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Abstract: Mechanical internal short circuit (ISC) is one of the significant safety issues in lithium-ion
battery design. As a result, it is possible to subject LIB cells to thorough mechanical abuse tests
to determine when and why failure may occur. The indentation test is a recommended loading
condition for evaluating mechanical damage and ISC. In this study, 18,650 cylindrical battery cells
underwent indentation tests and a voltage reduction following the peak force identified by the ISC.
Due to the complexity of the contact surface shape between two cylinders (LIB cell and indenter), a
new phenomenological analytical model is proposed to measure the projected contact area, which
the FEM model confirms. Moreover, the stress-strain curve and Young’s modulus reduction were
calculated from the load-depth data. In contrast to previously published models, the model developed
in this paper assumes anisotropic hyperelasticity (the transversely isotropic case) and predicts the
growing load-carrying capacity (scalar damage), whose variation is regulated by the Caputo-Almeida
fractional derivative.

Keywords: safety; lithium-ion battery; internal short circuit; fractional damage; indentation

1. Introduction

In various applications, such as electric vehicles and cell phones, lithium-ion battery
(LIB) cells are considered the first choice for power batteries due to their higher capacity
and higher efficiency [1]. However, the safety of electric vehicles has become a crucial issue
since LIB cells can be subjected to various mechanical loading conditions [2,3]. Hence, it is
essential to have a better knowledge of the damage behavior of LIB cells, which has drawn
extensive attention from vehicle companies and engineering groups [4]. Furthermore,
sufficient understanding in this critical field is necessary to develop reliable methods to
ensure the safe application of the LIB cell under different mechanical loadings [4].

However, in terms of shape, four types of LIB cells are found in the literature, including
pouch [5–12], elliptical [5,13–15], cylindrical [16–20], and prismatic [21–23]. Furthermore,
regarding the detection of failure, various mechanical abuse tests with a range of indenters,
such as nail [24–29], conical [30], hemispheric [5,6,11,19,23,30–35], cylindrical [17,31–33,36–38],
flat [10,16,17,31,36,39], pinch [11], and three-point bending indenters [31] were used to induce
the internal short circuit (ISC) on the whole LIB cell. These tests have been developed to address
the safety concerns associated with LIB cells: the risk of failure, ISC, and thermal runaway.
Consequently, many attempts have been made to develop a failure model based on a function
of the plastic strain to predict the failure onset and propagation in cases of mechanically abusive
loadings [31,39–42]. In contrast, the current study focuses on developing a damage model to
predict material degradation through mechanical deformation.

Three primary modeling methods have been employed in the literature to evaluate the
LIB cell’s response and safety risks following mechanical deformation and damage. The
first method considers the LIB cell as a multi-layer structure and evaluates the mechanical
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properties of individual components [43]. The second approach utilizes the reduced-detail
model by combining several layers into only a single one [9]. Finally, the last method
considers the LIB cell as a homogenized medium with a significantly lower computational
cost [44]. It should be pointed out that a homogenized model was developed in this study,
which boasts higher computational efficiency than others.

However, in the literature, three isotropic, macro-homogenized material models have been
developed to characterize the elastoplastic response of the LIB cell under different mechan-
ical scenarios: power-law [41,45], hyper-foam [30,46,47], and crushable foam [30,35,46,47].
Furthermore, it should be noted that strain failure criteria have been used to predict the
failure of the LIB cell in the above studies. Moreover, no explicit research is available
in the literature addressing the degradation of mechanical properties due to mechanical
deformation. Hence, in this study, a scalar damage model for hyperplastic materials is
developed to predict the mechanisms and the extent of damage to the LIB cells in the case
of the indentation test.

From the continuum damage mechanics perspective, it is widely accepted that changes
in the macroscopic material properties (such as stiffness and Young’s modulus) can indicate
the onset, growth, and combination of microcracks and microvoids [48,49]. Consequently,
characterizing Young’s modulus of LIB cell under mechanical abuse deformation is crucial
to understanding how this degradation of mechanical properties is related to an appropriate
damage function. Therefore, the reduction in Young’s modulus in the computational
continuum damage model is evaluated to indicate the damage onset and propagation
through mechanical deformation.

Ali et al. [46] proposed a homogenized model based on the hyper-foam material
model, using the strain energy function to represent the LIB cell’s mechanical behavior
under in-plane constrained compression tests. While such models may be used widely
to predict elastoplastic behavior, they cannot predict damage in the LIB cell. To address
this, the current study evaluates LIB cells’ response under mechanical abuse tests using
a combination of anisotropic hyperelasticity and the time-fractional damage evolution
law within a phenomenological framework. The anisotropy is introduced through the
fundamental rule that the effective (undamaged) Helmholtz free-energy function (Ψ̃) is an
isotropic tensor function, including the deformation gradient (F) and a structural tensor (M).
It should be noted that physically observed damage was modeled using a scalar variable (φ),
which was isotropic and whose evolution was defined based on the Perzyna model [50].
Moreover, it introduces the rate dependence and implicit space-length scale (through
relaxation time). Additionally, damage evolution is governed by using the Caputo-Almeida
fractional derivative operator (C

t−lt
Dα,Ψ

t ) Almeida [51], which incorporates a memory (time-
length scale).

Since indentation is a versatile experimental test that can easily be used to evaluate
the LIB cell’s response to plastic deformation and damage propagation, an indentation test
was employed in this study. Furthermore, the present study developed a novel approach
to capture the reduction in the Young’s modulus due to damage in the LIB cell and convert
the indentation load-depth data into the stress-strain relationship. Initially, the sink-in and
elastic deflection were taken into account to measure the reduced Young’s modulus and the
projected contact area. Subsequently, researchers presented an effort to modify the reported
hyperelastic model in the literature to make it more suitable for the LIB cell by including
softening directly in the expression for damage accumulation.

2. Materials and Methods

The LIB samples used in this study were 18,650 cylindrical LIB cells with a voltage of
3.52 V, which were 65 mm in length and 18 mm in diameter. The experimental indentation
tests were performed using electromechanical MTS Insight with 100 kN load cell. For
the indentation tests, a rigid cylindrical steel rod was used as the indenter with a 16 mm
diameter, and LIB cells were placed on the lower plate (as seen in Figure 1). A temporary
holder was used to ensure the first connection between the cell and the indenter was
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created, which minimized the misalignment and rotation in the battery cell. Five maximum
penetration depths (2, 3, 4, 5, and 6 mm) were used to measure the reduction in the Young’s
modulus through the indentation test. The LIB cell was subjected to a 2 mm displacement,
the second cell to a 3 mm displacement, and so on, and the loading speed was 1 mm min−1

to extract the stress-strain relation from force-depth data. In addition, it is important to
note that the indenter load direction and the cell seam are parallel, which significantly
influences the experimental setup and the subsequent observations reported in this work.
However, the in-situ voltage of LIB cells during indentation tests was measured by an
Agilent 34410A Digital Multimeter. This study uses the voltage technique to predict the
internal short circuit (ISC) and detects the force drop that coincides with when the voltage
drops to 0 V.
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Figure 1. Experimental setup of indentation of a cylindrical LIB cell with a cylindrical indenter.

3. Results and Discussion
3.1. Measurement of Young’s Modulus Reduction

From the homogenized model respective, the tensile or axial compression test was
used to obtain Young’s modulus values for the LIB cell [31]. In the literature [33,36], a
constant value, 1.5 MPa, was reported as Young’s modulus of the jellyroll. However, this
definition of Young’s modulus cannot describe the elastic modulus reduction due to the
damage accumulation. Therefore, this study employed the indentation test to measure the
reduction of Young’s modulus through the indentation test.

A multistep indentation test was performed to measure Young’s modulus at various
depths. This section performed single-loading indentation tests at five maximum penetra-
tion depths (2, 3, 4, 5, and 6 mm). The multistep indentation test provides more information
about the material properties of LIB cells in a shorter time by giving information about
load/reload at each step. However, as suggested by Doerner-Nix [52], a linear fit function
was used for the initial 20% of the unloading segment to evaluate Young’s modulus during
the indentation test.

According to Hertz’s theory of contact mechanics between two isotropic elastic
solids [52], from the unloading part, the relation between the load (P) and the penetration
depth (h) during the indentation test is defined as:

P =
4
3

EeffR
1
2
effhe

√
he (1)
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where he is elastic penetration depth. Effective Young’s modulus (Eeff) and effective radius
(Reff) are obtained as follows:

Eeff =
EcEi

(1− vc)Ei + (1− vi)Ec
(2)

Reff =
RcRi

Rc + Ri
(3)

where Ec, vc, Rc and Ei, vi, Ri denote Young’s modulus, Poisson’s ratio, the LIB cell’s
radius, and the corresponding indenter’s properties. Then, based on the linear approach
to measuring an appropriate fit of the unloading segment, as seen in Figure 2, the contact
stiffness, S, is experimentally obtained, which can also be analytically calculated by taking
the first derivative of Equation (1):

S =
dP
dh

= Eeff(Reffhe)
1
2 (4)Batteries 2023, 9, x FOR PEER REVIEW 5 of 15 
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Figure 2. Five single-loading indentation tests at five different penetration depths (a), unloading
segments (b), and degradation of Young’s modulus (c).

Therefore, the reduced Young’s modulus can be expressed in terms of the contact
stiffness and the indentation depth obtained by combing Equations (1) and (4) as:

Eff =
S√

Reffhe
=

S
Ac

(5)

where Ac is the projected contact area, and an analytical approach will be introduced to
calculate its value in the following section. The above equation confirms that Young’s
modulus involves the projected contact area and the unload’s slope at the maximum depth
point. Figure 2 shows that the unloading slope at the maximum depth point increased
as the depth increased. However, simultaneously, the value of the projected contact area
was raised. This test indicated that Young’s modulus decreased as the depth increased,
which can result from damage accumulation. In the literature [35,53], a constant value
used for Young’s modulus is most often considered as the LIB cell under mechanical abuse
test in the computational simulations. However, in this study, a novel way was used to
combine a couple of the concepts of the continuum damage mechanic and the experimental
indentation test to show the degradation of Young’s modulus with increasing penetration
depth, as seen in Figure 2. The rationale for using the reduction of Young’s modulus is to
better describe the effect of the voids and cracks on the decrease in mechanical properties
of the LIB cell. An analytical damage model will be introduced in the following sections.

3.2. Analytical Approach to Convert Force-Depth into Stress-Strain Relation

One of the challenges in the indentation test is determining the projected contact area
between two crossed cylinders (the indenter and LIB cell). In this study, an analytical
approach was developed to calculate the projected contact area as a function of the indenter
depth. As the experimental results show in Figure 3a, the deformed area has an elliptical
shape. According to Hertz’s theory, Popov [54] proposed a model to measure the contact
area between two perpendicular cylinders with a radius R1 and R2 (as seen in Figure 3b) to
calculate the semi-axes of an ellipse as follows:

a =
√

R1hc (6)

b =
√

R2hc (7)

where hc is the contact depth being derived as a function of the maximum indenter depth
(hmax) in this study, as follows:

hc = 0.75hmax (8)
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Figure 3. (a) Deformed LIB cell through the indentation test, (b) Schematic of a cylindrical LIB cell
being indented by a rigid cylindrical indenter, (c) Graphical representation of fitting an ellipsoidal
cap to the deformed surface.

Hence, the projected contact area (Ac) can be obtained as:

Ac = πab = πhc
√

R1R2 (9)

Moreover, a finite element method (ABAQUS) is used to track deformation during
the indentation test. To obtain the 3D cloud point data from the 3D mesh, a custom-made
Python script was developed to read/extract data from the “odb” file and obtain the
node depth/position from the contact area between the two crossed cylinders, as shown
in Figure 3b. Hence, the projected contact measured from the FE model at successive
indentation depth stages can verify the analytical solution for measuring the projected
contact area, as shown in Figure 4.
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Figure 5 shows that the cell voltage drops at a depth value of approximately 6.2 mm
in indentation testing. Noting that the drop in voltage and peak force occur simultaneously
confirms the presence of ISC. Moreover, the main objective of this study is to characterize
the elastoplastic response of the LIB cell under the indentation test. Many attempts have
been made in the literature to determine stress-strain curves of the LIB cell from axial and
radial compression tests [13,16,41,44,55]. Since the indentation test is one of the typical
mechanical abuse tests to trigger ISC, it is challenging to calculate the stress-strain curve
from the force depth data from the indentation test rather than the axial compression test.
Hence, in this section the projected contact area, measured in the previous section, is used
to propose a new analytical method presented in this section to calculate the stress-strain
relation. From the analytical point of view, one defines effective stress (σeff) as:

σeff =
1
α

P
Ac

=
1
α

P
πhcReff

(10)

where α is the stress constraint factor.
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In contrast to the previous studies in the literature [56,57], due to the difficulties
involved in calculating the contact area, it came to the attention of the authors to define the
indentation strain in novel ways as follows:

εxx =
a

Reff
(11)

εyy =
b

Reff
(12)

εzz =
hc

Reff
(13)

The effective indentation strain can be calculated as follows:

εeff =
1
β

√
3
2

(
ε2

xx + ε
2
yy + ε

2
zz

)
(14)

where β is the strain constraint factor. Figure 6 shows the effective stress-strain curve
obtained from Equations (10) and (14).
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3.3. Fundamental Assumptions

In the simulation of the LIB cell under the indentation test, it is assumed that the
conservation of mass, the balance of momentum, the balance of moment of momentum,
and the balance of energy and entropy production hold. The first assumption states that
the free energy function was modelled as a scalar function of the tensorial argument [58]:

Ψ = Ψ(F, M;µ) (15)

where F is the deformation gradient, M denotes the structural tensor (symmetric and
positive definite), and µ represents a set of internal state variables, which consists of the
damage variable (φ). Hence, the degradation of mechanical properties of the LIB cell is
described using a single scalar damage parameter, as follows:

µ = {φ} (16)
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As usual in damage mechanics, the variable φ takes the value within limits [0, 1].
Moreover, it should be noted that the damage variable has a phenomenological meaning,
so that φ = 0 is equivalent to the undamaged material, and φ = 1 means the complete
loss of load-carrying capacity (loss of continuity). Next, one can rewrite the free energy
function Equation (16) as:

Ψ = Ψ(F, M;µ) = (1−φ)Ψ̃(F, M) (17)

where Ψ̃(F, M) is the effective (undamaged) Helmholtz free-energy function. Furthermore,
based on LIB geometry and its internal structure, we assume that anisotropic behavior is of
transverse isotropic type [58], therefore:

Ψ̃ = Ψ̃ti = Ψ̂ti(I1, I2, I3, J4, J5) = Ψiso(I1, I2, I3) + Ψti(J4, J5) (18)

where
I1 = trC, I2 = tr[CofC], I3 = detC, J4 = tr[CM], J5 = tr[Cof[C]M] (19)

where Ψiso stands for the isotropic part, Ψti stands for transverse isotropy term, C denotes
the right Cauchy-Green tensor, Cof[C] = det[C]C−1 and M = diag(a, a, b) (X3 spatial
direction as chosen as a preferred one—axonal structure direction).

Under the above assumptions, the constitutive relation for the HTFD model is, in general

S = 2(1−φ)
[(

∂Ψ̃ti

∂I1
+

∂Ψ̃ti

∂I2
I1

)
1− ∂Ψ̃ti

∂I2
C +

(
∂Ψ̃ti

∂I3
I3 +

∂Ψ̃ti

∂J5
J5

)
C−1 +

∂Ψ̃ti

∂J4
M− ∂Ψ̃ti

∂J5
I3C−1MC−1

]
(20)

where S denotes the 2nd Piola-Kirchhoff stress tensor, an explicit definition of S requires
a specific form of the effective (undamaged) Helmholtz free-energy function, and the
meaning of damage evolution—experimental data inspire both [59].

3.4. Free-Energy Function and Damage Evolution

Based on experimental evidence, the isotropic part of the effective (undamaged)
Helmholtz free-energy function is assumed to be governed by the compressible Mooney-
Rivlin model, namely

Ψiso(I1, I2, I3) = α1I1 + α2I2 + δ1I3 − δ2 ln
(√

I3

)
(21)

where α1,α2, δ1, δ2 ≥ 0 denotes material parameters. Next, the transverse isotropic term
has the form proposed by Schroder et al., (2008)

Ψti =
1

α4(trM)α4
η1
(
Jα4
4 + Jα4

45
)

(22)

where M = diag
(
γ2

1, 1
γ1

, 1
γ1

)
, and γ1,η1 ≥ 0 and α4 ≥ 1 are material parameters. Further-

more, to fulfill the stress-free initial configuration, the above material parameters should
satisfy the requirement

δ2 = 2α1 + 4α2 + 2δ1 + 2η1 (23)

The above assumptions allow one to rewrite the constitutive relation to the form

S = 2(1−φ)
[
(α1 + α2I1)1− α2C +

(
δ1I3 −

δ2
2

+
η1

(trM)α4
Jα4
5

)
C−1 +

η1
(trM)α4

Jα4−1
4 M− η1

(trM)α4
Jα4−1
5 I3C−1MC−1

]
(24)

As mentioned, the Caput-Almeida fractional derivative is used to describe the evolu-
tion of damage in time, which simultaneously introduces memory to the general constitu-
tive law. One has then the following form for damage evolution

C
t−lt D

α,Ψ
t φ =

1
T� Φ

Iφ
τφ
− 1 (25)
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where C
t−lt

Dα,Ψ
t denotes the Caputo-Almeida fractional derivative operator (Almeida, 2017)

C
t−lt D

α,Ψ
t f(t) =

1
Γ(n− α)

∫ t

t−lt
Ψ′(τ)(Ψ(t)−Ψ(τ))n−α−1

(
1

Ψ′(t)
d
dt

)n
f(t)dτ (26)

where α denotes the order of fractional velocity of damage, lt is the time-length scale,
Ψ(t) ∈ Cn ∈ [t− lt, t] is an increasing function that fulfills the requirement Ψ′(t) 6= 0,
n = [α] + 1 and n = α for α ∈ N, T is the characteristic time, (�) defines power which
depends on the selected Ψ(t), Φ is the overstress function, Iφ is the stress intensity invariant,
τφ is the static threshold stress for damage evolution, and the bracket 〈·〉 defines the ramp
function. It is vital to notice that the classical damage mechanical model (without memory
effects) is a particular case of the proposed evolution law and is obtained for Ψ(t) = t and
α = 1.

Finally, based on results obtained by Voyiadjis and Sumelka [58]

Φ
〈

Iφ
τφ
− 1
〉

=

〈
(1−φ)

(
Ĩφ
τφ

)n1

− 1

〉n2

(27)

where n1, n2 are material parameters, and

Ĩφ = b∗
(

a∗ +
(

Ψ
c∗

)n∗+1 n∗

∑
k∗=0

(
n∗ + k∗

k∗

)(
2n∗ + 1
n∗ − k∗

)(
−Ψ

c∗

)k∗)
+ f∗ exp

(
d∗
(
Ψ− e∗

))
(28)

In above equation a∗, b∗, c∗, d∗, e∗, f∗, n∗ are material parameters, Ψ = Iφ(C, M)− Iφ0,
Iφ0 = Iφ(C, M)

∣∣
C=0, and

Iφ = α∗1I1 + α
∗
2I2 + δ

∗
1I3 − δ∗2 ln

(√
I3

)
+

1

α∗4(trM)α
∗
4
η∗1

(
Jα
∗
4

4 + Jα
∗
4

5

)
(29)

The material parameters are such that α∗1 ,α∗2 , δ∗1 , δ∗2 ,η∗1 ≥ 0,α∗4 ≥ 1, and δ∗2 = 2α∗1 +
4α∗2 + 2δ∗1 + 2η∗1 . Altogether we have 23 material parameters:

â 4 defining anisotropic hyperelastic part α1,α2, δ1,α4,η1
â 19 defining damage evolutionα, lt, T, n1, n2, τφ,α∗1 ,α∗2 , δ∗1 ,α∗4 ,η∗1 , a∗, b∗, c∗, d∗, e∗, f∗, n∗

plus the modulation function Ψ.

For model validation, the number of material parameters is initially reduced to 17
under the assumption that α1 = α∗1 ,α2 = α∗2 , δ1 = δ∗1 ,α4 = α∗4 ,η1 = η∗1 , and that full-
memory assumption holds, therefore lt could be reduced as well.

3.5. Model Validation

The hyperelastic time-fractional damage (HTFD) model has been implemented in
the Mathematica software and identified based on experimental evidence on the LIB
specimen. Calibration has been prepared under the assumption of best fitting curve utiliz-
ing an optimization task (FindFit function from the Mathematica software [60], utilizing
“Quasi Newton” optimization, i.e., the quasi-Newton BFGS approximation to the Hes-
sian was applied) for selected modulation functions Ψ. The best results were obtained
for Ψ(t) = t3 + 1, therefore, in consequence in damage evolution law � = 3α. Material
parameters are collected in Table 1, whereas the comparison of experimental data with
HTFD model predictions is presented in Figure 7.
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Table 1. HTFD material parameters for LIB.

α1 = α∗1 = 10.50 [MPa] T = 0.257 [s] c∗ = 1.72[MPa]
α2 = α∗2 = 7.60 [MPa] n1 = 1.76[−] d∗ = 9.78

[
MPa−1

]
δ1 = δ∗1 = 7.00 [MPa] n2 = 1.83 [−] e∗ = 15.29[MPa]
α4 = α∗4 = 18.9 [−] τφ = 0.55 [MPa] f∗ = 1.01[MPa]
η1 = η∗1 = 1.90[MPa] a∗ = 0.55[−] n∗ = 2[−]

α = 0.72 [−] b∗ = 1.01[MPa]
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Figure 7 presents the stretch (λ1) vs. stress (P11−1st Piola-Kirchhoff stress component)
for 3 cases: experimental data, undamaged answer (purely elastic case; τφ → ∞ ), and
full-range HTFD model prediction. Since the main novelty of the proposed description is
the application of fractional calculus for the definition of internal state variable evolution,
one should notice that the fractional-velocity of damage of order α = 0.72 (with the physical
dimension s−3∗0.72) provided the best approximation of experimental data. One can observe
that the first stage of softening appears for λ1 ≈ 1.08 and rapidly grows up to λ1 ≈ 1.18. In
the next step, damage grows slowly and at the limit λ1 ≈ 1.48 jumps drastically up to its
extreme value φ→ 1− .

Finally, it is clear that the HTFD model provides proper predictions in the phenomeno-
logical sense. Complex damage phenomena in real specimens can be correctly described
in a homogenized sense through a single scalar variable whose evolution follows a time-
factional velocity curve. One should point out that such flexibility is obtained through
one parameter (α) and a single modulation function (Ψ), compared to the classical damage
mechanics approach.

4. Conclusions

The indentation test was performed using the cylindrical indenter. This research ad-
dresses the difficulty of converting force depth data into engineering stress-strain relations.
Measuring the projected contact area between two cylinders is one of the issues posed by
this mechanical test, which this study addresses by proposing a few analytical approaches
and the FEM model. However, another innovation of this research is a multistep indenta-
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tion test that was performed to measure the reduction of Young’s modulus. In contrast to
previously published models, which can predict elastoplastic behavior but cannot predict
LIB cell damage, an analytical damage model has been developed in this work. Hence, a
definition is provided for an anisotropic hyperelastic theory that accounts for fractional
scalar damage development regulated by the Caputo-Almeida fractional derivative. The
refined damage model is then implemented for the constrained indentation configuration
of the experiment. This study demonstrates that the numerical findings qualitatively and
quantitatively closely match the experimental data.
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