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Abstract: In this paper, the thermal management of a battery module with a novel liquid-cooled
shell structure is investigated under high charge/discharge rates and thermal runaway conditions.
The module consists of 4 × 5 cylindrical batteries embedded in a liquid-cooled aluminum shell with
multiple flow channels. The battery module thermal management and the suppression of thermal
propagation were experimentally examined. The temperature rise of the battery in the discharging
process is significantly greater than that in the charging phase. As the coolant flow speed increases,
the maximum temperature of the battery module decreases slightly, while the temperature difference
remains at the same level, at the expense of a much-increased pressure drop. With the presented liquid-
cooled shell, the suppression of thermal propagation was investigated for both internal and corner
battery thermal runaway. It is found that the temperature of the adjacent battery can be maintained
at under 70 ◦C, indicating that the propagation of thermal runaway can be successfully suppressed
by heat dissipation through the surrounding liquid flow. In addition, the electrically induced thermal
profile along the battery interconnection was identified through thermal imaging. Hot spots were
found on the confluence busbars of the batteries in series connection. In order to improve the
safety of battery modules, a parallel battery connection in the battery module is recommended,
which can reduce the busbar temperature by 4.86 ◦C, as determined through numerical simulations.
Experimental measurements were also conducted to verify the simulation results.

Keywords: liquid-cooled shell structure; thermal management; thermal propagation; flow speed;
busbar

1. Introduction

The development of new energy vehicles is a key industrial development direction
in China, which plays an indispensable role in achieving the carbon neutrality goal [1–3].
Electric vehicles have used lithium-ion batteries for years due to their high energy den-
sity, long service life, and low self-discharge rate, and they have gradually become the
fundamental power source for new energy vehicles [4,5]. However, Li-ion batteries still
face thermal management and thermal safety issues [6–8]. The performance of lithium-ion
batteries is very sensitive to the ambient temperature from 10 ◦C to 45 ◦C [9]. The heat
generation of lithium batteries during charging and discharging due to internal resistance
will increase the temperature of the battery, and the heat generation is more significant in
the case of a high discharge rate. Insufficient heat dissipation in the battery module results
in a high battery temperature, which affects the lifetime and safety of the battery. As such,
it is important to design a high-quality BTMS (battery thermal management system) to
ensure that the temperature of the battery module remains stable [10–12].

The methods of thermal management for batteries include air cooling [13], liquid
cooling [14], and phase-change cooling [15]. For low-power small vehicles, air cooling is an
efficient thermal management system due to its simple structure, ease of implementation,
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and low cost [16,17]. Wu et al. selected the typical unit cell of tubular heat exchangers to nu-
merically optimize the thermal performance of a heat exchanger. The optimal structure was
obtained by focusing on the heat transfer rate and fan power at the air side [18]. However,
the low thermal conductivity of air and the obvious heating effect along the course make it
difficult to meet the thermal management requirements of long-range high-power battery
packs, not to mention the suppression of thermal propagation. Phase change cooling is a
passive cooling of the cell using the latent heat of a PCM (phase change material) without
additional energy consumption, but the disadvantage is that the thermal conductivity is
low and the heat dissipation capability is largely lost after complete melting [19]. In com-
parison, liquid cooling performs better than air cooling due to its higher heat capacity and
coefficient of heat transfer. Lai et al. [20] proposed a parallel curved liquid cooling structure
for cylindrical battery module cooling. Zhao et al. [21] arranged serpentine channels on
the surface of cylindrical cells to cool their cell modules and obtained a good uniform
temperature performance at a 5C discharge rate. C indicates the charge/discharge rate of a
lithium-ion battery, which is defined as the ratio of charge/discharge current to nominal
current. Wu et al. [22] provided a design method for the design of a power battery hybrid
thermal management system, combining active cooling and passive cooling. A kind of
new hybrid thermal management system combining phase change materials with a series
of liquid cooling was designed. Using the same structure, experiments have examined
the impact of the thermal management performance of different cooling methods on the
battery pack and ambient temperature. Liu et al. [23] designed a novel liquid cooling flow
channel structure with vertical layout channel or horizontal layout configuration. The
vertical layout of the runner structure has better cooling performance than the horizontal
layout. However, a novel battery module type with a liquid-cooled shell structure was
proposed, with multiple horizontal and vertical flow channels built into the shell. It is
noted that most of liquid cooling techniques are examined under normal operation without
considering an accidental battery thermal runaway scenario with excessive heat generation.

A key component of thermal management is the suppression of thermal propagation.
The thermal propagation behavior in battery modules due to thermal runaway have been
reported under different conditions. Jin et al. [24] used multiple heaters in a square battery
module and discussed the thermal runaway propagation characteristics of the battery
module under multiple heating powers. Lopez et al. [25] investigated the influence of the
nickel busbar connection configuration on thermal runaway propagation. Additionally, the
busbar connection configuration was varied by using the M type and the S type. A nickel
busbar of M type extends to the terminals of other batteries with multiple branches to form
positive and negative terminals of the battery module. These tests showed that the M-type
tab configuration with multiple batteries in parallel has a lower temperature and may be
safer than the S-type module. Li et al. [26] triggered the thermal runaway of a battery
by heating it with a heater which was the same size and shape as the battery. The heat
transfer path of the battery under different heating powers was analyzed. Zhong et al. [27]
simulated thermal runaway cells in a 3 × 3 module thermal runaway propagation exper-
iment using a heater of the same size as the cells. Amano et al. [28] studied the thermal
runaway of lithium-ion batteries heated by a heater with a maximum heater power of
400 W. Wang et al. [29] selected eight NMC811-type 18650 Li-ion battery modules with a
300 W power heater to test the triggering of adjacent cells to study the effects of different
cell spacings and critical temperatures on thermal runaway propagation. Increasing the
thermal runaway triggering temperature and cell spacing can reduce the risk of thermal
propagation. Rui et al. [30] studied the thermal runaway propagation of square battery
modules through numerical simulations to explore the characteristics of bottom liquid
cooling to suppress the thermal runaway propagation of battery modules. Nonetheless,
much more work is required to mitigate and suppress the thermal propagation of battery
thermal runaway in battery packs.

In order to improve the safety of a battery module, the temperature of the battery
module should be controlled at an acceptable level at both high charge/discharge rates and
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in the extreme heat generating case of thermal runaway. However, battery module thermal
management systems with the above functions are not well reported in the literature. To
achieve such a design goal, the thermal management and thermal propagation perfor-
mances of lithium-ion battery modules configured with a new type of liquid-cooled shell
are investigated through experiments and simulations. The effects of multiple flow speeds
and coolant temperatures on the thermal management performance of battery modules are
discussed through experiments, and the recommended flow speed and coolant temperature
for lithium-ion battery thermal management were proposed. The temperature profiles
of the busbar in the battery module were recorded by a thermal imaging camera, and
the highest temperature was found at the positive and negative ports and the confluence
busbar connection in series. Adopting a test battery as the thermal runaway battery, the
thermal suppression performance of the liquid-cooled shell was experimentally examined.
The thermal performance on the thermal runaway propagation of the battery to adjacent
cells at multiple flow speeds was examined experimentally. In order to further improve the
safety of battery modules, an improved busbar connection mode for the battery module
is proposed. It is demonstrated by numerical simulation that the presented liquid-cooled
shell has excellent thermal performance for both thermal management and suppression of
the thermal propagation across the battery module.

2. Experimental Setup and Numerical Models
2.1. Experimental System for the Battery Module

The battery used in the experiment was a commercial 18650 LIB with NMC (nickel–
manganese–cobalt). The nominal capacity of the battery was 2.5 Ah and the operating
voltage ranged from 2.5 V to 4.2 V. As shown in Figure 1, a liquid-cooled experimental
system for the battery module was built, including a circulating thermostatic water tank, a
flow meter, a charge/discharge tester, a differential pressure meter, and a temperature data
collector. Two test sections were built. One was for battery thermal management under
normal charge and discharge conditions, and the other was for the battery module with a
triggering heater to investigate the suppression of the thermal runaway. The experimental
test system is shown in Figure 1, together with both test sections. The novel liquid-cooled
shell heat dissipation structure was fabricated with 4 × 5 holes to house the 18650 Li-ion
batteries. The batteries were arranged in four rows, and five batteries in each row were
connected by a nickel busbar to form the 5P4S connection. To monitor the battery module
temperature, cells #1, #2, #5, #9, #13, and #17 were tin-soldered with thermocouples on
top of them, with the red dot representing the thermocouple soldering location for both
the thermal management battery module and the battery module to suppress the thermal
runaway. Plastic insulating plates covered the top and bottom of the case structure to
prevent the short circuiting of the battery module. The liquid-cooled shell was wrapped
with 20 mm of aerogel to minimize the natural convection heat loss to the ambient. The
wire diameter of all the K-type thermocouples was 0.25 mm.

The objective of this study is to examine the suppression effect on thermal runaway
propagation in battery modules; two test batteries installed with multiple heaters, denoted
as #14 and #20, simulate the thermal runaway scenario. As shown in Figure 1, the battery
module thermal propagation experimental device consists of eighteen real batteries and
the two test batteries. As a result of battery thermal runaway, a large amount of heat is
generated, causing the battery temperature to rise sharply, which would then induce more
thermal runaway batteries and thus is referred to as thermal propagation. For the thermal
runaway suppression test, only the thermal performance was examined without really
triggering the battery thermal runaway. During the experiment, the temperatures of both
test batteries (#14 and #20) and the temperatures of the adjacent batteries were monitored.
The test batteries were connected to DC power. The test batteries have four built-in heater
rods, each with a maximum heating power of 150 W, and thus the maximum power of both
of the two test batteries is 600 W.
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Figure 1. Liquid-cooled battery module test system with the battery modules for thermal management
and suppression of thermal propagation.

2.2. Novel Battery Module Liquid-Cooled Shell Model

In this paper, a novel battery module type with a liquid-cooled shell structure was
proposed and is schematically shown in Figure 2. The liquid-cooled shell is equipped with
4 × 5 through-holes of 18.5 mm in diameter to accommodate the 18650 Li-ion batteries,
with multiple horizontal and vertical flow channels built into the shell. The batteries were
arranged in four rows, and five batteries in each row were connected in parallel by a nickel
busbar to form the 5P4S connection. The distance between the adjacent battery centers is
26.5 mm, except for the middle two rows of battery through-holes, for which the distance
between the adjacent battery centers was expanded to 28.5 mm to facilitate the fabrication
of inlet channels. The clearance between the battery through holes at the corners and the
lateral side is 18.25 mm. The overall shell size is 142.5 mm × 118 mm × 59 mm. More
details on the dimensions can be found in Figure 2b.
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Figure 2. An illustration of the new liquid-cooled shell battery module: (a) overall structure of
battery module system with both positive and negative connections (yellow color); (b) top view of the
battery module with positive terminal connection; (c) grid model. 1-busbar, 2-cell, 3-lateral channel,
4-longitudinal channel, 5-liquid channel, 6-shell, 7-inlet, 8-outlet.

In order to enhance the heat transfer, circular fluid channels, indicated as green blocks
in Figure 2, were placed on the two large lateral sides of the shell structure with a cross-
sectional diameter of 4 mm. The inlet flows went through the internal flow channels with
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the same diameter of 4 mm, and then came out of the shell structure through the horizontal
and vertical branching channels inside the shell. The inlet and outlet confluence grooves
were installed in the shell structure to connect to the external liquid cooling system.

2.3. ECM Model

The ECM model lithium-ion battery electrochemical heat production equation is
as follows:

qECh =
I

Vol
[Vocv − (ϕ+ − ϕ−)− T

dU
dT

] (1)

where Vol is the volume of the battery, I is the current, Vocv is the open circuit voltage, and
ϕ+ and ϕ− are the positive and negative voltages, respectively.

The electrical behavior of the battery is represented by the ECM (equivalent circuit
model). This equivalent circuit model has a 4P model (one RC loop) and a 6P model (two RC
loops) (resistor-capacitance). Considering the accuracy of the battery model simulation
in calculating the heat generation rate, the 6P model was chosen. The second-order RC
circuit model includes three resistors and two capacitors. The voltage–current relationship
satisfies the following circuit equation:

V = Vocv(SOC)−V1 −V2 − RS(SOC)It (2)

dV1

dt
= − 1

R1(SOC)C1(SOC)
V1 −

1
C1(SOC)

I(t) (3)

dV2

dt
= − 1

R2(SOC)C2(SOC)
V2 −

1
C2(SOC)

I(t) (4)

d(SOC)
dt

=
I(t)

3600Qre f
(5)

where R1 and R2 are the resistance values of resistors 1 and 2, respectively, and V1 and V2
are the voltages of resistors 1 and 2, respectively. R1 and R2 connect in parallel with C1 and
C2, respectively, and they form two RC links. Rs is the resistance value of the resistor and
Qref is the nominal capacity of the battery. The second-order ECM parameter fitting is based
on HPPC (hybrid pulse power characterization) data. The temperature of the battery rises
during charging and discharging, and its internal equivalent circuit parameters change
with temperature. Additionally, these equivalent circuit parameters will change with the
change in battery SOC.

2.4. Boundary Conditions and Control Equations

A thermal simulation analysis of the battery module was performed by ECM in Ansys
Fluent 2021R1 with the following assumptions:

1. The thermal properties of the materials are assumed to be constant.
2. Only the natural convection effects for the top and bottom of the cell are considered,

whereas the other sides of the shell structure are set to adiabatic conditions, except for the
inlet and outlets.

3. There is no consideration of the contact thermal resistance between the cell and the
structure.

4. The coolant (water) is assumed to be an incompressible Newtonian fluid, and the
thermal properties are set to the corresponding values at room temperature.

The ambient temperature and inlet coolant are both 25 ◦C and the heat transfer
coefficient of the top and bottom for the cell is 5 W/(m2·K) under natural convection. The
relative pressure at the outlet is zero and the flow speed at the inlet is fixed at 1 m/s.
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The amount of heat dissipated can be found using Equation (1), according to Newton’s
law of cooling, where Ta is the ambient temperature and ha is the convective heat transfer
coefficient of fluid.

qa = ha(Tb − Ta) (6)

The energy conservation equation for the battery is shown in Equation (7), where ρb,
cb, Qb, and Tb are the density, heat capacity, heat source, and temperature of the battery,
respectively. The energy equation of the battery can be expressed as:

ρbcb
∂Tb
∂t

= λx
∂2Tb
∂x2 + λy

∂2Tb
∂y2 + λz

∂2Tb
∂z2 + Qb (7)

The two equations that represent mass and momentum conservation are shown below,
where P (Pa) is the static pressure.

∂ρw

∂t
+∇(ρwu) = 0 (8)

∂

∂t
(ρwu) +∇ ∂

∂t
(ρwuu) = −∇P (9)

The standard k-ε equations are as follows:

∂(ρk)
∂t

+
∂
(
ρkuj

)
∂xj

=
∂

∂xj
(

ut

σx
· ∂k

∂xj
) + Gk + Gb − ρε (10)

∂(ρk)
∂t

+
∂
(
ρεuj

)
∂xj

=
∂

∂xj
[(µ +

µt

σε
)· ∂ε

∂xj
] + C1εGk

ε

k
− C2ερ

ε2

k
(11)

µt = ρCµ
k2

ε
(12)

The parameters of the material used in numerical simulations are shown in Table 1.
The grid independence of the simulation model was verified before numerically simulating
the structure, as shown in Figure 2c. The number of meshes for comparison includes
709,875, 942,150, 1,303,645, 1,702,364, and 2,259,827, and as the number of meshes increases,
the temperature tends to be smooth, as shown in Figure 3. The maximum temperature and
temperature difference of the battery module changed very little when the calculation grid
number was increased from 1,303,645 to 2,259,827, with relative deviations of 0.20% and
0.43%, respectively. Balancing the calculation time and accuracy, a grid number of 1,303,645
was used in this work.

Table 1. Material thermal property parameters.

Materials Density (kg/m3) Specific Heat Capacity (J/kg·K) Thermal Conductivity (W/m·K)

Water 996.95 4178.5 0.6
Cell 2510 1025 36.96 (X)/1.63 (Y/Z)

Cathode pole 2791 871 155
Anode pole 8978 381 387.6

Shell 2791 871 155
Busbar 8900 460.6 91.7
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2.5. Data Uncertainty Analysis

It is important to note that the experimental test was mostly characterized by the
presence of system errors and random errors. In this work, the uncertainty of a K-type
thermocouple with class 1 accuracy was estimated to be 2%, considering a temperature
accuracy of 0.2 ◦C within the temperature rise of 10 ◦C. The uncertainty caused by specific
experimental instruments in each experiment is shown in Table 2. An uncertainty analysis
was performed using the root mean square method. Hence, the uncertainty of T could be
approximately expressed as follows:

δTtotal
T

=

√(
δU
U

)2
+

(
δI
I

)2
+

(
δTthermocouple

T

)2

+

(
δTsys

T

)2

(13)

where Tthermocouple is the temperature of the thermocouple and Tsys is the temperature of
the data acquisition instrument. Taking into account the uncertainties associated with
the measurement equipment as well as random errors resulting from multiple tests, the
uncertainty of the temperature ( δTtotal

T ) was around 2.65% at the ambient temperature of
25 ◦C. Some minor fluctuation ~0.05 ◦C due to the wireless receiver of the Hioki data
acquisition apparatus was also found, which is also included in the uncertainty analysis.

Table 2. Uncertainty analysis of experimental apparatus.

Apparatus Model Range Uncertainty

Thermocouple ETA-TK-30 −200–260 ◦C 2%
Data acquisition HIOKI LR8410-30 −200–2000 ◦C 1%

DC power supply GWINSTEK-PSW 0–160 V/0–21.6 A 1%

2.6. Validation

The changes in battery temperature of the battery modules under different charging
and discharging rates, coolant flow speeds, and coolant temperatures were first investigated
experimentally. Then, the battery modules were subjected to thermal runaway tests to
examine the suppression effect of thermal runaway on adjacent cell temperatures. The
battery was discharged to the cut-off voltage with constant current and charged to the cut-
off voltage with the constant current–constant voltage technique. The 1C discharge of the



Batteries 2023, 9, 204 8 of 20

battery module was tested and compared with the simulation model in Figure 4 for battery
#1 in the battery module. As shown in Figure 4, the error of the numerical simulation and
experimental test is very small. With this validation, the numerical simulation model can
be used to optimize the arrangement of the busbar connection in the battery module.
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3. Results and Discussion
3.1. Thermal Management of the Battery Module: Effect of Different Charge/Discharge Rates

The temperature of the battery module at different charge/discharge rates was ex-
perimentally investigated, and the results for battery module temperature at different
rates are shown in Figure 5. The results show that the temperature of the battery rose
quickly at the beginning of constant current charging and slows down in the middle of
the battery charging. Subsequently, it reached the cut-off voltage and turned to constant
voltage charging, the current gradually decreased, and the battery heat generation rate
decreased, resulting in a rapid decrease in battery temperature until reaching the cut-off
current. On the other hand, the temperature of the battery under constant current discharge
conditions rose steadily until it was discharged to the cut-off voltage. The confluence
busbar connected in series between cell #1 and cell #2 causes the highest temperature of cell
#1 due to the heat generation effect of the nickel busbar sink. The maximum temperatures
of the battery module were 26.85 ◦C at 1C, 30.42 ◦C at 2C, and 36.21 ◦C at 3C discharge rates,
which is well below the threshold temperature of 40 ◦C. Considering the heat dissipation
and temperature uniformity properties of the novel liquid-cooled shell structure, it can be
concluded that it has good performance during battery charging and discharging.
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(a) 1C charge, (b) 1C discharge, (c) 2C charge, (d) 2C discharge, (e) 3C charge, and (f) 3C discharge.

3.2. Thermal Management of Battery Module: Effect of Different Coolant Flow Speeds

The change in battery module temperature with discharge time at different flow rates
is shown in Figure 6. The variation in the battery module temperature, the temperature
difference, and the inlet/outlet pressure drop with coolant flow speed are shown in Figure 7.
The battery module was discharged at a rate of 3 C during the experiment. The flow speeds
were tested in the sequence of 20 L/h (0.2 m/s), 30 L/h (0.3 m/s), 50 L/h (0.5 m/s), 70 L/h
(0.7 m/s), and 100 L/h (1.0 m/s). As can be seen from Figure 6, the trend in the battery
temperature change was the same for different flow speeds at the 3C discharge rate. As the
flow speed increases, the maximum temperature of the battery module gradually decreases.

Nonetheless, the temperature difference does not change significantly, whereas the
pressure drop keeps increasing at a quadratic rate. Therefore, the use of a high flow speed
is not cost-effective for the novel heat dissipation structure. Instead, a small flow speed
of around 0.3~0.5 m/s is sufficient to meet the temperature requirements of the battery
module under normal operating conditions.
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The present work was compared with recently published work on liquid cooling in
Table 3 [32–36]. The 18650 cylindrical battery modules are mostly liquid-cooled for side
cooling, and configured with parallel or series flow channels. Lv et al. [32] applied the
composite cooling structure of liquid cooling and PCM to a battery module. For instance,
during the fast charging process of 3C, the maximum temperature of the battery module
was as low as 42.0 ◦C, and the corresponding temperature difference was controlled to
below 5 ◦C. Compared with serial cooling, Cao et al. [34] experimented with a typical
module of a battery pack (consisting of 180 cells), charging and discharging at different C
rates at specified flow rates. Wang [35] and Gao [36] showed that parallel flow channels
have better heat dissipation capabilities and lower battery module temperatures. The
maximum temperature of the battery module was 35.81 ◦C and the maximum temperature
difference was 5.43 ◦C in the present work, which basically meets the thermal management
requirements of the battery module. Most studies used high discharge rates at room
temperature 25 ◦C, and few have been performed at high or low temperatures. The
liquid-cooled shell maintains the battery module in the optimal operating temperature
range. In addition, when thermal runaway occurs in the battery, a large amount of heat
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is released in a short period of time, and if the battery module thermal management
system does not dissipate the heat in time, it will cause the battery to spread thermal
runaway. When battery thermal runaway occurs, the battery module thermal management
system can appropriately dissipate heat and suppress the spread of thermal runaway of
the battery module.

Table 3. Comparison with the published work on liquid cooling of battery modules.

Source C-Rate Tmax (◦C) ∆T (◦C) Number of Batteries

Lv [32] 3C 42.00 4.92 25
Li [33] 3C 56.20 29.5 16

Cao [34] 2C 43.00 6.82 180
Wang [35] 3C 37.67 5.76 20
Gao [36] 2C 35.21 2.83 16

Present work 3C 35.81 5.43 20

3.3. Thermal Management of Battery Module: Effect of Different Coolant Temperatures

The coolant temperature has a significant impact on the amount of heat generated
by lithium-ion batteries and the efficiency of their discharge. The experiments were con-
ducted with a battery module discharge rate of 2C, a coolant flow speed of 0.5 m/s, and
coolant temperatures of 10 ◦C, 25 ◦C, and 40 ◦C. After adjusting the coolant temperature
and running for a period of time, for example, 10 min, the battery module temperature
gradually converged to the same coolant temperature, and then the battery module started
to discharge. Figure 8 shows the temperature change curve of the battery module under
2C discharge at different coolant temperatures. The highest temperatures in cell #1 were
16.68 ◦C, 30.63 ◦C, and 43.96 ◦C, for the inlet coolant temperature of 10 ◦C, 25 ◦C, and
40 ◦C, respectively. Obviously, as the coolant temperature increased, the battery module
temperature rose at a slower rate. A low temperature will lead to an increased viscosity of
the electrolyte, a decreased electrochemical reaction rate, an increased internal resistance of
battery, an increased heat generation rate of battery, and a decreased discharge efficiency.
This is due to the smaller internal resistance of the battery at higher coolant temperatures,
resulting in a lower ohmic heat of the battery and thus a lower temperature rise. As the bat-
tery module temperature rose, the battery module discharge time and discharge efficiency
gradually increased, and the discharge efficiencies of the battery module at 10 ◦C, 25 ◦C,
and 40 ◦C were 88.5%, 95%, and 96%, respectively. This indicates that the optimal operating
temperature range of the battery is between 25 ◦C and 40 ◦C. When the temperature of
battery is higher, the active materials inside the battery are more active, which improves
the battery electrochemical reaction rate and energy conversion efficiency. However, a
temperature higher than 40 ◦C would lead to electrochemical side reactions, resulting in a
fast capacity fade, which is also not favorable in practice.

Batteries 2023, 9, x FOR PEER REVIEW 12 of 21 
 

improves the battery electrochemical reaction rate and energy conversion efficiency. How-
ever, a temperature higher than 40°C would lead to electrochemical side reactions, result-
ing in a fast capacity fade, which is also not favorable in practice. 

 
Figure 8. The change of battery module temperature with discharge time at different coolant tem-
peratures: (a) 10 °C [31], (b) 25 °C [31], (c) 40 °C. 

3.4. Thermal Imaging of Battery Module Nickel Busbar under High Temperature 
As the battery module is charged and discharged, not only does the battery itself 

generate a great deal of heat, but so does the nickel busbar as well. Due to the nickel sheet 
with its own internal resistance and high current output, a large ohmic heat is generated, 
resulting in high temperatures of the battery. The batteries were arranged in four rows, 
and five batteries in each row were connected in parallel by a nickel busbar to form the 
5P4S connection. The nickel busbar was soldered to the positive and negative surfaces of 
the battery. In order to study the heating of the nickel busbar connecting the batteries in 
the battery module, a thermal infrared camera (FLIR TC650s) was used to record the tem-
perature images of the discharge at different times under high ambient temperature con-
ditions. Due to its reflective nature, the nickel busbar was painted with a thin layer of 
thermal grease, which exhibited an emissivity of around 0.95. The thermal images taken 
at a discharge rate of 2C at different time points are shown in Figure 9. Due to the connec-
tion of the positive and negative terminals of the battery module with the battery test sys-
tem with a current up to 25A (2C), the nickel busbars generated more heat, resulting in a 
higher temperature of the nickel busbar compared to the battery. The temperature of the 
series-connected nickel busbars of the battery module were 57.0 °C at Spot #1, denoted by 
Sp1, as shown in Figure 8b, while the temperature of the battery module was around 43 
°C in Figure 8c. The temperatures of the series-connected nickel busbars of the battery 
module were much higher than those of the parallel-connected nickel busbars. The tem-
peratures of the parallel-connected nickel busbars of the battery module were 47.3 °C at 
point Sp6 in the lower left corner of Figure 8b, 46.5 °C at point Sp7, 44.1 °C at point Sp8, 
and 43.4 °C at point Sp9. The nickel busbar temperature decreased sequentially along the 
parallel nickel busbars at the positive end port. 

Figure 8. The change of battery module temperature with discharge time at different coolant temper-
atures: (a) 10 ◦C [31], (b) 25 ◦C [31], (c) 40 ◦C.



Batteries 2023, 9, 204 12 of 20

3.4. Thermal Imaging of Battery Module Nickel Busbar under High Temperature

As the battery module is charged and discharged, not only does the battery itself
generate a great deal of heat, but so does the nickel busbar as well. Due to the nickel sheet
with its own internal resistance and high current output, a large ohmic heat is generated,
resulting in high temperatures of the battery. The batteries were arranged in four rows,
and five batteries in each row were connected in parallel by a nickel busbar to form the
5P4S connection. The nickel busbar was soldered to the positive and negative surfaces
of the battery. In order to study the heating of the nickel busbar connecting the batteries
in the battery module, a thermal infrared camera (FLIR TC650s) was used to record the
temperature images of the discharge at different times under high ambient temperature
conditions. Due to its reflective nature, the nickel busbar was painted with a thin layer
of thermal grease, which exhibited an emissivity of around 0.95. The thermal images
taken at a discharge rate of 2C at different time points are shown in Figure 9. Due to the
connection of the positive and negative terminals of the battery module with the battery test
system with a current up to 25A (2C), the nickel busbars generated more heat, resulting in
a higher temperature of the nickel busbar compared to the battery. The temperature of the
series-connected nickel busbars of the battery module were 57.0 ◦C at Spot #1, denoted by
Sp1, as shown in Figure 8b, while the temperature of the battery module was around 43 ◦C
in Figure 8c. The temperatures of the series-connected nickel busbars of the battery module
were much higher than those of the parallel-connected nickel busbars. The temperatures of
the parallel-connected nickel busbars of the battery module were 47.3 ◦C at point Sp6 in
the lower left corner of Figure 8b, 46.5 ◦C at point Sp7, 44.1 ◦C at point Sp8, and 43.4 ◦C at
point Sp9. The nickel busbar temperature decreased sequentially along the parallel nickel
busbars at the positive end port.
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3.5. Suppression of Thermal Runaway Propagation of Batteries at Different Locations

It has been demonstrated that the present liquid-cooled shell is capable of meeting
the demands of battery module thermal management and maintaining battery module
charging and discharging within acceptable temperatures. In the case of abnormal battery
heating, the thermal suppression requirement is exerted on the same thermal management
system to minimize the thermal runaway propagation across batteries. In this section,
test batteries with heaters were used to simulate thermal runaway in the battery modules
and real 18650 batteries were used for the remaining batteries. When a sudden thermal
runaway or abnormally high heat production occurs in the middle or corner of the battery
module, the adjacent batteries could be thermally shielded from the thermal runaway
battery with the present configuration. Two locations of the thermal runaway batteries
were experimentally investigated. In Case 1, the runaway was set near the middle of the
battery module (#14) and in Case 2, the runaway was set in the corner (#20). Regardless of
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the location of thermal runaway, the thermal spread should be suppressed. For localized
overheating phenomena, the cooling performance can be improved by increasing the flow
speed. The effect of coolant flow speeds on suppressing the thermal propagation of batteries
was investigated.

3.5.1. Case 1: Thermal Runaway near the Middle (Cell #14)

The temperatures of test cell #14 and the adjacent cells at different flow speeds are
shown in Figure 10. The heating power of test cell #14 was 600 W. The experimental test
was first started by turning on the liquid cooling circulation equipment to circulate the
cooling liquid for a period of time until the batteries reached the ambient temperature of
25 ◦C. Then, the heater was switched on, which heated up itself and then spread heat to the
adjacent batteries. After the battery module reached a steady state (10~15 min), the battery
temperatures were recorded and then the heater was turned off to let the battery module
cool down to the ambient temperature.
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The maximum temperatures of the battery module at different flow speeds are shown
in Figure 11. As the coolant flow speed increased, the temperature of the test battery and
the adjacent battery decreased significantly. At a maximum flow speed of 1.6 m/s, the
temperature of the battery module and the test battery are shown in Figure 9, with the
maximum temperatures of 82.75 ◦C for test cell #14 and 39.46 ◦C for cell #13. Even at the
minimum flow speed of 0.2 m/s, the temperature of the adjacent battery (#13) was 64.62 ◦C,
which was below the self-heating temperature of around 80 ◦C. Thus, it seems that the
thermal runaway battery located in the middle of the module does not induce thermal
runaway propagation under the present liquid shell cooling configuration.
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3.5.2. Case 2: Thermal Runaway in the Corner (Cell #20)

In the thermal runaway test, the heating power of test battery #20 was 600 W, whereas
the coolant and ambient temperatures were stabilized at 25 ◦C. In the case of the liquid
cooling cycle, the #20 cell located in the corner was abnormally heated and the temperature
of the adjacent cell was monitored. The temperature of the thermal runaway cell (#20)
located in the corner and the maximum temperature of the adjacent cells at different
flow speeds are shown in Figure 12. When test cell #20 underwent thermal runaway, its
own temperature rose rapidly, the heat spread, and the adjacent battery was heated up
at the same time. Due to the liquid-cooled channels embedded in the shell, the adjacent
battery temperature rise was much lower than that of test battery #20. In comparison, the
temperature of the battery module and the test battery at the maximum flow speed of
1.6 m/s are shown in Figure 13, with the maximum temperature of 85.29 ◦C for test cell #20
and only 44.51 ◦C for the adjacent cell (#16). The temperature of test cell #20 was higher than
the temperature of cell #16 when it was operating. In both cases, the maximum temperature
of the adjacent battery was maintained below 70 ◦C, which is below the thermal safety
temperature at the flow speed range under investigation. Solid electrolyte interface (SEI) is
a meta-stable material on the surface of the negative electrode of the battery, which may
start to decompose at temperature 70 ◦C~90 ◦C [37].
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3.6. Optimization of Battery Module Busbar Connection

The battery module nickel busbar connection may cause a high battery surface temper-
ature. It is noted that the busbar connection may cause additional hot spots in the battery
module. For the present battery module with twenty cells in five parallel and four series
connections, the initial thermal model (model A) was built to examine the temperature
profile. The terminal surface of the battery in each row was connected in parallel with the
positive terminal and connected in series with the negative terminal of the battery in the



Batteries 2023, 9, 204 16 of 20

next row. The numerical simulation model of fluid-solid thermal coupling in the battery
module was established in Ansys Fluent software, including the heat generation of the
battery and the heat generation of the nickel busbar. The series-connected nickel busbars in
the battery module generate a large amount of local ohmic heat, due to their own internal
resistance and confluence current, especially at high discharge rates. Therefore, multiple
parallel-connected nickel busbars were used to connect the positive and negative terminals
of the battery, named as model B. In this way, the high current passing through the busbar
could be reduced and thus the hot spot temperature can be minimized to mitigate the
fire risk.

The left model A with series busbar connections and the right model B with parallel
busbar connections are shown in Figure 14. As shown in Figure 14(a-1), with a 2C discharge
rate and a 40 ◦C ambient temperature, the maximum temperature of the left model A at the
busbar is 46.26 ◦C, while the maximum temperature of the right model B at the busbar is
43.97 ◦C. This indicates that the present configuration is more capable of minimizing the
hot spots on the busbar. On the other hand, the battery temperatures remain almost the
same for the two configurations without much difference. It is also noted that the present
battery temperature based on numerical simulations is close to the temperature in the
thermal images shown in Figure 9. It should be noted, however, that the temperature of the
busbar in the experimental test is higher than the temperature in the numerical simulations.
This could be due to the contact electrical resistance in the soldering of the nickel busbar,
which is not taken into account in the numerical simulations.
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The temperature profiles under a 3C discharge rate are shown in Figure 15(a-1) for
the series connection with one confluence busbar made of nickel. It is observed that the
busbar temperature reached 39.70 ◦C between the first row and the second row, which is
even higher than the adjacent battery temperatures. In order to further mitigate the safety
risks of the battery module, the battery module nickel busbar connection was redesigned
with multiple parallel connections, named as model B, which exhibited a temperature
4.86 ◦C lower than the initial configuration. As shown in Figure 15(b-1), five nickel busbar
connections were made between the first row and second row in model B. Additionally, the
maximum temperature of the nickel busbar in model B is 34.84 ◦C, with a more uniform
temperature across the busbar connections, indicating the effective removal of hot spots
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from the busbar connections. It is clear that the parallel connections in model B led to
a more uniform temperature profile by mitigating the hot spots on the busbar and thus
model B more favored in practice. The temperature profiles under a 2C discharge rate are
shown in Figure 16 for the battery module. The maximum temperature of the Model B is
30.10 ◦C, which is 2.11 ◦C lower than that of the Model A.
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4. Conclusions

In this paper, the thermal management and suppression of thermal propagation
in a lithium-ion battery module with a liquid-cooled shell were investigated through
experiments. It has been demonstrated that the presented liquid-cooled shell can meet
the demands of battery module thermal management at high charging and discharging
rates. When the battery module is discharged at a high temperature, the temperature of the
busbar of the battery module is recorded by a thermal imaging camera. Furthermore, it can
prevent the spread of thermal runaway of the battery module. Additionally, a numerical
simulation model is constructed in order to optimize the connections between the battery
modules. The conclusions are summarized as follows.

(1) The maximum temperature of the battery module increases with the increase in the
discharging or charging rate, and under the same current, the temperature of the battery
during the discharge process is significantly higher than the temperature of the battery
during the charging process. The maximum temperature of the battery module is 35.81 ◦C
and the maximum temperature difference in the battery module is 5.43 ◦C at a discharging
rate of 3C. The efficiency of battery modules will be reduced when discharging at low
temperatures compared with high temperatures.

(2) Besides the battery temperature, the busbar connection also has an effect on the
system temperature profile. Hot spots were found on the confluence busbar of the batteries
in series connection. The effect of nickel heating on the battery is also demonstrated by
infrared thermography.

(3) Thermal runaway can be suppressed by a thermal management system for battery
modules. Two thermal runaway locations were experimentally examined for the present
battery module. When thermal runaway occurred in the middle of the battery module,
thermal runaway propagation could be well suppressed, even at an inlet flow speed as
low as 0.2 m/s. Additionally, when thermal runaway occurred in the corner of the battery
module, the adjacent battery was thermally suppressed below 70 ◦C at the inlet flow speed
of 0.4 m/s. Further reductions in the flow speed may lead to higher temperatures and risk
the thermal runaway of the adjacent battery cell. In both cases, the maximum temperature
of the adjacent battery will not exceed 70 ◦C at a moderate flow speed of 0.4 m/s or more.

(4) In order to improve the safety of battery modules, a parallel busbar connection
mode for the battery module is recommended, which demonstrated a 4.86 ◦C lower temper-
ature than the initial configuration with series busbar connections at a discharge rate of 3C
in model simulations. The temperature consistency of the battery module is also improved.
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Nomenclature

Cb Specific heat capacity (J/kgK)
C1 Capacitor #1 in the 2nd order ECM model (F)
C2 Capacitor #2 in the 2nd order ECM model (F)
ha Convective heat transfer coefficient (W/(m2·K))
I Current (A)
RS Resistance in series (mΩ)
R1 Resistance #1 in the 2nd order ECM model (mΩ)
R2 Resistance #2 in the 2nd order ECM model (mΩ)
t Time (s)
T Temperature (◦C)
Ta Temperature of the battery (◦C)
U Voltage (V)
Vocv Open circuit voltage (V)
Vol Volume of battery (mm3)
Tmax Temperature maximum (◦C)
∆T Temperature nonuniformity (◦C)
Acronyms
DC Direct current
ECM Electrical circuit model
HPPC Hybrid pulse power characterization
LIB Lithium-ion battery
NMC Nickel–manganese–cobalt
P Parallel
PCM Phase change material
S Series
SEI Solid electrolyte interface
SOC State of charge
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