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Abstract: The high activity and reliability of bifunctional oxygen catalysts are imperative for recharge-
able metal–air batteries. However, the preparation of bifunctional non–noble metal electrocatalysts
with multiple active sites remains a great challenge. Herein, an MOF–derived N–doped C–loaded
uniformly dispersed CoO/MoC heterojunction catalyst for high–performance dual function was
prepared by a simple “codeposition–pyrolysis” method. Experimental investigations revealed that
the formation of the heterojunction can tailor the valence of Co and Mo sites, which impressively
modulates the electronic properties of the active sites and promotes the electrocatalytic processes.
The optimal catalyst reveals a high–wave half potential (E1/2 = 0.841 V) for ORR and a low overpo-
tential (E10 = 348 mV) for OER. The NCCM–600–based Zn–air battery displays a high peak power
density of 133.36 mW cm−2 and a prolonged cycling life of more than 650 h. This work provides
avenues for the development of functional materials with enhanced properties in a variety of practical
energy applications.

Keywords: heterojunction; oxygen reduction reaction; Zn–air battery

1. Introduction

Environmental contamination and the energy crisis have become increasingly severe,
which has led to a prioritization of research into energy storage and conversion facilities
as potential solutions [1–3]. Rechargeable Zn–air batteries (ZABs) are one of the most
concerned devices due to their low cost, high security, and remarkable theoretical energy
density (1086 Wh/kg) [4,5]. However, the oxygen evolution reaction (OER) and oxygen
reduction reaction (ORR) exhibit complex reaction pathways and sluggish kinetics, which
severely hinder the energy utilization of ZABs [6]. Until now, precious metals such as RuO2
and Pt/C are the most outstanding OER and ORR catalysts, respectively. Nevertheless,
their production is limited by scarcity and unsatisfactory durability [7–10]. Therefore,
extensive research has been conducted on low–cost yet highly active electrocatalysts to
enhance the kinetics of these reactions [11–16].

Recently, transition metals and their compounds have emerged as promising alterna-
tive electrocatalysts due to their tunable d–band center, rich electrons in d orbitals, and all
kinds of synthesis methods, especially transition metals oxides and carbides [17–20]. For in-
stance, the catalytic performance of single–metal oxides (Co3O4, NiO, MnO2), spinel oxides
(NiCo2O4, CoFe2O4), and TMC nanomaterials (M = W, Mo, Co, V, Fe, Ni, etc.) have been
demonstrated in the electrocatalysis of oxygen reaction [21–29]. Unfortunately, these mate-
rials are hampered by their low intrinsic activity, undesirable electrical conductivity, and
fast degradation [30–33]. In this regard, the construction of heterostructure with synergetic
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effects is a proactive activation strategy to boost their catalytic activity, which can not only
produce better adsorption/activate the interface of the active substance, but also enable the
electron transfer between different components [34–37]. For example, Yang et al. prepared a
Co3O4/Fe3O4 heterostructure catalyst, and its spin–polarization density–functional theory
(DFT) and electrocatalytic performance showed that the existence of heterostructures leads
to smoother reaction paths and lower overpotentials in the OER process [38]. Additional
studies have shown that the heterojunction of Mo2C/VC with rich active sites not only
facilitates electron transfer, but also leads to enhanced desorption kinetics [39]. However,
the convenient and controlled preparation processes of heterojunction catalysts remain a
thorny challenge [40–44]. Metal–organic frameworks (MOFs) with large specific surface
areas, abundant pores, adjustable structures, and controllable compositions are considered
promising precursors for the preparation of efficient catalysts with specific structures [45].
In addition, the metal centers in the materials obtained by taking MOFs as precursors are
nicely distributed at the atomic level, which is conducive to the formation of heterojunction
structures [46–48].

Herein, a rod–like porous N–doped C–loaded CoO/MoC (NCCM) heterojunction
catalyst was synthesized by simple pyrolysis of the bimetallic Co/Mo MOF precursor. Due
to its high–activity heterojunction sites and one–dimensional porous rod–like structures,
NCCM–600 exhibits remarkable bifunctional catalytic activity and reliability towards
oxygen electrochemistry, indicating a high–wave half potential (E1/2 = 0.841 V) for ORR
and a low overpotential (E10 = 348 mV) for OER. Furthermore, the Zn–air battery with
NCCM–600 demonstrates a high peak power density of 133.36 mW cm−2 and a prolonged
cycling life of more than 650 h.

2. Experimental Section
2.1. Material Preparation
2.1.1. Synthesis of Co/Mo MOF

Molybdenum trioxide (5 g), cobaltous nitrate hexahydrate (3.0 g), and imidazole (3.9 g)
were dissolved in deionized water (500 mL) and poured into a round–bottom flask. Then,
the mixed solution was refluxed at 120 ◦C for 8 h. The product was centrifuged twice at
6000 rpm, and deionized water was used as a solvent. After drying for 12 h at 60 ◦C, the
Co/Mo MOF was successfully synthesized.

2.1.2. Synthesis of N–Doped Porous C @ CoO/MoC (NCCM) Heterostructure Composite

The Co/Mo MOF (0.5 g) was placed in a quartz crucible. A 0.25 g amount of melamine
powder was placed at the upstream side and annealed in a tubular furnace for 2 h at
500 ◦C, 600 ◦C, and 700 ◦C. The obtained 1D N–doped porous C @ CoO/MoC (NCCM)
heterostructure composites were named NCCM–500, NCCM–600, and NCCM–700.

2.1.3. Synthesis of Co MOF–Derived CoO

Cobaltous nitrate hexahydrate (3.0 g) and 2–methylimidazole (4.8 g) were dissolved in
deionized water (500 mL) and poured into a beaker. Then, the mixed solution was stewed
at ordinary temperature for 4 h. The product was centrifuged twice at 6000 rpm, and
deionized water was used as a solvent. After drying for 12 h at 60 ◦C, the Co MOF was
successfully synthesized. The as–synthesized Co MOF was annealed for 2 h at 350 ◦C to
acquire MOF–derived CoO.

2.1.4. Synthesis of Mo MOF–Derived MoC

Molybdenum trioxide (5 g) and imidazole (3.9 g) were dissolved in deionized water
(500 mL) and poured into a round–bottom flask. Then, the mixed solution was refluxed at
120 ◦C for 8 h. The product was centrifuged twice at 6000 rpm, and deionized water was
used as a solvent. After drying for 12 h at 60 ◦C, the Mo MOF was successfully synthesized.
The as–synthesized Mo MOF was placed in a quartz tube furnace. A 0.25 g amount of
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melamine powder was placed at the upstream side and annealed for 2 h at 600 ◦C to acquire
MOF–derived MoC.

2.2. Material Characterization

Powder X–ray Diffraction (PXRD) patterns were recorded on a PANalytical Empyrean
powder diffractometer with Cu Kα radiation (λ = 0.1541 nm). The morphology of the
prepared samples was revealed by a field–emission scanning electron microscope (FE-
SEM, HITACHI Regulus 8100, Tokyo, Japan). The element mappings were analyzed with
energy–dispersive X–ray spectroscopy (EDX, Oxford Ultim Max 65, London, UK). The
high–resolution nanomorphology was revealed by transmission electron microscopy (TEM,
Tecnai G2 F30 S–Twin, Hillsboro, OR, USA) at an accelerating voltage of 200 kV. TX–ray
photoelectron spectroscopy (XPS) was conducted on the Kratos AXIS Ultra DLD. The
nitrogen adsorption–desorption isotherms and corresponding pore–size distributions were
recorded on an automatic physical adsorption instrument (Micromeritics 3Flex, Atlanta,
GA, USA).

2.3. Electrochemical Measurement

Electrochemical measurements were made on a conventional three–electrode cell with
an RRDE assembly (Pine Research Instrumentation, Durham, NC, USA) and CHI 760E
(CH Instruments, Inc., Shanghai, China). The RRDE electrode is composed of a glassy
carbon electrode (disk electrode, area: 0.2475 cm2). A graphite rod and saturated calomel
electrode (SCE) were used as the counter and reference electrodes, respectively. Catalyst
inks were fabricated by mixing 5 mg of catalyst, 30 µL of Nafion, 200 µL of ethanol, and
768 µL of ultrapure water with ultrasonic mixing for 1 h. An 8 µL volume of the as–obtained
suspension was dipped onto the RRDE electrode to form a uniform catalyst layer (the
loading of the catalyst was 0.16 mg cm−2).

The oxygen reduction reaction (ORR) activity of the different catalysts was eval-
uated by linear sweep voltammetry (LSV) polarization curves, which were obtained
in O2–saturated 0.1 M KOH at a scan rate of 5 mV s−1 (rotating speed of 1600 rpm).
The disk potential ranged from 0 V to 1.0 V (vs. reversible hydrogen electrode (RHE),
ERHE = ESCE + 0.244 + 0.059 × pH). The Koutecky–Levich plots (J−1 vs. ω−1/2) were
analyzed at various electrode potentials, and the slopes of best–fit lines were used for the
calculations. The average number of electrons transferred (n) was calculated using the
Koutecky–Levich (K–L) equation in the potential range of 0.4–0.6 V.

J−1 = JL
−1 + JK

−1 = (Bω1/2)−1 + JK
−1

B = 0.62nFC0D2/3ν−1/6

JK = J × JL/JL − J

The OER activities of the catalysts were measured by a conventional three–electrode
cell at a scan rate of 5 mV s−1 in 1.0 M KOH.

The homemade rechargeable ZAB was assembled according to the configuration. A
polished zinc plate and an aqueous solution containing 6 M KOH and 0.2 M zinc acetate
were used as anode and electrolyte, respectively. The NCCM heterostructure was dispensed
in 1 × 1 cm−2 nickel foam as the air cathode. The polarization curves were measured by
LSV at 5 mV·s−1 using a CHI 760E electrochemical station, and the power density was
calculated from the discharge polarization curve with the following formula:

P = VI/S

where P is the power density, V is the discharge voltage, I is the discharge current density,
and S is the effective catalytic area.
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A constant current discharge test (10 mA) was conducted on a NEWARE battery test
system, and the specific capacity was calculated from the constant current discharge results
and the zinc consumption with the following formula:

SC = TI/4m

where SC is the specific capacity, T is the constant current discharge time, I is the discharge
current, and4m is the mass of zinc consumed during the discharge process.

The cycling performance of the ZAB was examined on the NEWARE battery test
system at a current density of 10 mA·cm−2 and charge 30 min–discharge 30 min for one
cycle.

3. Results and Discussion

As depicted in Scheme 1, the fabrication process of the N–doped porous C@CoO/MoC
(NCCM) is based on a facile “codeposition–pyrolysis” method. Initially, bimetallic Co/Mo
MOFs were synthesized through hydrothermal codeposition, and the X–ray diffraction
(XRD) pattern of the Co/Mo MOFs exhibited strong and sharp diffraction peaks, indicating
excellent crystallinity (Figure S1a, Supporting Information). Subsequently, the NCCM
heterojunction was synthesized after pyrolysis of the 1D Co/Mo MOF nanorod with the
assistance of melamine at high temperatures under nitrogen atmosphere.
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Scheme 1. Schematic of synthesis process for 1D MOF–derived N–doped porous C @ CoO/MoC (NCCM).

The morphology of the prepared samples was clearly revealed by scanning electron
microscopy (SEM). The obtained Co/Mo MOFs were rod–shaped, with lengths ranging
from 5 to 10 µm and diameters ranging from 200 to 400 nm (Figure S1b). Elemental
mapping images of the Co/Mo MOF rods confirm the uniform distribution of Co, Mo,
C, O, and N elements on the 1D nanorods (Figure S1c). Then, the Co/Mo MOF rods
served as self–templates for the synthetic N–doped porous C@CoO/MoC (NCCM) hetero-
junction composite. After annealing, the nanorods maintained their appearance without
collapsing, as shown in Figure 1a. This indicates a complete rod structure with numerous
embedded tiny nanoparticles within the graphitized carbon. As the pyrolysis temperature
increased, organic ligands decomposed and transformed into graphitic porous carbon.
Simultaneously, nitrogen–doped carbon was formed through the decomposition of NH3
from melamine. Transmission electron microscopy (TEM) images revealed that the NCCM
nanorod possesses a porous structure consisting of interconnected nanocrystals encapsu-
lated in N–doped carbon (Figure 1b,c). The pore size is approximately 5 nm, indicating a
mesoporous structure that facilitates electrolyte infiltration and reactant diffusion. More-
over, the high–resolution TEM (HRTEM) image of the NCCM presented in Figure 1d
reveals that the two distinct lattice stripes are adjacent, with their plane spacing measuring
0.251 and 0.244 nm, respectively, corresponding to the (100) crystal plane of MoC and the
(101) crystal plane of CoO. Additionally, as shown in Figure 1e, element mapping analysis
of the NCCM nanorod reveals the uniform distribution of Co, Mo, C, O, and N throughout
the porous nanorod.
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(e) EDX elemental mapping images.

The formation of the NCCM heterojunction was confirmed through powder X–ray
diffraction (PXRD) analyses. Figure 2a displays the PXRD patterns of the NCCM, where all
diffraction peaks can be attributed to MoC (JCPDS No. 00–045–1015), CoO (JCPDS No. 01–
089–2803), and graphitized C. The chemical structure and coordination environment of the
NCCM heterojunction were confirmed by X–ray photoelectron spectroscopy (XPS), which
characterizes the composition and valence state of the NCCM. As depicted in Figure 2b,
the Co 2p deconvoluted peaks at 781.8 and 798.3 eV in the XPS spectrum are attributed
to Co 2p3/2 and Co 2p1/2, respectively. Compared to MOF–derived CoO, the binding
energy of Co 2p3/2 and Co 2p1/2 in N–doped porous C@CoO/MoC is positively shifted
by 0.9 eV and 1.8 eV, respectively [49]. Similarly, the Mo2+, Mo4+, and Mo6+ peaks in
N–doped porous C@CoO/MoC are positively shifted by 0.4, 0.3, and 2.2 eV with respect to
MOF–derived MoC [50] (Figure 2c). These results suggest that the electronic structure of
the N–doped porous C@CoO/MoC heterojunction is synergistically regulated. As shown
in Figure 2d–f, the O 1s peaks located at approximately 530.3, 531.2, and 532.8 eV and
the two peaks at 530.3 and 532.8 eV further confirm the successful formation of CoO, and
the peak at 531.2 ev corresponds to –C–O–C– [40]. The C 1s peaks located at about 284.4,
285.1, 286.3, and 288.8 eV might correspond to the Mo–C, C–C, C–O, C=O, and O–C=O
bonds, respectively [51]. The N 1s peaks observed at approximately 401.5, 400.1 eV, and
398.5 eV were assigned to graphitic N, pyrrolic–N, and pyridinic–N, respectively. These
findings imply that the coordination environment of Co and Mo can be tailored through
heterojunction formation, which effectively modulates the electronic structure of the active
site, thereby facilitating electrocatalysis.
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The specific surface area of a catalyst is a crucial indicator for evaluating its perfor-
mance. Therefore, nitrogen isothermal adsorption–desorption curves and specific surface
area were characterized for different catalysts. Figure S4 demonstrates that all catalysts
exhibit a type–IV isotherm, suggesting the existence of mesopores. NCCM–600 is composed
of N–doped carbon–coated interconnected nanocrystals with a more obvious hysteresis,
indicating the presence of additional mesoporous pores, which is consistent with the TEM
results. The specific surface areas of MOF–derived N–doped porous C@CoO/MoC, MOF–
derived CoO, and MOF–derived MoC are 137.92 m2·g−1, 35.63 m2·g−1. and 23.43 m2·g−1,
respectively. The significant increase in specific surface area facilitates faster ion diffusion in
the electrolyte and the efficient transport of reactive species, thereby effectively enhancing
electrocatalysis.

To elucidate the structural advantages of the MOF–derived N–doped porous
C@CoO/MoC heterojunction composite in electrocatalysis, we investigated the ORR per-
formance of these catalysts on a rotating disk electrode (RDE) in a 0.1 M KOH solution. The
cyclic voltammetry (CV) curves of the NCCM were compared in the N2– and O2–saturated
electrolyte, with Figure S5 showing a distinct cathodic peak at 0.84 V in the O2–saturated
electrolyte, indicating the remarkable ORR performance of NCCM–600. The ORR activity
of the as–synthesized catalysts was then confirmed by linear sweep voltammetry (LSV) at
1600 rpm. As presented in Figure 3a, NCCM–600 exhibits the preferable ORR activity with
an onset potential (E0) of 0.941 V and a half–wave potential (E1/2) of 0.841 V, which are
higher than those of MoC (E0 = 0.823 V, E1/2 = 0.718 V), CoO (E0 = 0.761 V, E1/2 = 0.622 V),
NCCM–500 (E0 = 0.723 V, E1/2 = 0.617 V), and NCCM–700 (E0 = 0.886 V, E1/2 = 0.822 V)
and approach to Pt/C (E0 = 0.990 V, E1/2 = 0.875 V). The Tafel slope of NCCM–600 was the
smallest (63.4 mV dec−1) of all the catalysts, manifesting superior ORR kinetics (Figure 3b).
Additionally, the kinetic parameters of the NCCM were studied by the LSV curves at
seven different rotation rates (Figure 3c,d), corresponding to the Koutecky–Levich (K–L)
curves. The calculated electron transfer number (n) is about 4 for NCCM–600, confirming
the four–electron ORR route for the catalytic process. In addition to catalytic activity, its
stability is also an essential parameter to evaluate the actual performance of the catalyst.
As shown in Figure 3e,f, after the introduction of methanol at 400 s, the ORR relative
current density of commercial Pt/C catalysts decreases rapidly, whereas the performance
of NCCM–600 remains virtually unchanged, demonstrating that NCCM–600 possesses
enhanced tolerance against methanol poisoning. Moreover, NCCM–600 maintained 91%
of its current density after 24 h of continuous operation, whereas Pt/C had significant
degradation with only 81% retention, indicating the better durability of NCCM–600 over
the Pt/C catalyst.
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addition of methanol, and (f) chronoamperometric responses acquired for ORR at NCCM–600 and
Pt/C electrodes at 0.6 V (vs. RHE).

In addition, the electrocatalytic performance of the catalysts for oxygen evolution reac-
tion (OER) was evaluated in a 1.0 mol/L KOH solution and compared with that of commer-
cial RuO2. Thanks to the interconnected heterojunction nanocrystals and N–doped porous
C, NCCM–600 has a similar overpotential (E10 = 0.348 V) versus RuO2 (E10 = 0.341 V), and
the corresponding Tafel plots confirmed that NCCM–600 was lower (Figure S6a,b). The
overpotential and Tafel confirm that the OER catalytic activity of NCCM–600 was bet-
ter than RuO2. The negligible overpotential loss of NCCM–600 is obtained after 26 h
(Figure S6c), demonstrating the remarkable long–term stability and durability. Moreover,
as depicted in Figure S7, electrochemical impedance spectroscopy (EIS) was performed to
explain the lower charge–transfer resistance of NCCM–600 compared to MOF–derived CoO
and MoC. The superior electrical conductivity may effectively enhance the electrocatalytic
process. The electrochemical surface area (ECSA) of different catalysts was evaluated
by testing the CVs of samples in a non–Faradaic potential range at various scan rates.
The Cdl value is directly proportional to the ECSA. The significantly superior ECSA of
NCCM–600 compared to CoO and MoC (Figure S8) indicates that NCCM–600 can expose
more active sites, thus exhibiting better catalytic activity.

Furthermore, in order to demonstrate the outstanding ORR and OER catalytic per-
formance of NCCM–600, a comparison was made between its ORR and OER catalytic
performance and that of previously reported non–precious metal bifunctional electrocata-
lysts. The ORR catalytic activity was evaluated by measuring the half–wave potential (E1/2),
while the OER catalytic activity was assessed by measuring the overpotential (E10). Accord-
ing to Table S1, NCCM–600 exhibits superior ORR catalytic performance and OER catalytic
activity compared to most Co–based and Mo–based compounds reported as bifunctional
electrocatalysts. The heterojunction structure plays a crucial role in optimizing the elec-
tronic structure of the catalyst, increasing its conductivity and active surface area, which
are essential for improving electrocatalytic performance. These results clearly demonstrate
the significantly improved multifunctional catalytic performance of NCCM–600 towards
both ORR and OER.
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A rechargeable Zn–air battery (ZAB) was assembled to demonstrate the practical
potential of the MOF–derived N–doped porous C@CoO/MoC heterojunction composite.
Figure 4a illustrates the schematic of the liquid ZAB, which employs a zinc plate as an
anode and a carbon fiber paper coated with NCCM–600 as a cathode electrode. The
NCCM–600–based ZAB exhibits an open–circuit voltage of 1.403 V (Figure 4b). As shown
in Figure 4c, the peak power density of the NCCM–600–based ZAB is significantly higher at
133.36 mW/cm2 compared to that of Pt/C–RuO2 (122.59 mW/cm2). At a current density of
50 mA·cm−2, the discharge and charge voltages of the NCCM–600 battery were measured
at 1.124V and 2.127 V, respectively, which are similar to those observed for Pt/C+RuO2–
based ZABs (Figure S9). Additionally, the superior heterojunction catalyst provides a stable
galvanostatic discharge property for ZAB. The NCCM–600–based ZAB possesses a higher
specific capacity of 778.45 mAh/g compared to Pt/C+RuO2–based ZAB with 747.38 mAh/g
(normalized by the total mass of consumed Zn). Moreover, the NCCM–600–based ZAB
exhibits exceptional cycling stability when repeatedly charged and discharged for more
than 650 h (650 cycles, one cycle for 60 min) without any significant drop in overpotential
(Figure 4e). This further demonstrates the high promise of MOF–derived N–doped porous
C@CoO/MoC heterojunction composite for rechargeable ZAB applications.
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Figure 4. (a) Schematic illustration of configuration of the rechargeable ZAB using NCCM–600 as the
air cathode, ZAB based on NCCM–600 and Pt/C+RuO2 (b) Open–circuit voltage, (c) Power density
curves, (d) Specific capacity normalized by the total mass of consumed Zn, (e) Discharge and charge
voltage profiles at the current density of 10 mA cm−2.

4. Conclusions

In summary, we have developed a facile strategy for the preparation of uniformly
dispersed rod–like porous N–doped C–loaded CoO/MoC heterojunction bifunctional
catalysts with high catalytic activity and stability. The optimal NCCM–600 catalyst ex-
hibits impressive bifunctional electrocatalytic activity with a high–wave half potential
(E1/2 = 0.841 V) for ORR and a low overpotential (E10 = 348 mV) for OER, accompanied
by excellent stability. The exceptional practical applicability and electrocatalytic activ-
ity of the NCCM–600 catalyst are further revealed by its performance in a liquid ZAB.
The constructed ZAB based on an NCCM–600 cathode achieves a peak power density of
133.36 mW cm−2 and a prolonged cycling life of more than 650 h. This synthetic strategy
is particularly noteworthy as it significantly contributes to the expansion of nano/micro–
structures in transition–metal–based heterostructure catalysts, thereby opening up av-
enues for developing functional materials with enhanced properties across a wide range
of applications.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9060306/s1, Figure S1: (a) XRD patterns, (b) SEM images,
and (c) EDX elemental mapping images of Co/Mo MOF; Figure S2: Full–survey XPS spectra of the
CoO/MoC@N/C heterojunction composite; Figure S3: SEM images and XRD patterns of (a,b) Mo
MOF–derived MoC and (c,d) Co MOF–derived CoO; Figure S4: Nitrogen adsorption–desorption
isotherms and corresponding pore–size distribution of (a) NCCM–600, (b) Co MOF–derived CoO, and
(c) Mo MOF–derived MoC; Figure S5: (a) CV curves of CoO/MoC@N/C heterojunction composite in
0.1 m KOH saturated with O2 and N2; Figure S6: (a) Linear sweep voltammetry (LSV) curves and
(b) corresponding Tafel plots of NCCM–500, NCCM–600, NCCM–700, commercial RuO2 and CoO
(c) The stability of polarization curves of the NCCM–600; Figure S7: Nyquist plots of MOF–derived
N–doped porous C@CoO/MoC heterojunction composite, MOF–derived MoC and MOF–derived
CoO; Figure S8: CV curves of prepared (a) NCCM–600, (b) CoO, and (c) MoC in 1 M KOH at different
scan rates. (b) Charging current density differences plotted against scan rate of the electrodes. The
linear slope was used to represent the ECSA; Figure S9: Charge and discharge polarization curves
of the fabricated Zn–air battery; Table S1: Comparison of the overpotentials for ORR (at E1/2) and
OER at (10 mA cm−2) of the prepared CoO/MoC@N/C heterojunction composite and other reported
bifunctional electrocatalysts. References [52–62] are mentioned in the Supplementary Materials.
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