EBM methodology for 2018–2021
is presented in Tables A2 and A3, which may be seen below. According to the findings
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of this research, the values of the diversity matrix and affinity matrix range from 0 to
0.2628 and 0.4744 to 1, which meet the basic requirements of the EBM model. Thus, we
can utilize EBM to access and rank DMUs based on their efficiency scores. Table 7 then
computes the EBM method input/output value and epsilon. The EBM model’s epsilon,
which integrates radial and non-radial features, is constantly positive during the period
under assessment (range: 0.4136 to 0.4447).

Table 7. EBM Approach’s Weight of Input and Epsilon (2018–2021).

Year
Weight to Input

Epsilon for EBM
Assets Liabilities SG&A Expense

2018 0.3338 0.3410 0.3252 0.4357
2019 0.3538 0.3406 0.3056 0.4136
2020 0.3444 0.3363 0.3192 0.4257
2021 0.3323 0.3245 0.3432 0.4447

EBM model epsilon and input/output weight are employed to determine the com-
parative effectiveness and inefficiencies of twelve DMUs for 2018–2021, as illustrated in
Table 8 and Figure 6. The results show that enterprises A3, A5, and A12 are very efficient,
with a score of 1 and a deficit of zero for 2018–2021. For the whole time of 2018–2021, A10
has the worst efficiency ratings. LIB manufacturers with less than one EBM efficiency rating
(especially A1, A2, A4, A6, A8, A9, and A10 with the lowest score) do not operate at their
full potential. For LIB companies whose EBM efficiency score reaches 1, this shows the
potential for more profitable investment.

Table 8. The efficiency score of the EBM model (2018–2021).

DMUs 2018 2019 2020 2021 Average

A1 0.6588 0.915 0.7228 0.7545 0.7628
A2 0.5724 0.6756 1 0.7283 0.7441
A3 1 1 1 1 1.0000
A4 0.7095 0.8333 0.9711 0.7607 0.8187
A5 1 1 1 1 1.0000
A6 0.767 0.8129 0.9461 0.9027 0.8572
A7 1 0.8576 1 0.9373 0.9487
A8 0.5841 0.6693 0.9055 1 0.7897
A9 0.7103 0.8679 0.9066 0.8451 0.8325
A10 0.1532 0.3161 0.3925 0.454 0.3290
A11 0.8799 0.9217 0.7552 0.6306 0.7969
A12 1 1 1 1 1
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5. Discussion and Conclusions

This article examines the productivity and efficiency of twelve lithium-ion battery (LIB)
manufacturers from 2018 to 2021. Considering the Malmquist model’s findings, we find that
the efficiency of LIB producers has changed over time, but only in just a handful of distinct
patterns (see Figure 5). However, in this increasingly computerized world, it is notable that
technical developments have more unpredictable trends, which indicates how innovation
in technology affects the performance of LIB manufacturers and the global lithium-ion
batteries supply chain. On average, all DMUs advanced technologically throughout the
research period. Looking at the catch-up index, which depicts the variation in operational
efficiency, three DMUs (A10, A8, and A2) stand out for their remarkable technological
efficiency. However, the performance of some DMUs has varied. For example, A2, A6, A7,
and A8 technically peaked in 2019–2020 but fell in 2020–2021. Particularly noteworthy is
A2, which declined in technological efficiency in the latter years and emerged as the least
efficient producer. Only one-sixth of the evaluated firms attained the progressive average
frontier change threshold, which suggests a lack of technical development in most DMUs.
A4 shines as an exceptional processor, obtaining the highest score over the study period,
but A3 witnessed a fall in technological progress in 2020–2021.

Our research emphasizes the significance of continuous technological innovation and
flexibility in today’s continually shifting corporate world. Frontier-shift indices provide
insight into the many aspects impacting technological advancement. Companies must
seek to improve their technical performance to remain competitive and flourish in the long
run. Table 6 displays the results of the EBM model, which suggest that most enterprises
have reached their maximum performance levels. Based on the results of this research,
A10 is an interesting case. Since A10 is the best manufacturer in the catch-up index (the
average catch-up index was 1.5509 in 2018–2021), it performs the best in implementing
new technologies, methods, and processes that significantly impact its overall growth and
productivity. In contrast, A10 has a meager efficiency score in the EBM model (an average of
0.3290 in 2018–2021) (Figure 6). Considering financial performance, management practices,
strategic alignment, and the external environment, A10 shows low allocative efficiency or
ineffective management practices.

Most significantly, the worldwide economic downturn caused by COVID-19 prevented
most enterprises from obtaining efficiency scores in 2018–2021 (nine out of twelve DMUs).
Among LIB manufacturers with EBM efficiency scores less than 1 (A1, A2, A4, A6, A7, A8,
A9, A10, A11), companies A1, A2, A4, A6, A8, A9, and A10 have an MPI larger than 1. It
means that these companies show a good performance of improvements in productivity
and efficiency with technological and technical aspects but have a terrible performance in
achieving their objectives and maximizing their potential with given available resources.

A3, A5, and A12 are three organizations that gain the highest efficiency score in the
EBM model. While A3 (0.9208) and A5 (0.8093) have an average MPI score of less than
1, A12 (1.0828) has an average MPI score more significant than 1. As a result, A3 and
A5 should put more effort into adopting new production techniques, better management
practices, and implementing new technologies to improve total productivity change as it
enables organizations to produce more outputs with the same or fewer inputs.

Overall, A12 is the company that has a high-efficiency score in the EBM model and
shows a progressive performance in total productivity change for the 2018–2021 period.
The development of lithium-ion batteries is moving at a breakneck pace, and numerous
types of chemistry are successfully being made available. They are the batteries used
in mobile smartphones, laptops, and other portable electronic gadgets [5,51,52]. Larger
projects, such as energy storage, either partially or entirely electric motors, industrial
vehicles, lifts, harbors and cranes, mining vehicles, boats, and submarines, are currently
in the development stage [53,54]. This research contributes to the green energy market
and gives a practical and detailed approach to determining how effective LIB enterprises
are at achieving their goals. The hybrid method of DEA Malmquist and the techniques of
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Epsilon-Based Measure (EBM) delivers an efficient and fair assessment framework that can
be used to evaluate the performance of a firm and its growth in any direction.

These findings are helpful in that they can assist seaport owners in better under-
standing critical indicators for the growth and operation of LIB manufacturers, which in
turn can lead to improved technological and technical element efficiency. Technology has
become the dominant force in any sector because of the intensifying rivalry [55]. Because
of this, there is a pressing need for a strategy that can be maintained to contribute to the
construction of a more robust and resilient system.

The innovative comparative evaluation of LIB firms is one of the significant achieve-
ments of this research. This evaluation combines the DEA Malmquist and EBM models
to determine the efficiency or inefficiency of DMUs by considering proportionate changes
in inputs and outputs and the emergence of slacks. This method indicates the variety or
dispersion of the data and the possibility of improving the parameters for information to
the less efficient DMUs that span numerous times as well as multiple output and input
variables. Additionally, this method reveals the possibility of improving parameters for
inputs to the less efficient DMUs.

6. Limitations and Potential Further Research

Although DEA EBM and the DEA Malmquist model are valuable instruments for
assessing performance and efficiency, their limits must be acknowledged. Subjectivity can
bring bias into input and output choices in DEA EBM. Furthermore, it lacks benchmarking
tools, making performance comparisons difficult. Malmquist’s paradigm implies that
technology is the primary driver of productivity change, disregarding other contributing
factors. Furthermore, its success depends on proper period selection to avoid incomplete
or misleading outcomes. Due to data availability constraints, our analysis used a four-year
time range from 2018 to 2021.

The combination of DEA EBM and the Malmquist model addresses these constraints
while providing comprehensive assessment benefits. This integration makes input–output
selection more objective, minimizing subjectivity in DEA EBM. The Malmquist model is
used to solve the DEA EBM scalability assumption by considering fluctuations in scaling
efficiency over time. Furthermore, the Malmquist model allows for performance measure-
ment and comparison, making it simple to find areas for improvement. Combining these
models provides a comprehensive analysis considering technological development and
relative efficiency.

To summarize, notwithstanding its shortcomings, the combination of DEA EBM
and the DEA Malmquist model provides a solid evaluation framework. This integration
enhances input and output selection, addresses scaling assumptions, allows benchmarking,
and offers complete performance and efficiency analysis.

The subsequent studies must consider input and output variables to provide more
accurate and reliable results. Moreover, approaches to multiple-criteria decision-making
(MCDM), such as TOPSIS, AHP, VIKOR, WASPAS, and COCOSO, might provide more ef-
fective answers to the problem of ordering the business units [50]. Researchers can develop
more exact approaches by comparing the outcomes using the ranking similarity coefficients.
The hybrid approach, which combines the DEA Malmquist and EBM models, provides a
more effective and transparent evaluation process to measure companies’ performance and
progress across all dimensions. This approach allows the creation of longer-term plans that
contribute to the overall system’s resilience.
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Appendix A

Table A1. Input–output correlation (2018–2021).

Period Inputs/Output Assets (TOA) Liabilities (LIA)
Selling, General &

Administrative Expenses Revenue (REV) Gross Income (GI)
(SG&AE)

2018

TOA 1 0.9474 0.7923 0.8191 0.8297
LIA 0.9474 1 0.8583 0.808 0.8493

SG&AE 0.7923 0.8583 1 0.8152 0.9802
REV 0.8191 0.808 0.8152 1 0.8579
GI 0.8297 0.8493 0.9802 0.8579 1

2019

TOA 1 0.9541 0.788 0.8501 0.8145
LIA 0.9541 1 0.7799 0.8535 0.7865

SG&AE 0.788 0.7799 1 0.8374 0.9861
REV 0.8501 0.8535 0.8374 1 0.8587
GI 0.8145 0.7865 0.9861 0.8587 1

2020

TOA 1 0.9764 0.7184 0.8553 0.021
LIA 0.9764 1 0.7813 0.9161 0.034

SG&AE 0.7184 0.7813 1 0.9031 0.2018
REV 0.8553 0.9161 0.9031 1 0.0994
GI 0.021 0.034 0.2018 0.0994 1

2021

TOA 1 0.9718 0.6803 0.9165 0.808
LIA 0.9718 1 0.6299 0.8653 0.7216

SG&AE 0.6803 0.6299 1 0.7942 0.9335
REV 0.9165 0.8653 0.7942 1 0.8597
GI 0.808 0.7216 0.9335 0.8597 1

Table A2. EBM model’s Diversity matrix (2018–2021).

Period Inputs/Output Assets (TOA) Liabilities (LIA) Selling, General & Administrative
Expenses (SG&AE)

2018
TOA - 0.1977 0.2377
LIA 0.1977 - 0.2187

SG&AE 0.2377 0.2187 -

2019
TOA - 0.1404 0.2218
LIA 0.1404 - 0.2628

SG&AE 0.2218 0.2628 -

2020
TOA - 0.1782 0.2195
LIA 0.1782 - 0.2422

SG&AE 0.2195 0.2422 -

2021
TOA - 0.2478 0.2008
LIA 0.2478 - 0.2192

SG&AE 0.2008 0.2192 -
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Table A3. EBM model’s Affinity matrix (2018–2021).

Period Inputs/Output Assets (TOA) Liabilities (LIA) Selling, General & Administrative
Expenses (SG&AE)

2018
TOA 1.0000 0.6045 0.5247
LIA 0.6045 1.0000 0.5627

SG&AE 0.5247 0.5627 1.0000

2019
TOA 1.0000 0.7192 0.5565
LIA 0.7192 1.0000 0.4744

SG&AE 0.5565 0.4744 1.0000

2020
TOA 1.0000 0.6437 0.5610
LIA 0.6437 1.0000 0.5156

SG&AE 0.5610 0.5156 1.0000

2021
TOA 1.0000 0.5044 0.5985
LIA 0.5044 1.0000 0.5616

SG&AE 0.5985 0.5616 1.0000
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