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Abstract: Variations across cells, modules, packs, and vehicles can cause significant errors in the state
estimation of LIBs using machine learning algorithms, especially when trained with small datasets.
Training with large datasets that account for all variations is often impractical due to resource and
time constraints at initial product release. To address this issue, we proposed a novel architecture
that leverages electronic control units, edge computers, and the cloud to detect unrevealed variations
and abnormal degradations in LIBs. The architecture comprised a generalized deep neural network
(DNN) for generalizability, a personalized DNN for accuracy within a vehicle, and a detector. We
emphasized that a generalized DNN trained with small datasets must show reasonable estimation
accuracy during cross validation, which is critical for real applications before online training. We
demonstrated the feasibility of the architecture by conducting experiments on 65 DNN models, where
we found distinct hyperparameter configurations. The results showed that the personalized DNN
achieves a root mean square error (RMSE) of 0.33%, while the generalized DNN achieves an RMSE
of 4.6%. Finally, the Mahalanobis distance was used to consider the SOH differences between the
generalized DNN and personalized DNN to detect abnormal degradations.

Keywords: state of health; energy storage system; machine learning

1. Introduction

Li-ion batteries (LIBs) are widely used in various applications, and deep neural net-
works (DNNs) were increasingly adopted to estimate their states, especially as battery
management systems are connected to cloud systems. However, the effect of the hyper-
parameters on the accuracy of the LIB state estimation using DNNs was not adequately
studied. While many DNNs can be generated with various hyperparameters outside of
models, domain experts can optimize them for specific applications [1]. Nevertheless, the
performance of a model depends on the specific problem and data characteristics. Black-box
methods [2], such as Bayesian optimization, genetic algorithms, or particle swarm opti-
mization, were used to find the optimal hyperparameters. However, these methods have
limitations in practice, since a single hyperparameter can have an impact on multiple other
hyperparameters, making it challenging to find the global optimal solution using black-box
methods alone. Therefore, it is essential to understand how the hyperparameters affect the
model’s accuracy and to develop effective hyperparameter optimization strategies.

LIBs are essential components in electric vehicles, but accurately estimating and
verifying their internal states, including the state of charge (SOC), state of health (SOH),
state of energy (SOE), state of power (SOP), state of temperature (SOT), and remaining
useful life (RUL), remains a challenge in real-world scenarios [3]. Despite the potential of
DNNs to address this challenge, their adoption was hindered by several factors, including
(1) limitations in the processing power, physical memory, and communication speed of
battery management systems (BMSs); (2) difficulty in labeling the internal states of LIBs,
as they are not directly measurable; (3) insufficient data to train DNNs due to the lack of
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logging or transmission of the necessary data by BMSs to internal memory or cloud servers;
and (4) the safety-critical nature of BMSs, which are typically mixed-critical systems, while
DNNs are nondeterministic algorithms. However, recent advances in architectural design
and cloud technologies enabled automotive systems to send large amounts of data and
adopt DNNs for the internal state estimation of LIBs [4].

Figure 1 presents a generalized high-level architecture that utilizes data-driven al-
gorithms in the cloud and in a vehicle for various applications in the energy, body, and
chassis domains. The architecture consists of three layers: electronic control units (ECUs)
for real-time data processing and safety-critical functions, edge computers for temporary
data storage and personalized machine learning algorithms, and the cloud for data storage,
analysis, and generalized machine learning algorithms. The ECUs, edge computers, and
cloud are designed to accommodate different levels of computational power, data storage,
and safety criticality. The offline process supports the overall components of three layers
by providing initial machine learning algorithms from laboratory data and continually
improving these algorithms with historical data from the cloud. The data-driven methods
are represented by green boxes, while blue boxes indicate the existing components that are
not specific to data-driven techniques. The proposed architecture facilitates the integration
of data-driven algorithms into safety-critical automotive systems for improved estimation
accuracy and safety.

Batteries 2023, 9, x FOR PEER REVIEW 2 of 22 
 

limitations in the processing power, physical memory, and communication speed of bat-
tery management systems (BMSs); (2) difficulty in labeling the internal states of LIBs, as 
they are not directly measurable; (3) insufficient data to train DNNs due to the lack of 
logging or transmission of the necessary data by BMSs to internal memory or cloud serv-
ers; and 4) the safety-critical nature of BMSs, which are typically mixed-critical systems, 
while DNNs are nondeterministic algorithms. However, recent advances in architectural 
design and cloud technologies enabled automotive systems to send large amounts of data 
and adopt DNNs for the internal state estimation of LIBs [4]. 

Figure 1 presents a generalized high-level architecture that utilizes data-driven algo-
rithms in the cloud and in a vehicle for various applications in the energy, body, and chas-
sis domains. The architecture consists of three layers: electronic control units (ECUs) for 
real-time data processing and safety-critical functions, edge computers for temporary data 
storage and personalized machine learning algorithms, and the cloud for data storage, 
analysis, and generalized machine learning algorithms. The ECUs, edge computers, and 
cloud are designed to accommodate different levels of computational power, data storage, 
and safety criticality. The offline process supports the overall components of three layers 
by providing initial machine learning algorithms from laboratory data and continually 
improving these algorithms with historical data from the cloud. The data-driven methods 
are represented by green boxes, while blue boxes indicate the existing components that 
are not specific to data-driven techniques. The proposed architecture facilitates the inte-
gration of data-driven algorithms into safety-critical automotive systems for improved es-
timation accuracy and safety. 

 
Figure 1. An architectural design for key components to use data-driven methods. 

The proposed architecture for the energy domain, as shown in Figure 2, was derived 
from the generalized high-level architecture. The energy domain architecture was de-
signed to tackle two key assumptions that arise in real-world scenarios related to cata-
strophic failures and the limitations of the training dataset. First, catastrophic failures may 
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The proposed architecture for the energy domain, as shown in Figure 2, was derived
from the generalized high-level architecture. The energy domain architecture was designed
to tackle two key assumptions that arise in real-world scenarios related to catastrophic
failures and the limitations of the training dataset. First, catastrophic failures may occur
when system components such as LIBs and BMSs exceed the managed tolerance levels. To
mitigate these risks, anomaly detection techniques can be employed. It is important to note
that some techniques such as distance-based techniques may exhibit worse performance
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in high-dimensional data [5]. However, our diversified DNNs, which estimate the SOH
and reduce dimensionality, allow for outlier detection using their outputs. Second, the
training dataset may not encompass all possible variations in the battery state, leading to
suboptimal solutions and overfitting [6]. In contrast to the majority of model-based and
data-driven methods that assume the observed variance [7–9], our approach incorporates
the impact of the unobserved variance in the battery state estimation.
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The architectural design enhances the estimation accuracy and safety in automotive
systems by combining deterministic and nondeterministic algorithms. The cloud manages
the energy storage systems of vehicles, utilizing a generalized DNN for the battery state
estimation and personalized DNNs for online training, providing scalable computing
power and data storage but with potential risks of data loss from vehicles. Personalized
DNNs, trained using data from a single vehicle, consider the variations in driving and
storage conditions, while a generalized DNN, trained using data from multiple vehicles,
accounts for the variations from vehicle to vehicle, cell to cell, module to module, and
pack to pack. Continual online training of personalized DNNs keeps the local DNNs on
the energy domain control units (e-DCU) in each vehicle up to date, mitigating the risk of
data loss. Comparing the results of the generalized DNN and personalized DNNs enables
the detection of outliers, considering variations that were not observed in the training
data. The effectiveness of detecting the abnormal states of LIBs or systems relies on both
the generalizability of the generalized DNN and the accuracy of the personalized DNNs.
A Luenberger observer, a deterministic algorithm on the BMS with Automotive Safety
Integrity Level (ASIL) D, provides the ASIL D signals. The ASIL rates the potential severity
of an automotive system malfunction or failure, with level D being the highest level of
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risk and A being the lowest level of risk. ASIL D is typically required for BMS in electric
vehicles due to the criticality of the battery operation.

Nondeterministic algorithms such as the extended Kalman filter (EKF), recursive least
square, and DNN on the e-DCU are passed through a plausibility check or a selection
function. The ASIL B signals from these algorithms are bounded by the ASIL D signals
to ensure that the estimation results are within the acceptable range as determined by the
deterministic algorithm, thereby improving accuracy while maintaining safety [10]. The
selection function can incorporate ensemble strategies such as stacking and voting to opti-
mize performance while considering resource constraints. This is particularly useful when
training data are limited, and the cloud does not have a large dataset from vehicles [11].

A significant challenge in using DNNs for SOH estimation is the limited availability
of complete datasets for LIB degradation. Obtaining this data is a time-consuming process
that involves both laboratory testing and data collection from operational vehicles over an
extended period. Due to resource constraints and unrevealed variations in development
and manufacturing processes, it is impractical to train a DNN using large datasets that
account for all variations at the initial stage. To address this challenge, it is essential
to improve the generalizability of models trained using small datasets with good cross-
validation performance. Generalizability refers to the ability of a model to accurately
estimate the SOH when applied to data and conditions that differ from those it was trained
on. Enhancing the generalizability of the model ensures that it can perform effectively in
real-world scenarios before additional online training.

This paper proposes a novel system software architecture for estimating the state of
health (SOH) in lithium-ion batteries intended for use in electric vehicles, incorporating
functional safety considerations. The architecture includes a personalized DNN, a general-
ized DNN, and an outlier detector. Firstly, an overview of the challenges of SOH estimation
in batteries is provided, along with a discussion of related work in this area. The approach
to data cleansing and feature extraction from the NASA Prognostic Center of Excellence
battery data [12] is then described. Subsequently, experiments are presented to evaluate
the feasibility of the proposed architecture and to examine the existence of generalized
and personalized DNNs through various hyperparameter settings. An outlier detector
is also utilized to highlight variations and detect abnormal states in the SOH estimation
between the generalized DNN and personalized DNN. Finally, the findings, limitations,
and future research directions are discussed. This study makes a significant contribution to
the ongoing research in this field, while also providing a roadmap for future studies.

2. Related Works
2.1. SOH and RUL Estimation Using DNNs

Previous research employed various types of DNNs to estimate the SOH and remain-
ing useful life (RUL) of LIBs. For example, Venugopal et al. [13] compared the prediction
accuracy of the SOH and RUL among recurrent neural networks (RNNs), convolutional
neural networks (CNNs), DNNs, linear regression, and long short-term memory (LSTM)
running on the Raspberry Pi. However, they did not provide the specific hyperparameters
used for each network. Long et al. [14] compared the prediction accuracy of the RUL
among the LSTM, back propagation neural network, and nonlinear autoregressive models.
Their experimental results showed that the prediction accuracy of the LSTM was better
than the others. However, unfortunately, the results cannot be reproduced due to their
not providing the hyperparameters for each network, since the accuracy depends on each
network’s hyperparameter configurations.

Hsu et al. [15] proposed a DNN architecture comprising a discharge DNN predicting
unknown batteries, a full DNN predicting unknown charging policies, and an RUL DNN
predicting for an unknown age of unknown used batteries. The input features were the
(1) charge capacity, (2) discharge capacity, (3) running temperature average, (4) temperature
min, (5) temperature max, (6) total charge time, (7) End of Life (EoL) and (8) discharge time
from discharge direction, (9) EoL and (10) charge time from charge direction, (11) discharge
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cycle, and (12) charge cycle. The input features from (1) to (8) were used for the discharge
DNN to predict the EoL and charge time. The input features from (1) to (10) were used for
the full DNN to predict the EoL, charge time with the predicted EoL, and the cycle-by-cycle
voltage curve. The input features from (1) to (12) were used for a full and RUL DNN to
predict the present age. The feature analysis results by the Deep Taylor Decomposition
showed that the most influential features of the EoL were all the data-driven features from
(7) to (12). Finally, their result showed a mean absolute percentage error of 6.46% using
only one cycle of testing.

Khaleghi et al. [16,17] employed a NARX set by 10 neurons for hidden layers and the
series-parallel mode for the feedback to estimate the SOH and RUL. The estimated SOH
became a feature to predict the RUL with the dynamic time warping method that calculated
the distance between the test and reference components for the pairwise similarity of
the health degradation trajectories of various reference components. However, building
reference components trained by various conditions may not be easy. In particular, it is
impractical to expect training in all variations from the development and manufacturing
process across cells, modules, packs, and vehicles in automotive systems.

2.2. Battery State Estimation Using FFNN

In previous research, FFNNs were widely used for estimating the SOC, SOH, and
state of power (SOP) of LIBs. For example, Ezemobi et al. [18] used an FFNN with the
incremental capacity curve to estimate the SOH, with a notable model execution time of
8.34 µs on the F28379D microcontroller unit. Li et al. proposed an FFNN trained by pulse
current injection to estimate the SOC, SOH, and SOP [19]. They used a single hidden layer
with five network weight constraints, a 0.1 dropout rate, a 0.001 learning rate, a 64 batch
size, 32,000 training epochs, a rectified linear activation unit (ReLU) , and an adaptive
moment estimation (ADAM) optimizer. The results showed that the average SOH, SOP,
and SOC root mean square errors (RMSEs) were 0.0057, 0.0069, and 0.0072, respectively.
However, they did not perform cross validation. Xia et al. employed an FFNN with two
hidden layers and two dropout layers, with input features including delta voltage during
the constant current charge, delta voltage during the discharge, charge time, delta current
during the constant voltage charge, and the delta temperature during the constant voltage
charge [20]. Their results showed that the best performance was achieved with 128 neurons
in the hidden layers.

2.3. DNNs from the NASA Dataset

In previous research, various types of deep neural networks were employed to estimate
the SOH and RUL of LIBs using battery datasets from the NASA dataset. For example,
Chemali et al. [21] employed a convolutional neural network to estimate the SOH from the
voltage, current, and temperature features in the charging direction. They used ReLU as the
activation, the mean square error (MSE) as the loss function, and ADAM as the optimizer
and added Gaussian noise to the data for training data augmentation to avoid overfitting.

Navega et al. [22] employed a nonlinear autoregressive model to estimate the SOC with
the current, voltage, temperature, and previous SOC features. They used the maximum
correntropy criterion as the cost function to train the model. Khan et al. [23] proposed a
convolutional LSTM and LSTM hybrid network to estimate the SOH. They showed that the
proposed model had better prediction accuracy than other models.

Shi et al. [24] proposed a physics-informed LSTM that combined the calendar and
cycle aging model with an LSTM layer to predict the RUL. Their experimental results
showed that the prediction accuracy of the LSTM was better than that of the bidirectional
LSTM, but they did not provide the hyperparameters for each network. Zhao et al. [25]
proposed a fusion neural network model that combined LSTM with the broad learning
system algorithm to predict the battery capacity and RUL. They trained the model with
various training data sizes but did not perform cross validation.
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Toughzaoui et al. [26] combined a CNN with an LSTM to predict the SOH and RUL.
They used a K-means clustering algorithm to classify the characteristics of voltage and
temperature but did not perform cross validation. Chinomona et al. [27] employed an
LSTM to predict the RUL with the proposed forward feature selection method but did not
provide a feature analysis. Wu et al. [28] employed a radial basis function neural network
with the improved gray wolf optimization but did not provide a feature analysis.

Overall, these previous studies employed various types of DNNs and achieved good re-
sults in estimating the SOH and RUL of lithium-ion batteries using the NASA dataset. How-
ever, some of these studies did not provide specific hyperparameters or cross-validation
results, making it difficult to reproduce their results.

3. Data Cleansing and Feature Extraction
3.1. NASA DATASET

According to the experiment’s report from the NASA Prognostic Center of Excellence,
all LIBs were charged using the CC-CV method with a setting of 1.5 A for the CC, 4.2 V
for the CV, and 20 mA for the taper current. However, unlike the charging direction, all
the LIBs were discharged with 2 A and varying termination voltages of 2.7 V, 2.5 V, 2.2 V,
and 2.5 V, respectively. This resulted in the degradation of the LIBs being consistent in the
charging direction but varied in the discharge direction. Thus, we believe variations of
operation conditions existed in the discharging directions. All lithium-ion batteries (LIBs)
with an initial capacity of 2 Ah were subjected to cycling until their rated capacities reached
1.4 Ah at ambient temperatures of 25 ◦C. The cell temperature varied between 25 ◦C and
40 ◦C during the cycling process.

As seen in Figure 3a, there were voltage jumps after the discharge termination. In
order to ensure the validity and reliability of the dataset, the voltage jumps occurring after
the discharge termination (Figure 3b) were removed. The experimental results suggest
that the accuracy of the DNN models in estimating the SOH of the LIBs was poor without
appropriate data cleansing. On the other hand, the discharge voltages below the termination
voltages, preserved as undervoltages, can have an impact on the degradation of the LIBs.
Abnormal voltages at the 84th charging cycle and during the taper charge were detected
(Figure 3c). Given that NASA’s experimental reports specify consistent charging conditions,
we removed the charge data from the dataset to avoid potential confounding factors. To
ensure the data validity, we verified the data size, as it can affect the performance of the
models during training and validation. As shown in Figure 3d, the data sizes of the LIB B5,
B6, and B7 suddenly increased from 200 to 300 at the 50th cycle, while the data size of the
LIB B18 smoothly decreased.

The SOH is defined as the ratio of the present rated capacity value Capcitypresent to
the initial rated capacity Capcityinitial in Equation (1)

SOH =
Capcitypresent

Capcityinitial
(1)

The SOHs of the LIBs decreased with each cycle, as depicted in Figure 3e. It is
noteworthy that despite the lowest termination voltage condition, the capacity fade rate in
the LIB B7 was slower compared to the other LIBs. This indicated the presence of variations
among the LIBs, with LIB B5 exhibiting the slowest capacity fade rate under consistent
discharge conditions [29].
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(c) Taper voltage curves at each charge cycle of LIB B5, B6, B7, and B18 from left to right. (d) Data
sizes at each discharge cycle of LIB B5, B6, B7, and B18 from left to right. (e) Capacity on the left and
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3.2. Feature Extraction

The proper selection of features is essential for achieving optimal performance in ma-
chine learning models [30]. To mitigate the potential loss of data during transmission from
the energy storage system (ESS) to the cloud [31], the Coulomb calculation is widely used as
a reliable method to estimate the internal battery state, as in Equation (2). The accumulated
capacity is calculated by summing the Coulomb values, as described in Equation (3), and is
a vital factor in SOH estimation. The Coulomb calculation incorporates the present current
Curpresent, previous current Curprevious, present timestamp Timepresent, and the previous
timestamp Timeprevious. The accuracy of the Coulomb depends on the frequency of the
current measurement.

Coulomb ≈
(Curpresent + Curprevious

2

)(Timepresent − Timeprevious

3600

)
(2)

Accumulated Capacity ≈
n

∑
i=0

Coulombi (3)

The relationships between the SOH and the feature candidates in the NASA dataset
are illustrated in Figure 4. The data recorded under a consistent ambient temperature
and consistent discharge current conditions may not exhibit a strong correlation with the
SOH. The Coulomb feature appears to be more appropriate for classification purposes, as
opposed to regression, despite the SOH being a continuous numerical value. The time and
accumulated capacity are inverse features, and, therefore, either the time or the accumulated
capacity can be selected as a feature. The capacity is linearly related to the SOH due to its
calculation using the initial and present capacity.
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The observed regeneration of the SOH in the NASA Prognostics Center of Excellence
battery dataset does not correspond to the physical behavior of lithium-ion batteries, as
the real SOH cannot exhibit such regeneration [3]. Although the partial regeneration
phenomenon could potentially have significant implications for SOH estimation, the un-
derlying reason for this phenomenon remains unclear. The available data did not allow
for further investigation into this matter. In general, capacity based on integrated current
without measurement open circuit voltage can be easily influenced by inconsistent cycle
conditions from humans and equipment. Therefore, this study utilizes discharging data
to estimate SOH. Furthermore, the degradation factor is expected to be learned by DNN
models from discharging data under various conditions. Given the identical charging con-
ditions, it can be assumed that the cells experience the same level of degradation, leading



Batteries 2023, 9, 264 9 of 23

to minimal variation in the results. It is worth noting that the dataset was widely used in
previous studies despite the potential training difficulties that may arise from the presence
of these regenerations. Additionally, we acknowledge the work of Zhao et al. [32], who
studied RUL estimation while taking this regeneration phenomenon into account.

A Pearson correlation analysis was conducted to quantify the inter-feature correlation
and its impact on the SOH estimation task, as illustrated in Figure 5. The analysis revealed
a perfect linear relationship between the SOH and capacity with a Pearson correlation
coefficient of 1.0. This result suggests that the capacity provided no additional information
for the estimation of SOH, which was already represented by the SOH measurement.
Including capacity in the input feature set may thus lead to redundant information and
risk overfitting the model. As such, it is recommended to exclude capacity from the input
feature set in the SOH estimation task. The correlation analysis also indicated that the time
and the accumulated capacity were inverse features with a coefficient of−1. The correlation
between the SOH and the current was low, with a coefficient of 0.0064, while the correlation
between the SOH and the Coulomb, calculated by the current and time, was −0.51. Based
on these findings, the final input feature set for the SOH estimation was determined to
include the voltage, current, temperature, Coulomb, and time, while excluding the capacity
and incremental capacity.
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4. Experiments and Results
4.1. Training and Testing Method

To evaluate the feasibility of the proposed architecture and demonstrate the necessity
for both the generalized and personalized DNN models, we trained and evaluated the
DNN models for predicting the SOH. We utilized the Mahalanobis distance [32] as an
outlier detector to detect abnormal states by considering variations between cells or a
generalized DNN and personalized DNNs, as shown in Figure 6. By evaluating both the
generalized and personalized DNN models, we demonstrated their respective strengths
and limitations in predicting the SOH.
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For the generalized DNNs, each model was trained on one LIB and evaluated by the
average prediction accuracy across all the LIBs. In contrast, for the personalized DNNs,
all the LIBs were used to train the model, and the prediction accuracy was evaluated
for each individual LIB. All the models were trained and validated with 300,000 training
epochs, with the best internal parameters recorded automatically to avoid overfitting from
prolonged training. To evaluate the accuracy of the models, we utilized the RMSE as
the performance evaluation metric during both the training and validation process. The
RMSE was chosen due to its widespread usage in similar studies to assess the accuracy
of prediction models. The RMSE measures the difference between the predicted and
actual values, which allows for comparison with previous research and facilitates a more
comprehensive understanding of the model performance.

TensorFlow, Python, and Jupyter Notebook were utilized to develop a model gen-
eration and validation program. The model generation section enabled the creation of
multiple models by inputting hyperparameters such as loss functions, learning rate, β_1,
β_2, and the AMSGrad of the ADAM optimizer, the number of hidden layers and nodes,
batch normalization, L_2 regularization, dropout regularization, and Gaussian noise. The
best model, as determined by the accuracy during training, was automatically recorded
along with its internal parameters, hyperparameters, and training and validation histories.
This prevented overfitting issues that may arise from excessive training and allows for
complete automation without human intervention by instantiating the model generation
and training and validation classes with various hyperparameters. Table 1 summarizes
the hyperparameters used in the generalized model (M57) and personalized model (M65)
among the 65 models generated and evaluated in Tables A1 and A2.
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Table 1. Hyperparameters for a generalized model and the best accuracy model.

Hyperparameters M57 M65

Network

Structure FFNN FFNN

Hidden layers 4 4

Nodes 20 20

Activation function tanh ReLU

Gradient Descent

Optimizer ADAM ADAM

A 0.001 0.001

b1 0.9 0.9

b2 0.999 0.999

AMSgrad N Y

Normalization
Cost function Huber Huber

Batch normalization N Y

Regularization
L2 N Y

Dropout N N

4.2. The Generalized Models

The generalized models were trained from LIB B7 and validated using LIB B6. To
assess the generalizability of the models, cross validation was performed using LIB B5
and B18, which helped to identify issues with overfitting and poor generalization. By
cross-validating the models, it was ensured that the models could accurately predict the
SOH of other LIBs beyond those used for training and validation. The best generalized
models were selected based on the highest average accuracy among the models. The mean
SOH prediction values were used to evaluate the accuracy, since the SOH does not change
much within a cycle in real-world applications. The real-time SOH provides insight into
the difficulty of training at each cycle, with a significant difference between the minimum
and maximum indicating a challenging training process.

Among the DNN models evaluated in this study, models 57, 40, 59, and 41 demonstrate
higher average accuracy than the other models. These models were generated using tanh
activation and Huber loss functions and did not include batch normalization, dropout
regularization, or AMSGrad. Table 2 provides a comparison of the differences between
these models. Notably, model 57, which included four hidden layers and did not use L2
regularization, exhibited the highest average accuracy.

Table 2. Hyperparameter comparison among the four best models.

Hyperparameter M57 M40 M59 M41

Hidden layers 4 4 2 4
L2 N 0.01 0.1 0.01

The training and validation accuracy, number of training epochs required to opti-
mize the model parameters, as well as the real-time SOH and mean SOH predictions are
presented in Figure 7. The model 57 was trained for approximately 6000 epochs. The
predictions for the LIB B6 were found to be more accurate compared to the other cells.
However, the SOH prediction for the LIB B7 deviated at approximately the 125th cycle,
while the overall SOH prediction for the LIB B5 was biased. The convergence of the SOH
prediction for the LIB B18 was observed only at approximately the 50th cycle. The accuracy
comparison of the four best models in Table 3 reveals similar accuracies, suggesting that
the L2 regularization was not a critical factor. However, the low accuracies for LIB B5 and
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B18 compared to LIB B6 and B7 may be attributed to variations between the different LIBs
or the insufficient training of the models.
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Table 3. Accuracy comparison among the four best models.

Models B5 (%) B6 (%) B7 (%) B18 (%) Mean (%)

M57 6.77 2.39 2.84 6.41 4.60
M40 7.73 2.59 2.68 5.76 4.69
M59 7.65 2.39 2.81 5.92 4.69
M41 7.34 2.47 2.85 6.42 4.77

4.3. The Personalized Models

In contrast to the generalized models, the personalized models were trained and
validated using data from all the LIBs without cross validation, with the aim of achieving the
highest possible accuracy without consideration for generalizability. The best personalized
models were selected based on the highest training and validation accuracy among all
models. Among the DNN models evaluated, models 65, 7, 8, and 46 demonstrated higher
training and validation accuracy than the other models and were generated using batch
normalization, AMSGrad, and Huber loss functions without dropout regularization. The
differences between these models are outlined in Table 4. Notably, the ReLU activation
function used in models 65, 7, and 18 was found to be more accurate compared to the tanh
activation function used in model 46, suggesting that the ReLU activation function was
better suited for predicting the SOH.

The experiments demonstrated that model 65, an AMSGrad-batch FFNN, achieved
the highest training accuracy among all the models. Figure 8a–d displays the loss during
training and the corresponding SOH prediction curves for all LIBs. However, the results
for LIB B18 were not obtained using the original dataset, as the SOH predictions for LIB
B18 showed a significant improvement in accuracy using a cleaned dataset, with 11.3544%
RMSE for the original dataset and 0.2513% RMSE for the cleaned dataset. Comparing
model 65 with the improved radial basis function NN [28] using the same dataset, Table 5



Batteries 2023, 9, 264 13 of 23

demonstrates that model 65 achieved higher accuracy in terms of the SOH prediction for
all the LIBs. The LIB 18 results from [28] were not available. These results suggest that the
personalized models, particularly model 65, could be effective for predicting the SOH of
LIBs in real-world applications.

Table 4. Hyperparameter comparison among the four best models.

Hyperparameters M65 M7 M8 M46

Hidden layers 4 2 3 2
Activation function ReLU ReLU ReLU tanh

L2 0.1 0.01 0.1 N
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Table 5. Accuracy comparison between model 65 and the improved radial basis function NN [24].

Models B5 (%) B6 (%) B7 (%) B18 (%)

M65 0.33 0.44 0.29 0.25
[22] 0.52 0.93 0.59 NA

4.4. Outlier Detector

To compare the performance of the two DNNs, we calculated the absolute error
between their SOH estimations using the mean absolute error (MAE) metric. A high MAE
could indicate the divergence of the two algorithms, which may be caused by either poor
training of the neural networks or large cell-to-cell variations in the data. The MAE provides
a measure of the overall difference between the two algorithms, but it may not be able to
identify the exact reason behind it.

To complement the MAE, the Mahalanobis distance was employed as an additional
measure to detect abnormal degradation. The Mahalanobis distance considers the covari-
ance of the data and captures the correlations between different variables. The gradient
of the Mahalanobis distance was used to monitor the rate of change of the distance with
respect to the SOHs, which could indicate the occurrence of abnormal degradation. By
monitoring the rate of change in the Mahalanobis distance, abnormal degradation can be
detected in a more nuanced way than using the MAE alone. The use of both the MAE
and Mahalanobis distance provides a comprehensive approach to detecting abnormal
degradation and ensures the accuracy and safety of the system.

The Mahalanobis distance, shown in Equation (4), which considers the covariance between
variables, is a more accurate measure of dissimilarity compared to the Euclidean distance.

dM

(→
x k

)
=

√(→
x k −

→
µ
)T

∑−1
(→

x k −
→
µ
)

(4)

A vector
→
x k consists of two variables, G_SOH and P_SOH, representing the SOH of a

generalized DNN and a personalized DNN, respectively, as shown in Equation (5).

→
x k = (G_SOHk, P_SOHk)

T (5)

Each vector is subtracted by the mean
→
µ =

(
G_SOH, P_SOH

)T ; then, we multiply
the deviation vector by the inverse of the covariance matrix for the correlation between
G_SOH and P_SOH, as shown in Equation (6).

∑−1
=

1
m

(
∑m

k=1 Cov(G_SOHk, G_SOHk) ∑m
k=1 Cov(G_SOHk, P_SOHk)

∑m
k=1 Cov(P_SOHk, G_SOHk) ∑m

k=1 Cov(P_SOHk, P_SOHk)

)−1

(6)

Finally, the gradient of the Mahalanobis can be calculated by
∆dM

(→
x k

)
∆cycle .

Figure 9 presents the comparison of the Mahalanobis distance and the absolute error
between the SOH estimations from the generalized DNN and the personalized DNN for all
the LIBs. The MAE and covariances between model 57 and model 65 for all the LIBs were
as follows:

MAE 0.0467 and covariance
(

0.00861843 0.00900839
0.00900839 0.01024332

)
for LIB B5

MAE 0.0214 and covariance
(

0.01448305 0.01436208
0.01436208 0.01488714

)
for LIB B6

MAE 0.024 and covariance
(

0.00458561 0.00532588
0.00532588 0.00704912

)
for LIB B7
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MAE 0.0696 and covariance
(

0.0006374 0.00135504
0.00135504 0.00674408

)
for LIB B18.

The results of our analysis revealed that the Mahalanobis distances for LIB B6 were
relatively high despite the low absolute errors. This is attributed to the high covariance
between the output variables, which may lead to an overestimation of the Mahalanobis
distance or an underestimation of the absolute errors. On the other hand, the Mahalanobis
distances for LIB B18 were relatively low despite the high absolute errors, which can be
explained by the low covariance between the output variables. Additionally, we found
that the gradient of the Mahalanobis distance for LIB B5 and B7 at the 38th cycle was
approximately 0.005, indicating an abnormal degradation of these batteries. This suggests
that the Mahalanobis distance can be a useful tool for detecting abnormal behavior in LIBs.
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5. Hyperparameter Configuration

In order to efficiently and effectively find optimal models within limited computational
resources, it is crucial to limit the range of hyperparameter configurations to be considered.

5.1. The Number of Hidden Layers and Nodes

Selecting the appropriate number of hidden layers and neurons for a model can be
challenging, as it can lead to both overfitting and underfitting issues. However, based
on empirical studies [33], models with two, three, four, or five hidden layers and 10 or
20 neurons were found to be effective when the number of input features is five or six.
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5.2. Activation Functions

The selection of activation functions is an important aspect of building neural net-
works. We evaluated three commonly used activation functions: the rectified linear unit
(ReLU) [34,35], sigmoid, and tanh. These functions can affect the performance of the model
by controlling the nonlinearity and computational time.

sigmoid(x) =
1

1 + e−x (7)

Tanh(x) =
ex − e−x

ex + e−x (8)

ReLU(x) = max(0, x) =
{

x, i f x ≥ 0
0, otherwise

(9)

Among the activation functions, we selected the sigmoid of Equation (7), the tanh of
Equation (8), and the ReLU of Equation (9), according to a recent empirical survey and
benchmark [36].

5.3. Loss Functions

Supervised learning can be divided into classification and regression problems. There
are several loss functions commonly used for regression problems such as the square loss,
absolute loss, Huber loss, Log-cosh loss, Quantile loss, and ε-insensitive loss. The most
commonly used method is the square loss [37,38]. We adopted the Huber loss function
(Equation (10)), which combines both the square and absolute loss making it robust to
outliers. The iterative testing may require finding the optimal value for the parameter δ.

Lδ(y, f (x)) =

{
1
2 (y− f (x))2, i f |y− f (x)|≤ δ

δ|y− f (x)| − 1
2 δ2, otherwise

, where δ > 0 (10)

5.4. Gradient Descent Optimizer

To mitigate the challenges of slow convergence, becoming trapped in local minima,
and not escaping saddle points in the gradient descent for the SOH estimation with the
NASA dataset, we used ADAM, which is less sensitive to the setting of parameters com-
pared to traditional stochastic gradient optimizers. The optimizer used Equations (11) to
(14) to calculate the first-order momentum (Equation (11)) and second-order momentum
(Equation (12)) with setting parameters β1 and β2. These parameters were gradually de-
cayed as t increased, as specified in Equation (13). The internal model parameter vector θ
was then updated in Equation (14) with a setting parameter α. This approach allows for
the control of the learning rate with α and give updating penalties of the internal model
parameter vector θ with β1 and β2. The setting parameter ε was included to avoid the
denominator becoming 0 when v̂t is equal to 0. There are two significant variations of
ADAM, AMSGrad [39] and Yogi [40], that can be used to improve convergence.

AMSGrad takes the maximum value of v̂t−1 and vt to avoid increasing the learning rate,
while Yogi changes Equations (11)–(15) to control the learning rate. In this study, we focused
on evaluating the AMSGrad, which ensures the learning rate does not increase unnecessarily.

mt = β1·mt−1 + (1− β1)·∇θ ft(θt−1) (11)

vt = β2·vt−1 + (1− β2)·
(
∇θ ft(θt−1)

)2 (12)

m̂t =
mt

1− βt
1

, v̂t =
vt

1− βt
2

(13)
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θt = θt−1 −
α·m̂t√
v̂t − ε

(14)

vt = vt−1 + (1− β2)sign
(

vt−1 −
(
∇θ ft(θt−1)

)2
)
(∇θ ft(θt−1))

2 (15)

5.5. Batch Normalization, L2, and Dropout Regularization

Batch normalization (BN) improves training by reducing the internal covariate shift,
defined as the change in the distribution of network activations due to the change in
network parameters during training [41]. The BN normalizes each dimension x(k) from
d-dimensional input x =

(
x(1) . . . x(d)

)
for a layer (16). A normalized value is scaled and

shifted by γ(k) and β(k), as shown in Equation (17), where γ(k) is equal to
√

Var
[
x(k)

]
and

β(k) is equal to E
[

x(k)
]
.

x̂(k) =
x(k) − E

[
x(k)

]
√

Var
[
x(k)

] (16)

y(k) = γ(k) x̂(k) + β(k) (17)

For a mini-batch B = {x1...m}, a mean value uB, a variance σ2
B, and a normalized value

x̂i are calculated by Equations (18)–(20), respectively. Finally, an activation yi is scaled and
shifted by γ and β (21).

uB =
1
m∑m

i=1 xi (18)

σ2
B =

1
m∑m

i=1(xi − uB)
2 (19)

x̂i =
xi − uB√

σ2
B + ε

(20)

yi = γx̂i + β (21)

BN is widely adopted in deep learning to improve training by reducing the internal
covariate shift. However, there is ongoing debate as to the exact mechanisms by which BN
improves training. Some studies suggest that the smoothness provided by BN may be a
key factor in its effectiveness, leading to faster and more stable training although BN can
make vanilla DNNs unstable [42]. Additionally, the effectiveness of other regularization
techniques such as L2 and Dropout regularization when used in conjunction with BN
was debated [43]. In this study, we evaluated the impact of the BN and regularization
techniques within the FFNN in the SOH estimation.

6. Discussion

The findings emphasize the necessity of both the generalized DNN and the person-
alized DNN, as they exhibited different hyperparameters and achieved generalizability
and high accuracy, respectively. In addition, the Mahalanobis distance was utilized as an
outlier detector to evaluate the feasibility of the proposed architecture and detect abnormal
degradation at specific cycles.

However, there were several limitations to the study. Firstly, due to the limited
availability of datasets, the generalized DNNs were not trained and evaluated on various
cell types and operation conditions. Secondly, the analysis did not consider variations from
module to module, pack to pack, and vehicle to vehicle, since the datasets came from cell
tests. Thirdly, it was challenging to distinguish between the reasons for the differences,
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whether due to variations between cells or training problems of the generalized DNN, as
no experiments were conducted on variations between cells.

The limitations of the present study can be addressed in future research by utilizing
real-world large datasets from vehicles obtained through the cloud. This would enable
the training and evaluation of the generalized DNN on various cell types and degradation
conditions, as well as the consideration of variations from module to module, pack to pack,
and vehicle to vehicle. Furthermore, conducting experiments to evaluate the variations
between cells and packs can help distinguish the reasons for the observed differences
highlighted by the Mahalanobis distance, whether they are due to variations in cells and
packs or training issues of the generalized DNN.

7. Conclusions

The proposed architecture utilizing machine learning algorithms demonstrated the
potential to enhance SOH prediction accuracy, identify unmanaged variations in manu-
facturing and development processes, and detect abnormal degradation. Through the
integration of a generalized DNN trained on small datasets for generalizability, a person-
alized DNN trained on all datasets for accuracy, and an outlier detector to compare the
outputs of the two DNNs, the necessity for both models in achieving high accuracy for all
LIBs was demonstrated. The experiments identified two FFNN models with the highest
accuracy among 65 models generated, achieving an average cross-validation accuracy of
4.6% RMSE for the generalized model and an average accuracy of 0.33% RMSE for the
personalized model. The Mahalanobis distance was utilized to detect abnormal degrada-
tion by considering the differences between the outputs of the generalized DNN and the
personalized DNN.

However, the study was limited due to the use of limited datasets and the lack of
consideration for variations between the module to module, pack to pack, and vehicle to
vehicle. As a result, future research will be conducted in four parts based on the feasibility
analysis of the proposed architecture in this study. Firstly, data will be acquired from cells
and packs used in real vehicles under various charging and discharging conditions in
laboratory tests to further train and validate the DNN models and to assess their perfor-
mance in real-world scenarios. Secondly, an embedded controller running the personalized
DNN and outlier detectors will be prototyped, with a focus on optimizing its performance
for use in electric vehicles. Thirdly, SOH labeling will be performed on the cloud data
from vehicles, since the real SOH value is not easily measurable under real vehicle data.
This process will involve developing new labeling techniques and validating them against
existing methods. Finally, we will train a generalized DNN and personalized DNNs using
labeled data from multiple vehicles and individual vehicles, respectively. We anticipate
that the generalized DNN will improve with larger datasets, and the outlier detector will
become more robust. These additional research efforts will allow for a comprehensive
evaluation of the potential benefits of the proposed architecture for battery state estimation
and anomaly detection in real-world scenarios.
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Appendix A

Table A1. Hyperparameter configurations of 65 models.

Models
Network Optimizer (ADAM)

Cost Function Batch Norm L2 Dropout
Layers Node Activation a b1 b2 Amsgrad

1 2 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01

2 2 10 ReLU 0.001 0.9 0.999 Y Huber N 0.01

3 3 10 ReLU 0.001 0.9 0.999 Y Huber N 0.01

4 3 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01

5 3 20 ReLU 0.01 0.9 0.999 Y Huber N 0.01

6 2 20 ReLU 0.001 0.9 0.999 Y MSE N 0.01

7 2 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01

8 3 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01

9 4 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01

10 2 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01

11 2 20 tanh 0.001 0.9 0.999 Y Huber N 0.01

12 2 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.7, 0.5

13 2 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.5, 0.3

14 2 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.3, 0.1

15 2 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.7, 0.5

16 2 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.5, 0.3

17 2 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.3, 0.1

18 2 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.7, 0.5

19 2 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.5, 0.3

20 2 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.3, 0.1

21 2 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.7, 0.5

22 2 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.5, 0.3

23 2 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.3, 0.1

24 3 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.7, 0.5

25 3 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.5, 0.3

26 3 20 tanh 0.001 0.9 0.999 Y Huber N 0.01 0.3, 0.1

27 3 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.7, 0.5

28 3 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.5, 0.3

29 3 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01 0.3, 0.1

30 3 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.7, 0.5

31 3 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.5, 0.3

32 3 20 ReLU 0.001 0.9 0.999 Y Huber N 0.01 0.3, 0.1

33 3 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.7, 0.5

34 3 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.5, 0.3

35 3 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01 0.3, 0.1

36 2 20 ReLU 0.001 0.9 0.999 N Huber N 0.01
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Table A1. Cont.

Models
Network Optimizer (ADAM)

Cost Function Batch Norm L2 Dropout
Layers Node Activation a b1 b2 Amsgrad

37 3 20 ReLU 0.001 0.9 0.999 N Huber N 0.01

38 4 20 ReLU 0.001 0.9 0.999 N Huber N 0.01

39 2 20 tanh 0.001 0.9 0.999 N Huber N 0.01

40 3 20 tanh 0.001 0.9 0.999 N Huber N 0.01

41 4 20 tanh 0.001 0.9 0.999 N Huber N 0.01

42 3 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01

43 3 20 tanh 0.001 0.9 0.999 Y Huber N 0.01

44 4 20 tanh 0.001 0.9 0.999 Y Huber Y 0.01

45 4 20 tanh 0.001 0.9 0.999 Y Huber N 0.01

46 2 20 tanh 0.001 0.9 0.999 Y Huber Y 1

47 2 20 tanh 0.001 0.9 0.999 Y Huber N 1

48 3 20 tanh 0.001 0.9 0.999 Y Huber Y 1

49 3 20 tanh 0.001 0.9 0.999 Y Huber N 1

50 4 20 tanh 0.001 0.9 0.999 Y Huber Y 1

51 4 20 tanh 0.001 0.9 0.999 Y Huber N 1

52 2 20 tanh 0.001 0.9 0.999 N Huber Y 1

53 2 20 tanh 0.001 0.9 0.999 N Huber N 1

54 3 20 tanh 0.001 0.9 0.999 N Huber Y 1

55 3 20 tanh 0.001 0.9 0.999 N Huber N 1

56 4 20 tanh 0.001 0.9 0.999 N Huber Y 1

57 4 20 tanh 0.001 0.9 0.999 N Huber N 1

58 2 20 tanh 0.001 0.9 0.999 N Huber Y 0.1

59 2 20 tanh 0.001 0.9 0.999 N Huber N 0.1

60 3 20 tanh 0.001 0.9 0.999 N Huber Y 0.1

61 3 20 tanh 0.001 0.9 0.999 N Huber N 0.1

62 4 20 tanh 0.001 0.9 0.999 N Huber Y 0.1

63 4 20 tanh 0.001 0.9 0.999 N Huber N 0.1

64 4 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.01

65 4 20 ReLU 0.001 0.9 0.999 Y Huber Y 0.1

Table A2. Training and cross-validation accuracy of 65 models.

Models B5 (%) B6 (%) B7 (%) B18 (%) Mean (%) Models B5 (%) B6 (%) B7 (%) B18 (%) Mean (%)

1 7.98 3.04 2.75 6.83 5.15 34 5.68 8.69 2.80 12.06 7.31

2 8.72 3.29 3.25 5.90 5.29 35 8.26 5.09 1.93 13.39 7.17

3 8.76 3.80 3.15 5.63 5.33 36 8.68 3.16 3.22 5.80 5.21

4 7.26 3.60 2.95 6.98 5.20 37 9.44 3.68 2.92 5.15 5.30

5 9.13 3.20 2.95 6.48 5.44 38 7.30 3.56 3.02 7.65 5.38

6 8.72 5.99 3.13 5.31 5.79 39 8.70 2.83 2.58 5.17 4.82
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Table A2. Cont.

Models B5 (%) B6 (%) B7 (%) B18 (%) Mean (%) Models B5 (%) B6 (%) B7 (%) B18 (%) Mean (%)

7 13.50 8.67 0.36 15.31 9.46 40 7.73 2.59 2.68 5.77 4.69

8 13.96 7.54 0.37 11.20 8.27 41 7.34 2.47 2.86 6.43 4.77

9 16.48 10.32 1.17 19.53 11.87 42 5.30 6.58 4.19 9.68 6.44

10 16.93 9.02 1.98 19.69 11.90 43 12.71 5.36 5.56 19.38 10.75

11 6.41 2.97 3.09 6.64 4.78 44 5.42 6.53 4.20 9.55 6.43

12 6.29 8.93 5.25 9.16 7.41 45 9.03 2.70 6.04 8.71 6.62

13 5.56 8.56 4.69 9.45 7.06 46 14.76 8.10 0.59 14.78 9.56

14 5.10 8.56 4.35 9.69 6.92 47 5.68 6.32 4.19 9.25 6.36

15 6.48 5.86 6.22 9.60 7.04 48 11.23 4.06 3.68 11.52 7.62

16 4.98 6.12 3.73 14.82 7.41 49 4.54 6.45 3.94 9.86 6.20

17 5.43 3.62 4.84 11.35 6.31 50 5.32 6.64 4.20 9.62 6.44

18 7.79 12.04 4.61 8.97 8.35 51 5.52 6.45 4.20 9.46 6.41

19 10.84 11.64 9.53 8.32 10.08 52 11.37 7.00 10.04 15.23 10.91

20 7.25 9.91 5.45 9.67 8.07 53 8.07 2.69 2.66 5.70 4.78

21 11.61 9.09 10.19 11.23 10.53 54 12.84 6.11 0.92 8.11 6.99

22 6.59 2.67 6.06 11.61 6.73 55 8.37 2.90 2.68 5.80 4.94

23 9.97 4.07 4.43 9.57 7.01 56 13.86 8.62 2.02 6.28 7.69

24 5.21 8.84 4.14 13.50 7.92 57 6.78 2.39 2.84 6.41 4.61

25 5.71 8.49 4.77 9.10 7.02 58 16.05 7.31 0.90 5.89 7.54

26 5.17 8.02 4.36 9.44 6.75 59 7.66 2.39 2.82 5.92 4.70

27 6.49 6.18 3.71 12.87 7.31 60 12.80 7.04 0.83 20.50 10.29

28 4.69 6.33 3.82 15.39 7.56 61 8.42 3.15 2.59 5.56 4.93

29 5.93 6.40 4.98 8.56 6.47 62 13.23 8.03 1.90 3.50 6.67

30 7.32 11.88 4.88 10.29 8.59 63 8.27 3.00 2.70 5.71 4.92

31 7.59 10.40 3.71 11.30 8.25 64 11.84 6.11 0.73 22.94 10.41

32 7.02 11.13 3.58 9.20 7.73 65 19.62 11.06 0.29 15.54 11.63

33 11.29 12.07 9.92 8.54 10.45
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