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Abstract: Ionic conductive hydrogels with good conductivity and biocompatibility have become
one of the research highlights in the field of wearable flexible sensors and supercapacitors. In this
work, poly(methacrylic acid–methyl methacrylate)-reinforced poly(sodium acrylate–vinyl phospho-
nic acid) composite hydrogels (P(AAS-VPA)/PMMS) were designed and tested for strain sensor
or supercapacitor applications. The results showed recoverability for 20 cycles of tension and com-
pression experiments, an excellent breaking strain of 2079%, and ionic conductivity of 0.045 S·cm−1,
demonstrating strong support for the application of the P(AAS-VPA)/PMMS hydrogel in strain
sensors and supercapacitors. The composite hydrogel exhibited outstanding sensing and monitoring
capability with high sensitivity (GF = 4.0). The supercapacitor based on the P(AAS-VPA)/PMMS
composite hydrogel showed excellent capacitance performance (area capacitance 100.8 mF·cm−2

and energy density 8.96 µWh·cm−2) at ambient temperature and even −30 ◦C (25.3 mF·cm−2

and 2.25 µWh·cm−2). The hydrogel has stable electrochemical stability (1000 cycles, Coulomb
efficiency > 97%) and exhibits electrochemical properties similar to those in the normal state under dif-
ferent deformations. The excellent results demonstrate the great potential of the P(AAS-VPA)/PMMS
composite hydrogel in the field of strain sensors and flexible supercapacitors.

Keywords: supercapacitors; latex particles; sensitivity; capacitance performance

1. Introduction

With the development of science and technology, people are increasingly pursu-
ing convenient lifestyles, which has led to an increasing emphasis on flexible electronic
devices [1–3]. To create truly lightweight flexible electronic devices, the importance of two
of these devices, wearable sensors [4,5] and flexible energy storage devices [6–8], cannot be
overemphasized. The supercapacitor as an energy storage device has the benefits of fast
charging and discharging rate, long-term service life, and high-power density compared
with traditional batteries [9,10], which indicates that the application of the supercapaci-
tor in supplying energy to flexible electronic devices has great potential. Strain sensors
need to respond to externally applied deformation through changes in their resistance or
capacitance [11,12]. As a result, strain sensors are required to have high sensitivity, high
tensile strength, stability, and fast response speed; these features now form the mainstream
direction of strain sensor design [13]. In contrast, conventional strain sensors have a maxi-
mum tensile strain of up to 5% and a GF value of up to 2 [14]. Obviously, these properties
are no longer sufficient to meet people’s needs. Liu et al. [15] reported a stretchable strain
sensor based on carbon nanotubes (CNT)/silver nanowires (AgNW) capable of reaching a
GF value of 6.7 with good durability (>1000 tensile cycles) and good response and recovery
speeds (420 ms and 600 ms, respectively) for the measurement of finger movements. More-
over, PENG et al. [16] reported a novel multi-walled carbon nanotube (MWCNT)/ordered
mesoporous carbon (OMC) composite fiber, which has the advantages of being lightweight
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and features of conductivity and flexibility. The authors’ team twisted two composite fibers
to produce a wire-like double-layer capacitor with a specific capacitance of 39.7 mF·cm−2,
an energy density of 1.77 µWh·cm−2, and a maximum power density of 0.43 µW·cm−2. The
above-mentioned materials used in sensors and supercapacitors are poorly stretched and
do not adhere well to the surface of the material; therefore, the above-mentioned problems
must be solved to achieve the manufacture of truly flexible electronic devices.

Hydrogels have good stretchability, adjustable hydrogel strength, and flexibility, which
can be used to improve the flexibility of sensors and energy storage devices, and can
be designed to obtain other excellent properties. Therefore, there is an urgent need to
investigate hydrogel electrolytes with better flexibility. Zhu et al. [17] reported a hydrogel-
based electronic skin composed of polyvinyl alcohol, citric acid, and silver nanoparticles,
which has good tensile properties (596% strain) and a strain sensitivity of GF = 1.6 (0–200%
strain), and it can monitor various human movements well. Jiang et al. [18] reported
a hydrogel electrolyte prepared by introducing 2-acrylamido-2-methylpropanesulfonic
acid (AMPS) monomer and Gly into a polyvinyl alcohol/polyacrylamide (PVA/PAM)
double network hydrogel. This hydrogel electrolyte has a conductivity of up to 3.85 S·m−1.
The authors’ team prepared a hydrogel-based supercapacitor by coating carbon nanotube
dispersions on the surface of the hydrogel electrolyte, which has a high specific capacity of
85.25 mF·cm−2 at a current density of 0.5 mA·cm−2.

In this study, to expand the application of flexible hydrogel electrolytes in the field of
sensors and supercapacitors, poly (methacrylic acid–methyl methacrylate) [19] (referred to
as PMMS) inter-entangled copolymer clusters as the physically crosslinked network were
introduced into a chemically cross-linked poly (sodium acrylate–vinyl phosphonic acid)
(P(AAS-VPA)) copolymer network to reinforce the flexibility and adhesion performance
of the polyelectrolyte. The addition of VPA as the comonomer aims to provide stronger
adhesion and ion transport capacity. The P(AAS-VPA)/PMMS composite hydrogel demon-
strated high sensitivity (GF = 4.0) and excellent sensing and monitoring abilities, allowing
it to quickly monitor a variety of human movements. The supercapacitor with excellent
electrochemical performance and low-temperature resistance (−30 ◦C) was prepared by
binding of the polyaniline layer onto the hydrogel surface using the deposition–oxidation
method. The advantages mentioned above greatly expand the scope of the application
of poly (sodium acrylate)-based composite hydrogels in flexible sensors and supercapac-
itors. A supercapacitor with excellent electrochemical properties (at a current density of
0.2 mA·cm−2, area capacitance 100.8 mF·cm−2, and an energy density of 8.96 µWh·cm−2)
and low-temperature resistance (−30 ◦C, 25.3 mF·cm−2 and 2.25 µWh·cm−2) was prepared
by combining a polyaniline layer onto the hydrogel surface using the deposition–oxidation
method. The gel has stable electrochemical stability (1000 cycles, Coulomb efficiency > 97%)
and exhibits electrochemical properties similar to those in the normal state under different
deformations. The above advantages greatly extend the scope of the application of poly
(sodium acrylate)-based composite hydrogels in flexible sensors and supercapacitors.

2. Materials and Methods
2.1. Materials

Sodium acrylate (AAS, >95%), vinyl phosphonic acid (VPA, >95%), and anhydrous
lithium chloride (LiCl, 99%) were purchased from Macklin Biochemical Technology Co.,
Ltd., (Shanghai, China). N,N’-Methylene bisacrylamide (MBA, AR), ammonium persulfate
(APS, AR), tetramethylenediamine (TEMED, 99%), and Aniline (ANI, 99.5%) were pur-
chased from Aladdin Chemical Co., Ltd., (Shanghai, China). Sodium hydroxide (NaOH)
was purchased from Colon Chemicals Co., Ltd., (Chengdu, China). Perchloric acid (HClO4,
AR) was purchased from Sinopharm Chemical Reagent Co., Ltd., (Shanghai, China). PMMS
was synthesized according to the previous report [19] in our group. All the reagents were
used with no further purification. The water used for the experiments was deionized water.
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2.2. Preparation of the P(AAS-VPA)/PMMS Composite Hydrogel

The P(AAS-VPA)/PMMS composite hydrogel was prepared via free radical poly-
merization. As shown in Scheme 1, firstly, sodium acrylate, VPA, MBA, and dispersed
PMMS particles were added into 40 w/v% of LiCl solution and stirred to form a uniform
mixture. Second, NaOH solution was added drop by drop to adjust the pH value to 11 with
vigorous stirring. After dripping, stirring was continued for 3 h to ensure the complete
transformation of the PMMS particles into the copolymer clusters (Figure S1). Finally, the
set amount of APS was added, and the mixture was quickly injected into a cylindrical glass
mold measuring 26 mm in diameter and 20 mm high and placed at 60 ◦C for 10 h to obtain
the stable P(AAS-VPA)/PMMS composite hydrogel.
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2.3. Fabrication of Supercapacitors

The preparation of supercapacitors referred to the method reported in the literature.
An amount of 93 mg (1 mmol) of aniline was added into 40 mL of perchloric acid solution
(Vperchloric acid:Vwater = 1:11), and 59 mg (0.26 mmol) of APS was dissolved in 10 mL of the
same proportion of perchloric acid solution at 0 ◦C. The P(AAS-VPA)/PMMS composite
hydrogel was immersed in prepared aniline solution for 0.5 h before the APS solution was
added, and then it was stirred continuously for 24 h at room temperature to ensure the
formation of a complete PANI layer on the surface of the hydrogel. Then, the edges of
the hydrogel with the PANI layer were cut off, and a sandwich-like supercapacitor was
fabricated.

To investigate the effect of the thickness of the PANI layer on the sandwich-like super-
capacitor, different concentrations of aniline solutions (93 mg, 186 mg, and 279 mg) and
corresponding supercapacitors were prepared and named as follows: SuperC-1, SuperC-2,
and SuperC-3. Carbon cloth electrodes and platinum wires were employed to measure the
electrochemical performance of the supercapacitor assembled by the P(AAS-VPA)/PMMS
composite hydrogel with the PANI layer, and the hydrogel was cut into a cuboid measuring
40 mm in length, 15 mm in width, and 3 mm in height.
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2.4. Characterization Testing
2.4.1. Mechanical Performance Test

Tensile test: For the tensile test, the hydrogel samples were prepared into dumbbell-
shaped samples with a length of 20 mm, a width of 4 mm, and a thickness of 2 mm in
PTFE molds. The hydrogels were stretched at a uniform rate of 500 mm/min on a UTM
2202 universal testing machine with a maximum load of 200 Nm. Each sample was tested
three times in a parallel manner. The modulus of elasticity was defined as the slope of the
initial linearity of the stress–strain curve. Toughness was calculated from the integral area
of the stress–strain curve; meanwhile, the dissipative energy was defined as the difference
between the integral area of the loading curve and that of the unloading curve. In addition,
cyclic tensile testing was carried out at a tensile speed of 200 mm/min.

Compression test: The sample size was a 16 mm diameter cylindrical hydrogel. The
hydrogel samples were subjected to single and cyclic compression at a compression rate of
3 mm/min on a UTM2202 universal testing machine with a load of 200 N. Each hydrogel
sample was tested at least three times in parallel.

2.4.2. Adhesion Performance Test

The hydrogel sample was made into a sheet measuring 110 mm in length, 15 mm
in width, and 3 mm in height, and subjected to a 90◦ adhesion peel test with a UTM2202
universal testing machine at a speed of 100 mm/min. Before the testing, the backside of
the hydrogel sample was immobilized on a polyurethane film to restrict its distortion along
the tensile direction; the alternative side was firmly adhered to the substrate under test
(rubber, aluminum sheet, plastic, and polytetrafluoroethylene). Prior to testing, a weight of
about 800 g was put on the samples and held for 10 min in order for the hydrogel samples
to strongly adhere to the surface of the substrate. Each sample was tested at a minimum of
six parallel times and the averages were calculated.

2.4.3. Conductivity Test

The ionic conductivity of the hydrogels was investigated via electrochemical impedance
spectroscopy (EIS). The hydrogel was placed between two nickel foam electrodes and
impedance data were collected with a CHI660E electrochemical workstation in the fre-
quency range from 105 Hz to 10−2 Hz at 25 ◦C. The conductivity of the hydrogel was
calculated according to the following Equation (1):

δ = L/(Rb × S) (1)

The thickness is L, Rb is the volume resistance, which is obtained from the impedance
data, and S is the area of contact between the hydrogel and the electrode. We repeated the
test at least six times for each sample and the average value was taken.

2.4.4. Sensing Performance Test

The P(AAS-VPA)/PMMS hydrogel was assembled into a simple strain sensor by
connecting two wires directly to it, and the sensing performance was tested by applying
the hydrogel parts directly to the fingers, wrist, elbow, knee, and throat of the volunteer,
respectively. The experimental voltage at 0.03 V was fixed, and the current changes during
human joint movements as well as speech and swallowing were monitored with a CHI660E
electrochemical workstation. The evaluation of the sensing performance of the hydrogel
was performed according to the following Equation (2):

∆I/I0 =[(I − I0)/I0]× 100% (2)

The I and I0 represent the immediate current values of the hydrogel when strain is
applied and when no strain is imposed, respectively.
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In addition, hydrogels were characterized for strain sensing sensitivity by measuring
the resistance values of hydrogels under different tensile strains. The strain sensitivity is
calculated according to the following Equation (3):

GF = [(R − R0)/R0]/ε (3)

where R and R0 are the values of the resistance of the hydrogel before and after the
stretching, respectively, and ε is the imposed strain.

2.4.5. Capacitance Performance Characterization

The performance of the supercapacitor with a two-electrode structure was evaluated
using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and constant
current charge/discharge (GCD) techniques with a CHI660e electrochemical workstation
(Tatsuhwa Instruments Co., Ltd., China).

In addition, the supercapacitors were kept at −30 ◦C, 0 ◦C, and 25 ◦C for 12 h before
performing low-temperature electrochemical measurements. The specific capacitances
reported in this study are all area-specific capacitances of the electrodes.

The area-specific capacitance (CA, mF·cm−2) of the supercapacitor was calculated
according to Equation (4):

CA = 2·I·∆t/(A·∆V) (4)

where I, ∆t, A, and ∆V represent the discharge current (mA), the discharge time (s), the
area of the hydrogel electrolyte (cm2), and the changing voltage (V) during the discharge,
respectively.

The energy density (EA, µWh·cm−2) of the supercapacitor was calculated according
to Equation (5):

EA =
1
2
·CA·∆V2·1000

3600
(5)

The power density (PA, µW·cm−2) of the supercapacitor was calculated according to
Equation (6):

PA = EA/∆t (6)

3. Results and Discussion
3.1. The Preparation of the P(AAS-VPA)/PMMS Composite Hydrogel

In this work, we selected sodium acrylate (AAS) as the major monomer, ethylene
phosphoric acid (VPA) as the co-monomer, and a small amount of MBA as the crosslinking
agent; the polyelectrolyte network of P(AAS-VPA) was formed through radical polymer-
ization. PAAS is a well-known environment-friendly polyelectrolyte commonly used as a
water treatment agent to complex toxic metal ions and is used as a surfactant or thickener in
foods to enhance the protein viscosity in raw starch and the viscoelasticity of food. VPA is a
non-toxic, water-soluble functional monomer; the phosphonic acid group of VPA is univer-
sal adhesion [20]. VPA can adhere to diverse substrates, and has the function of promoting
cell adhesion and proliferation; as such, VPA is often used as an important component in
biomaterials for cell culture and tissue repair [21]. The addition of VPA can also enhance
the mechanical properties and ionic strength of materials [22]. PMMS is referred to as poly
(methacrylic acid–methyl methacrylate), which is a soft tissue repair material [23]. Here,
PMMS is used as a physical crosslinked network to increase the toughness and deformation
recoverability of polyelectrolyte hydrogels.

3.2. Flexibility and Recoverability of the P(AAS-VPA)/PMMS Composite Hydrogel

Flexibility and recoverability are two important factors to evaluate whether conductive
hydrogels can be used as flexible sensors or supercapacitors. As shown in Figure 1b, the
P(AAS-VPA)/PMMS composite hydrogel can still maintain integrity after being stretched
to five times the original length. It can also withstand various types of deformation such
as knotting, stretching after knotting, and bending in half. Even after being uniaxially
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compressed to 1/5 of its original height, it would immediately return to its original height
once unloaded. These results show that the P(AAS-VPA)/PMMS composite hydrogel
has excellent elasticity and toughness. The tensile test results showed that the P(AAS-
VPA)/PMMS composite hydrogel achieved a high tensile strength of 0.56 MPa with a
maximum elongation of 2100%, (Figure 1d); meanwhile, the hydrogel demonstrated a high
compressive modulus of 0.83 MPa (Figure 1g).
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Figure 1. Mechanical properties of the P(AAS-VPA)/PMMS composite hydrogel: (a) SEM image of
the initial lyophilized hydrogel; (b) optical photographs of the hydrogels under tensile, knotting,
bending, and compression; (c) SEM image of the lyophilized hydrogel stretched to 7 times the initial
length; (d) tensile stress–strain curve; (e) tensile loading–unloading curves at different strain% (200,
400, 600, 800, and 1000); (f) 20 consecutive cycles of tensile loading–unloading at 1000% of strain;
(g) compressive stress–strain curve; (h) compression loading–unloading curves at different strain%
(10, 20, 30, 40, 50, 60, 70, and 80); and (i) 20 consecutive cycles of compression at 85% of the strain.

To explore the fatigue resistance and deformation recoverability of the P(AAS-VPA)/
PMMS composite hydrogel, cyclic tensile and compression tests were also conducted. The
loading–unloading experimental results at different tensile strains (Figure 1e) showed that
the dissipation energy represented by the hysteresis loop area was magnified significantly
with the strain increasing from 200% to 1000%. A total of 20 consecutive cyclic loading–
unloading tests at 1000% of the tensile strain were conducted. The results show that
except for the obvious hysteresis loop in the first loading–unloading cycle, the hysteresis
loops were very small and highly overlapping in the subsequent loading–unloading cycles
(Figure 1f). During the first loading–unloading experiment, the internal structure of the
prepared hydrogel was not complete and some intermolecular interactions and even
chemical bonds were destroyed; as a result, after unloading, some energy was dissipated.
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In the subsequent loading–unloading cycles, the physical entanglement between PMMS
clusters played a role in maintaining the stability of the gel network structure to maintain
the hydrogel’s good tensile deformation recoverability and fatigue resistance.

The results of the compression stress–strain curve and compression loading–unloading
cycle experiments of the P(AAS-VPA)/PMMS composite hydrogel are similar to those of
the tensile tests (Figure 1h,i). The hysteresis loops enlarged with compression strain,
increasing from 10 to 80%. Setting the compression strain at 85%, the results of 20 cyclic
compression loading–unloading experiments showed that except for the first cycle, the
hysteresis loops of all other cycles basically overlapped. It was further confirmed that the
P (AAS-VPA)/PMMS composite hydrogel has excellent deformation recoverability and
fatigue resistance.

In order to observe whether the internal structure of the P(AAS-VPA)/PMMS hydrogel
is broken, SEM was conducted on the stretched hydrogel sample. After being stretched to
seven times the initial length, the hydrogel was immediately immersed in liquid nitrogen
to freeze. It was observed via SEM after freeze drying. Compared with the initial hydrogel
(Figure 1a), after being stretched, the hydrogel exhibited an obvious tensile orientation
(Figure 1c), but no micro-fracture was observed under a magnification of 1000 times, which
indicates that the hydrogel has very good tensile deformation ability and structural stability.

3.3. Adhesion Properties of the P(AAS-VPA)/PMMS Composite Hydrogel

It is well known that suitable self-adhesive force is very important for conductive
hydrogels to ensure that mechanical signals are stably converted into electrical signals [24].
In this work, VPA units introduced into the conductive hydrogel system not only effectively
enhanced the mechanical properties of the hydrogel, but also imparted self-adhesive
properties to the hydrogel. As shown in Figure 2a,b, the P(AAS-VPA)/PMMS composite
hydrogel can firmly adhere to various substrates such as metal, glass, plastic, wood,
rubber, and so on. By reason of the self-adhesive force, the cylindrical hydrogel sample
with a diameter of 1 cm can easily lift a 480 g weight or other objects. In addition, the
P(AAS-VPA)/PMMS composite hydrogel also showed considerable adhesion properties to
skin tissues.

To further investigate the adhesion properties, the adhesion effect of the hydrogel on
different substrates was investigated via the 90◦ peeling method (Figure 2c,d). The hydrogel
showed differential adhesion strength to different substrates, for example, 128 N/m to
PTFE, 191.2 N/m to an aluminum plate, 256 N/m to epoxy resin, and 384 N/m to silicon
rubber.

These results are mainly due to the fact that the P(AAS-VPA)/PMMS composite hy-
drogel contains a large number of carboxylate groups, phosphonic hydroxyl groups, ester
groups, and hydrophobic carbon chains, which can form different interactions, such as
hydrogen bonds, coordination bonds, dipole–dipole interactions, and so on. Between
the hydrogel and the substrates, especially, the phosphonic groups in the VPA units
have been widely considered to form hydrogen bonding interactions, ionic bonding in-
teractions, dipole–dipole interactions, and other interactions with different groups [20],
for example, forming ionic bonding interactions and dipole–dipole interactions with the
aluminum plate.

More importantly, the hydrogel has a reversible adhesion property on the surface of
the matrix, which is different from the irreversible adhesion of the traditional tape. Here,
90◦ adhesion peel cyclic tests were conducted using an aluminum plate as the substrate.
The results (Figure 2e) showed that the P(AAS-VPA)/PMMS composite hydrogel exhibited
excellent reversible adhesion properties during the experiments, and the adhesion strength
of 10 cycles varied between 180 N/m and 190 N/m. Considering operational errors, the
P(AAS-VPA)/PMMS composite hydrogel almost maintains the original peeling adhesion
strength, which indicates that reversible and lasting adhesion can be achieved between the
hydrogel and the metal aluminum substrate through dynamic interactions. This durable
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and excellent adhesion performance lays a solid foundation for the application of P(AAS-
VPA)/PMMS composite hydrogels in artificial intelligence and biomedical fields.
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Figure 2. Adhesion performance of the P(AAS-VPA)/PMMS composite hydrogel: (a) optical pho-
tographs of the hydrogel adhering to different substrates; and (b) optical photographs of the perfor-
mance of the hydrogel adhering to the fingers and experiencing a loading–unloading tensile cycle on
the fingers; (c) 90◦ adhesion peel test of the hydrogel on different substrates (PTFE, aluminum plate,
plastic, and rubber); (d) the corresponding adhesion peeling strengths; and (e) 10 cycles of adhesion
peeling strength tests using aluminum sheet as the sample substrate.

3.4. Sensing Properties of the P(AAS-VPA)/PMMS Composite Hydrogel

As shown in Figure 3a, when the composite hydrogel was connected to a closed circuit
containing a diode (LED), the LED bulb was successfully lit. This indicates that the ionic
hydrogel of P(AAS-VPA)/PMMS has the function of conducting electricity. The ionic con-
ductivity of the P(AAS-VPA)/PMMS hydrogel was carefully investigated via electrochemi-
cal impedance spectroscopy (EIS) (Figure 3b). It is generally believed that in the Nyquist
plot in the EIS, the semicircle under high frequency reflected the charge transfer resistance
and the straight lines under low frequency reflected the charge diffusion process [25].
Controlled by the charge diffusion, the Nyquist plot of the P(AAS-VPA)/PMMS hydrogel
presented a straight line, and the slope was higher than 45◦, possibly because of the interface
capacitance [26]. According to the Nyquist plot and Formula (1) δ =L/(Rb × S), the cal-
culated ionic conductivity of the optimized P(AAS-VPA)/PMMS composite hydrogel
achieved a value as high as 0.045 S·cm−1.

The excellent deformation recoverability, fatigue resistance, universal adhesion, and
outstanding ionic conductivity of the P(AAS-VPA)/PMMS composite hydrogel provide
an opportunity for its application as a strain sensor. Therefore, the sensing performance
of the composite hydrogel was preliminarily investigated at different strains. The strain
sensing performance was evaluated according to the change in relative current (∆I/I0,
the change in strain causes the change in hydrogel resistance and, further, the change in
current) (Figure 3c). The ∆I/I0 value increased with increasing tensile strain; meanwhile,
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for the same strain, the ∆I/I0 value reversibility changed with loading–unloading cycles.
These results indicate that the P(AAS-VPA)/PMMS composite hydrogel can be applied to
strain sensors and is capable of monitoring and differentiating strain changes with high
reliability.
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Figure 3. Sensing properties of the P(AAS-VPA)/PMMS composite hydrogel: (a) optical photographs
of the hydrogel connected to a closed circuit to light a diode; (b) EIS of the hydrogel with the frequency
varying between 105 Hz and 10-2 Hz; (c) strain sensing performance of the hydrogel under different
tensile deformations; (d) sensitivity factor (GF) of the hydrogel for the strain sensor in the range
of 0~300% of the strain; (e) response and recovery times of the hydrogel sensor with tensile strain
loading–unloading; and (f) 1000 consecutive cycles of tensile loading–unloading at 100% of the strain.

The ∆R/R0 (i.e., GF = [(R − R0)/R0]/ε) was commonly used to represent the sensing
sensitivity in the literature [27,28]. The ∆R/R0 values increased almost linearly with the
strain in the range of 0–300% (Figure 3c). The GF value gradually increased from 1.4 at low
strains (0–50%) to 2.0 at medium strains (~150%), and then to 4.0 at the higher strain (300%),
which indicates that the P(AAS-VPA)/PMMS composite hydrogel has a high degree of
strain sensitivity, even when subjected to a tiny strain.

In addition, the hysteresis behavior of hydrogel sensing was also studied. Taking
into account the large hysteresis loop in the first cyclic tensile test in Figure 1d, before the
preparation of the strain sensor, the P(AAS-VPA)/PMMS composite hydrogel samples
were treated with one cyclic tensile. We found that the response and recovery times of
the hydrogel were 215 ms and 360 ms, respectively, within a loading–unloading cycle
(Figure 3e). Moreover, 1000 consecutive tensile cycles were conducted and no evident
signal degradation was observed (Figure 3f), which indicates that the P(AAS-VPA)/PMMS
composite hydrogel sensor has very high sensitivity and responsiveness and has great
potential for real-time monitoring of the full range of human activities.

Because of the excellent adhesion property of the P(AAS-VPA)/PMMS composite
hydrogel, it can be easily attached to different locations on the human body, such as fingers,
wrists, larynx, knee joints, and other areas with complex shapes. Figure 4a–d show that
P(AAS-VPA)/PMMS composite hydrogel sensors adhered to the joint parts of fingers,
wrists, arms, and knees, respectively, to monitor the ∆I/I0 value changes during recurrent
joint movements. Whether the bending motion of small joints, such as the finger joint
(Figure 4a) and wrist joint (Figure 4b), or the bending motion of large joints, such as the
elbow joint (Figure 4d) and knee joint (Figure 4c), the same bending degree demonstrated
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the same ∆I/I0 value in cyclic bending movements, and the ∆I/I0 curves exhibited periodic
repetition with the motion frequency. Interestingly, different joint movements formed
different peaks at the ∆I/I0 curves, which further explains the unique sensitivity of the
P(AAS-VPA)/PMMS composite hydrogel sensor.
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Figure 4. Sensing performance of the P(AAS-VPA)/PMMS composite hydrogel for real-time monitor-
ing of human joint movements and physiological activities: (a) finger bending; (b) wrist bending;
(c) elbow bending; (d) knee bending; (e) throat swallowing; and (f) throat vocalization.

More importantly, P(AAS-VPA)/PMMS composite hydrogel-based strain sensors
can not only accurately distinguish and monitor relatively large joint bending or relax-
ation movements, but also efficiently and stably monitor small amplitude strains (such as
swallowing movements and throat vocalizations). As shown in Figure 4e,f, the P(AAS-
VPA)/PMMS composite hydrogel strain sensors were capable of stably monitoring swal-
lowing movements, as well as vocalizations, such as speaking the words “Hi”, “OK”,
“hydrogel”, “evening”, and “speaking”. Different words have different ∆I/I0 values and
peak curves, so the P(AAS-VPA)/PMMS composite hydrogel sensor can accurately trans-
mit voice information. Therefore, the P(AAS-VPA)/PMMS composite hydrogel strain
sensor shows a promising application for wearable electronic devices to monitor human
movement and health.

From the sensing signals, it can be seen that the P(AAS-VPA)/PMMS composite
hydrogel sensor has obvious sensing hysteresis behavior. This hysteresis behavior is due
to the typical viscoelastic behavior of the hydrogel, which can eventuate signal hysteresis
and fluctuations, leading to a decrease in sensing performance [29]. The analysis of the
composition of the P(AAS-VPA)/PMMS hydrogel showed that it contains PMMS clusters
and VPA structural units. PMMS clusters provide the hydrogel with plastic deformation
ability, but they delay the elastic recovery of the hydrogel (Figure S3a–c). VPA structural
units enhance the adhesion behavior of the hydrogel, but they also increase the viscosity of
the hydrogel and further delay the elastic recovery.

3.5. Capacitive Properties of the P(AAS-VPA)/PMMS Composite Hydrogel

An ionic conductive hydrogel with excellent recoverability, flexibility, and ionic con-
ductivity is an ideal quasi-solid electrolyte for assembling a flexible supercapacitor [30].
In this work, a P(AAS-VPA)/PMMS composite hydrogel with optimized composition as



Batteries 2023, 9, 304 11 of 16

a quasi-solid electrolyte was selected to construct a simple “sandwich” supercapacitor
consisting of the P(AAS-VPA)/PMMS composite hydrogel with polyaniline deposited on
the surfaces, with the edges cut off to avoid short circuit (Figure 5a), and two pieces of
carbon cloth tightly attached to the upper and lower surfaces. The cross-sectional photo
clearly presents the deposition and penetration of polyaniline onto the P(AAS-VPA)/PMMS
composite hydrogel. The structure of the P(AAS-VPA)/PMMS composite hydrogel with
polyaniline deposited on the surfaces was confirmed by the observation results obtained
via optical microscope and SEM (Figure 5b,c).

Batteries 2023, 9, 304 12 of 17 
 

 
Figure 5. Capacitive performance of the P(AAS-VPA)/PMMS composite hydrogel at different PANI 
depositions: (a) Schematic cross-section of the hydrogel/PANI capacitor; (b) optical microscope im-
age and (c) the cross-sectional SEM image of the in situ generated polyaniline layer on the hydrogel 
electrolyte; (d–f) CV curves of SuperC-1, SuperC-2, and SuperC-3 with the scanning rate changing 
from 5 mV·s−1 to 100 mV·s−1, respectively; and (g–i) GCD curves of SuperC-1, SuperC-2, and SuperC-
3 at a current density range of 0.2 to 5.0 mA·cm−2. 

The transport process of the charge in the device can be studied by the EIS (Figure 
6a). The intercept on the Z’ axis in the Nyquist plot indicates the capacitor resistance. As 
the aniline content increases, it makes the aniline-containing layer containing the hydrogel 
electrolyte loaded by the hydrogel thicker, causing the distance between the two electrode 
sheets to decrease, which makes the diffusion resistance decrease and shows an increase 
in the slope of the curve in the Figure, as shown in Figure 6a [32]. 

There are two main mechanisms of energy storage for a similar CV curve as in Figure 
5d–f: one is a Faraday process, which can also be called a Faraday contribution (redox 
reaction occurs), and the other is a non-Faraday process, which can similarly be called a 
non-Faraday contribution (reversible charge storage for double-layer capacitance) [33–35]. 
In order to understand the electron storage mechanism in our supercapacitor, the rela-
tionship between the peak current (i ) and its scan rate (ν) in the GCD curve is analyzed 
according to Equation (7): 

i = aν  (7)

where a and b are variables. 
Taking Equation (7) into logarithmic form yields Equation (8): 

Logi = bLogν + Loga (8)

Figure 5. Capacitive performance of the P(AAS-VPA)/PMMS composite hydrogel at different PANI
depositions: (a) Schematic cross-section of the hydrogel/PANI capacitor; (b) optical microscope
image and (c) the cross-sectional SEM image of the in situ generated polyaniline layer on the hydrogel
electrolyte; (d–f) CV curves of SuperC-1, SuperC-2, and SuperC-3 with the scanning rate changing
from 5 mV·s−1 to 100 mV·s−1, respectively; and (g–i) GCD curves of SuperC-1, SuperC-2, and
SuperC-3 at a current density range of 0.2 to 5.0 mA·cm−2.

The electrochemical properties of supercapacitors were characterized using cyclic
voltammetry (CV), constant current charge–discharge (GCD), electrochemical impedance
spectroscopy (EIS), and cycling stability.

As seen from Figure 5d–f, the CV curves of all of the P(AAS-VPA)/PMMS hydrogels
with different PANI depositions, named SuperC-1, SuperC-2, and SuperC-3, show signif-
icant redox peaks within the scanning rate variation range of 5 to 100 mV·s−1, which is
due to the typical pseudocapacitive behavior of PANI [31]. The capacitive performances of
SuperC-1, SuperC-2, and SuperC-3 were also performed via the GCD curve evaluation at
the current density range of 0.2 to 5.0 mA·cm−2 (Figure 5g–i). All of the GCD curves were
approximately triangular, which is the typical performance of a double-layer capacitor [31].
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In order to compare the effect of polyaniline on the electrochemical properties of super-
capacitors, using the drying and gravimetric method, the loading mass of the polyaniline
of the supercapacitors was calculated by the deposition amount of polyaniline per square
centimeter of hydrogel surface. There was 3.43 mg·cm−2 of polyaniline on the surface of
SueperC-1, 4.25 mg·cm−2 on that of SueperC-2, and 6.61 mg·cm−2 on that of SueperC-3,
respectively.

The transport process of the charge in the device can be studied by the EIS (Figure 6a).
The intercept on the Z’ axis in the Nyquist plot indicates the capacitor resistance. As the
aniline content increases, it makes the aniline-containing layer containing the hydrogel
electrolyte loaded by the hydrogel thicker, causing the distance between the two electrode
sheets to decrease, which makes the diffusion resistance decrease and shows an increase in
the slope of the curve in the Figure, as shown in Figure 6a [32].

Batteries 2023, 9, 304 13 of 17 
 

The different scan rates and their corresponding peak currents were brought into 
Equation (8), and their sca er plots were drawn with Logν and Logi  as the independent 
and dependent variables. The data were linearly fit with OriginLab to derive the values of 
a and b. 

According to the analysis in Mr. Bruce Dunn’s article [36], the observed SuperC b 
values are between 0.5 and 1.0, which indicates a mixture of diffusion control and capaci-
tance-like responses. 

To further quantify the capacitance contribution of capacitance and diffusion limita-
tions to all SuperCs, the CV curves of all SuperCs were further analyzed according to 
Equation (9): 

i = k ν + k ν ⁄  (9)

where i  is the current at the selected scan speed, k ν is the contribution of the surface 
capacitance effect to the overall capacitor current, and k ν ⁄  is the contribution of the 
diffusion-controlled intercalation process. 

The capacitance contributions and controlled-diffusion contributions of SuperC-1, 
SuperC-2, and SuperC-3 at different scan rates are shown in Figure 6b–d. It can be seen 
that the capacitance of all SuperCs is overwhelmingly provided by the surface capaci-
tance, and their capacitance contribution values are close to 1 during the scan rate of 60 
mV·s−1–100 mV·s−1, indicating that the charge storage of all SuperCs is mainly capacitive 
within the range. Compared at 50 mV·s−1 scanning speed (Figure 6e), it is easy to see that 
the area capacitance contribution of SuperC-1 is the largest, which demonstrates its excel-
lent capacitance dominance characteristics. 

 
Figure 6. (a) EIS of SuperC-1, SuperC-2, and SuperC-3; (b–d) histograms representing the contribu-
tion ratio of capacitance and diffusion control to charge storage in SuperC-1, SuperC-2, and SuperC-
3 under different sweep speeds, respectively; (e) comparison of the contribution of capacitive and 
diffusion control with the charge storage at a scan rate of 50 mV·s−1; (f) CV curves at a scan rate of 
50 mV·s−1; (g) GCD curves at a current density of 0.2 mA·cm−2; and (h) Ragone plots. 

The CV curves of SuperC-1, SuperC-2, and SuperC-3 at a scan rate of 50 mV·s−1 and 
GCD curves at a current density of 0.2 mA·cm−2 were selected for comparison of the influ-
ence of the loading mass of PANI with the electrochemical performance of the hydrogel 
capacitors (Figure 6f,g). In Figure 6f, we can clearly see that the integrated area of SuperC-
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Figure 6. (a) EIS of SuperC-1, SuperC-2, and SuperC-3; (b–d) histograms representing the contribution
ratio of capacitance and diffusion control to charge storage in SuperC-1, SuperC-2, and SuperC-3
under different sweep speeds, respectively; (e) comparison of the contribution of capacitive and
diffusion control with the charge storage at a scan rate of 50 mV·s−1; (f) CV curves at a scan rate of
50 mV·s−1; (g) GCD curves at a current density of 0.2 mA·cm−2; and (h) Ragone plots.

There are two main mechanisms of energy storage for a similar CV curve as in
Figure 5d–f: one is a Faraday process, which can also be called a Faraday contribution (re-
dox reaction occurs), and the other is a non-Faraday process, which can similarly be called
a non-Faraday contribution (reversible charge storage for double-layer capacitance) [33–35].
In order to understand the electron storage mechanism in our supercapacitor, the rela-
tionship between the peak current (iP) and its scan rate (ν) in the GCD curve is analyzed
according to Equation (7):

iP = aνb (7)

where a and b are variables.
Taking Equation (7) into logarithmic form yields Equation (8):

LogiP = bLogν+ Loga (8)

The different scan rates and their corresponding peak currents were brought into
Equation (8), and their scatter plots were drawn with Logν and LogiP as the independent
and dependent variables. The data were linearly fit with OriginLab to derive the values of
a and b.

According to the analysis in Mr. Bruce Dunn’s article [36], the observed SuperC
b values are between 0.5 and 1.0, which indicates a mixture of diffusion control and
capacitance-like responses.
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To further quantify the capacitance contribution of capacitance and diffusion limi-
tations to all SuperCs, the CV curves of all SuperCs were further analyzed according to
Equation (9):

iV = k1ν+ k2ν
1/2 (9)

where iV is the current at the selected scan speed, k1ν is the contribution of the surface
capacitance effect to the overall capacitor current, and k2ν

1/2 is the contribution of the
diffusion-controlled intercalation process.

The capacitance contributions and controlled-diffusion contributions of SuperC-1,
SuperC-2, and SuperC-3 at different scan rates are shown in Figure 6b–d. It can be seen
that the capacitance of all SuperCs is overwhelmingly provided by the surface capaci-
tance, and their capacitance contribution values are close to 1 during the scan rate of
60 mV·s−1–100 mV·s−1, indicating that the charge storage of all SuperCs is mainly capaci-
tive within the range. Compared at 50 mV·s−1 scanning speed (Figure 6e), it is easy to see
that the area capacitance contribution of SuperC-1 is the largest, which demonstrates its
excellent capacitance dominance characteristics.

The CV curves of SuperC-1, SuperC-2, and SuperC-3 at a scan rate of 50 mV·s−1

and GCD curves at a current density of 0.2 mA·cm−2 were selected for comparison of
the influence of the loading mass of PANI with the electrochemical performance of the
hydrogel capacitors (Figure 6f,g). In Figure 6f, we can clearly see that the integrated area of
SuperC-1 was larger than those of SuperC-2 and SuperC-3, which indicates that SuperC-1
has a higher specific capacitance. The discharge time of SuperC-1 was much longer than
those of SuperC-2 and SuperC-3 and, as shown in Figure 6h, the energy density of SuperC-1
is the highest, and the energy density of SuperC decreases instead with the increase in the
added aniline content. The reason for these results may be because the excessive polyaniline
forms a tighter fiber network on the surface of the hydrogel to prevent the free movement
of charge and, as a result, the capacitive performance of the hydrogel electrolyte is reduced.

The electrochemical properties of SuperC-1 under different deformations are shown
in Figure 7a,b, which show the CV curves with a sweep speed of 20 mV·s−1 and the GCD
curves with 1 mA·cm−2 under different deformations (bending 0◦, 90◦, 180◦, twisting
90◦, and finger pressure), respectively, and the results show that the GCD curves and
CV curves under strain do not change much, indicating that the capacitor had almost no
capacity loss. The GCD test of SuperC-1 was continued 10,000 times and the calculated
coulombic efficiency was plotted The coulombic efficiency was stable at about 97.7% after
10,000 cycles. It can be seen that the all-in-one SuperC-1 supercapacitor in this paper has
good electrochemical stability and structural stability [37]. This result may be due to the fact
that the SuperC-1 supercapacitor is all-in-one molded and a part of the polyaniline in the
electrode material is physically entangled with the hydrogel electrolyte, and the light green
layer between the polyaniline and the hydrogel electrolyte, i.e., the P(AAS-VPA)/PMMS
and the polyaniline layer, can be clearly observed in Figure 5b,c.

In addition, the temperature dependence of the electrochemical properties of the
P(AAS-VPA)/PMMS hydrogel electrolyte was characterized via CV and GCD in the tem-
perature range of −30 ◦C to 25 ◦C. As shown in Figure 8a,b, the CV and GCD curves’
integral area gradually reduced with a decrease in temperature. These phenomena can
be explained by the restricted migration of charge ions at low temperatures. The P(AAS-
VPA)/PMMS hydrogel electrolyte had an excellent high area capacitance of 100.8 mF·cm−2

and energy density of 8.96 µWh·cm−2 at room temperature (Figure 8c). Meanwhile, even
at −30 ◦C, the hydrogel electrolyte still has a high area capacitance of 25.3 mF·cm−2 and
energy density of 2.25 µWh·cm−2, which indicates that the flexible supercapacitor based on
the P(AAS-VPA)/PMMS composite hydrogel electrolyte can be applied not only at room
temperature but it can also be adapted to lower temperatures, which greatly highlights
the fact that the P(AAS-VPA)/PMMS composite hydrogel has a competitive edge in the
development of “all-in-one” wearable electronic devices.
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Figure 7. (a) CV curves at a scan rate of 20 mV·s−1; (b) GCD curves at a current density of
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