# Thermal Management for Battery Module with Liquid-Cooled Shell Structure under High Charge/Discharge Rates and Thermal Runaway Conditions

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Experimental Setup and Numerical Models

#### 2.1. Experimental System for the Battery Module

#### 2.2. Novel Battery Module Liquid-Cooled Shell Model

#### 2.3. ECM Model

_{ol}is the volume of the battery, I is the current, V

_{ocv}is the open circuit voltage, and φ

_{+}and φ

_{−}are the positive and negative voltages, respectively.

_{1}and R

_{2}are the resistance values of resistors 1 and 2, respectively, and V

_{1}and V

_{2}are the voltages of resistors 1 and 2, respectively. R

_{1}and R

_{2}connect in parallel with C

_{1}and C

_{2}, respectively, and they form two RC links. R

_{s}is the resistance value of the resistor and Q

_{ref}is the nominal capacity of the battery. The second-order ECM parameter fitting is based on HPPC (hybrid pulse power characterization) data. The temperature of the battery rises during charging and discharging, and its internal equivalent circuit parameters change with temperature. Additionally, these equivalent circuit parameters will change with the change in battery SOC.

#### 2.4. Boundary Conditions and Control Equations

^{2}∙K) under natural convection. The relative pressure at the outlet is zero and the flow speed at the inlet is fixed at 1 m/s.

_{a}is the convective heat transfer coefficient of fluid.

_{b}, c

_{b}, Q

_{b}, and T

_{b}are the density, heat capacity, heat source, and temperature of the battery, respectively. The energy equation of the battery can be expressed as:

#### 2.5. Data Uncertainty Analysis

_{thermocouple}is the temperature of the thermocouple and T

_{sys}is the temperature of the data acquisition instrument. Taking into account the uncertainties associated with the measurement equipment as well as random errors resulting from multiple tests, the uncertainty of the temperature ($\frac{\delta {T}_{total}}{T}$) was around 2.65% at the ambient temperature of 25 °C. Some minor fluctuation ~0.05 °C due to the wireless receiver of the Hioki data acquisition apparatus was also found, which is also included in the uncertainty analysis.

#### 2.6. Validation

## 3. Results and Discussion

#### 3.1. Thermal Management of the Battery Module: Effect of Different Charge/Discharge Rates

#### 3.2. Thermal Management of Battery Module: Effect of Different Coolant Flow Speeds

#### 3.3. Thermal Management of Battery Module: Effect of Different Coolant Temperatures

#### 3.4. Thermal Imaging of Battery Module Nickel Busbar under High Temperature

#### 3.5. Suppression of Thermal Runaway Propagation of Batteries at Different Locations

#### 3.5.1. Case 1: Thermal Runaway near the Middle (Cell #14)

#### 3.5.2. Case 2: Thermal Runaway in the Corner (Cell #20)

#### 3.6. Optimization of Battery Module Busbar Connection

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Nomenclature

C_{b} | Specific heat capacity (J/kgK) |

C_{1} | Capacitor #1 in the 2nd order ECM model (F) |

C_{2} | Capacitor #2 in the 2nd order ECM model (F) |

h_{a} | Convective heat transfer coefficient (W/(m^{2}∙K)) |

I | Current (A) |

R_{S} | Resistance in series (mΩ) |

R_{1} | Resistance #1 in the 2nd order ECM model (mΩ) |

R_{2} | Resistance #2 in the 2nd order ECM model (mΩ) |

t | Time (s) |

T | Temperature (°C) |

T_{a} | Temperature of the battery (°C) |

U | Voltage (V) |

V_{ocv} | Open circuit voltage (V) |

V_{ol} | Volume of battery (mm^{3}) |

T_{max} | Temperature maximum (°C) |

ΔT | Temperature nonuniformity (°C) |

Acronyms | |

DC | Direct current |

ECM | Electrical circuit model |

HPPC | Hybrid pulse power characterization |

LIB | Lithium-ion battery |

NMC | Nickel–manganese–cobalt |

P | Parallel |

PCM | Phase change material |

S | Series |

SEI | Solid electrolyte interface |

SOC | State of charge |

## References

- Patel, J.R.; Rathod, M.K. Recent developments in the passive and hybrid thermal management techniques of lithium-ion batteries. J. Power Sources
**2020**, 480, 228820. [Google Scholar] [CrossRef] - Rao, Z.; Qian, Z.; Kuang, Y.; Li, Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl. Therm. Eng.
**2017**, 123, 1514–1522. [Google Scholar] [CrossRef] - Aris, A.M.; Shabani, B. An Experimental Study of a Lithium Ion Cell Operation at Low Temperature Conditions. Energy Procedia
**2017**, 110, 128–135. [Google Scholar] [CrossRef] - Xie, L.; Huang, Y.; Lai, H. Coupled prediction model of liquid-cooling based thermal management system for cylindrical lithium-ion module. Appl. Therm. Eng.
**2020**, 178, 115599. [Google Scholar] [CrossRef] - Huang, Y.; Wang, S.; Lu, Y.; Huang, R.; Yu, X. Study on a liquid cooled battery thermal management system pertaining to the transient regime. Appl. Therm. Eng.
**2020**, 180, 115793. [Google Scholar] [CrossRef] - Gao, Y.; Jiang, J.; Zhang, C.; Zhang, W.; Ma, Z.; Jiang, Y. Lithium-ion battery aging mechanisms and life model under different charging stresses. J. Power Sources
**2017**, 356, 103–114. [Google Scholar] [CrossRef] - Onda, K.; Ohshima, T.; Nakayama, M.; Fukuda, K.; Araki, T. Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles. J. Power Sources
**2006**, 158, 535–542. [Google Scholar] [CrossRef] - Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal issues about Li-ion batteries and recent progress in battery thermal management systems: A review. Energy Convers. Manag.
**2017**, 150, 304–330. [Google Scholar] [CrossRef] - Väyrynen, A.; Salminen, J. Lithium ion battery production. J. Chem. Thermodyn.
**2012**, 46, 80–85. [Google Scholar] [CrossRef] - Lindgren, J.; Lund, P.D. Effect of extreme temperatures on battery charging and performance of electric vehicles. J. Power Sources
**2016**, 328, 37–45. [Google Scholar] [CrossRef] - Yetik, O.; Karakoc, T.H. A study on lithium-ion battery thermal management system with Al
_{2}O_{3}nanofluids. Int. J. Energy Res.**2022**, 46, 10930–10941. [Google Scholar] [CrossRef] - Liao, L.; Zuo, P.; Ma, Y.; Chen, X.; An, Y.; Gao, Y.; Yin, G. Effects of temperature on charge/discharge behaviors of LiFePO4 cathode for Li-ion batteries. Electrochimica Acta
**2012**, 60, 269–273. [Google Scholar] [CrossRef] - Pordanjani, A.H.; Aghakhani, S.; Afrand, M.; Zhang, P.; Tang, R.; Mahian, O.; Wongwises, S.; Rashidi, M.M. Thermo-electrochemical simulation of the cooling process in a compact battery pack considering various configurations. J. Power Sources
**2023**, 553, 232112. [Google Scholar] [CrossRef] - Li, X.; Zhao, J.; Duan, J.; Panchal, S.; Yuan, J.; Fraser, R.; Fowler, M.; Chen, M. Simulation of cooling plate effect on a battery module with different channel arrangement. J. Energy Storage
**2022**, 49, 104113. [Google Scholar] [CrossRef] - Choudhari, V.; Dhoble, A.; Panchal, S. Numerical analysis of different fin structures in phase change material module for battery thermal management system and its optimization. Int. J. Heat Mass Transf.
**2020**, 163, 120434. [Google Scholar] [CrossRef] - Liu, Y.; Zhang, J. Design a J-type air-based battery thermal management system through surrogate-based optimization. Appl. Energy
**2019**, 252, 113426. [Google Scholar] [CrossRef] - Das, H.S.; Rahman, M.M.; Li, S.; Tan, C.W. Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renew. Sustain. Energy Rev.
**2020**, 120, 109618. [Google Scholar] [CrossRef] - Wu, G.; Zhang, H.; Xu, Y.; Wu, X. Air-Side Fin Geometry of a Tube-Strip Heat Exchanger for Fuel Cell Vehicles. Automot. Innov.
**2021**, 4, 176–188. [Google Scholar] [CrossRef] - El Idi, M.M.; Karkri, M.; Tankari, M.A. A passive thermal management system of Li-ion batteries using PCM composites: Experimental and numerical investigations. Int. J. Heat Mass Transf.
**2021**, 169, 120894. [Google Scholar] [CrossRef] - Lai, Y.; Wu, W.; Chen, K.; Wang, S.; Xin, C. A compact and lightweight liquid-cooled thermal management solution for cylindrical lithium-ion power battery pack. Int. J. Heat Mass Transf.
**2019**, 144, 118581. [Google Scholar] [CrossRef] - Zhao, C.; Sousa, A.C.; Jiang, F. Minimization of thermal non-uniformity in lithium-ion battery pack cooled by channeled liquid flow. Int. J. Heat Mass Transf.
**2018**, 129, 660–670. [Google Scholar] [CrossRef] - Wu, X.; Wang, K.; Chang, Z.; Chen, Y.; Cao, S.; Lv, C.; Liu, H.; Wang, Y. Experimental and numerical study on hybrid battery thermal management system combining liquid cooling with phase change materials. Int. Commun. Heat Mass Transf.
**2022**, 139, 106480. [Google Scholar] [CrossRef] - Liu, Z.; Liu, X.; Meng, H.; Guo, L.; Zhang, Z. Numerical analysis of the thermal performance of a liquid cooling battery module based on the gradient ratio flow velocity and gradient increment tube diameter. Int. J. Heat Mass Transf.
**2021**, 175, 121338. [Google Scholar] [CrossRef] - Jin, C.; Sun, Y.; Wang, H.; Zheng, Y.; Wang, S.; Rui, X.; Xu, C.; Feng, X.; Wang, H.; Ouyang, M. Heating power and heating energy effect on the thermal runaway propagation characteristics of lithium-ion battery module: Experiments and modeling. Appl. Energy
**2022**, 312, 118760. [Google Scholar] [CrossRef] - Lopez, C.F.; Jeevarajan, J.A.; Mukherjee, P.P. Experimental Analysis of Thermal Runaway and Propagation in Lithium-Ion Battery Modules. J. Electrochem. Soc.
**2015**, 162, A1905–A1915. [Google Scholar] [CrossRef] - Li, H.; Chen, H.; Zhong, G.; Wang, Y.; Wang, Q. Experimental study on thermal runaway risk of 18650 lithium ion battery under side-heating condition. J. Loss Prev. Process. Ind.
**2019**, 61, 122–129. [Google Scholar] [CrossRef] - Zhong, G.; Li, H.; Wang, C.; Xu, K.; Wang, Q. Experimental Analysis of Thermal Runaway Propagation Risk within 18650 Lithium-Ion Battery Modules. J. Electrochem. Soc.
**2018**, 165, A1925–A1934. [Google Scholar] [CrossRef] - Amano, K.O.A.; Hahn, S.-K.; Tschirschwitz, R.; Rappsilber, T.; Krause, U. An Experimental Investigation of Thermal Runaway and Gas Release of NMC Lithium-Ion Pouch Batteries Depending on the State of Charge Level. Batteries
**2022**, 8, 41. [Google Scholar] [CrossRef] - Wang, W.; He, T.; He, S.; You, T.; Khan, F. Modeling of thermal runaway propagation of NMC battery packs after fast charging operation. Process. Saf. Environ. Prot.
**2021**, 154, 104–117. [Google Scholar] [CrossRef] - Rui, X.; Feng, X.; Wang, H.; Yang, H.; Zhang, Y.; Wan, M.; Wei, Y.; Ouyang, M. Synergistic effect of insulation and liquid cooling on mitigating the thermal runaway propagation in lithium-ion battery module. Appl. Therm. Eng.
**2021**, 199, 117521. [Google Scholar] [CrossRef] - Zhu, J.; Zhang, H.; Xu, K.; Xu, S.; Li, P. Study of structure optimization and thermal spread suppression based on liquid-cooled battery modules. Energy Storage Sci. Technol.
**2022**, 11, 2620–2628. [Google Scholar] [CrossRef] - Lv, Y.; Zhou, D.; Yang, X.; Liu, X.; Li, X.; Zhang, G. Experimental investigation on a novel liquid-cooling strategy by coupling with graphene-modified silica gel for the thermal management of cylindrical battery. Appl. Therm. Eng.
**2019**, 159, 113885. [Google Scholar] [CrossRef] - Li, K.; Yan, J.; Chen, H.; Wang, Q. Water cooling based strategy for lithium ion battery pack dynamic cycling for thermal management system. Appl. Therm. Eng.
**2018**, 132, 575–585. [Google Scholar] [CrossRef] - Cao, W.; Zhao, C.; Wang, Y.; Dong, T.; Jiang, F. Thermal modeling of full-size-scale cylindrical battery pack cooled by channeled liquid flow. Int. J. Heat Mass Transf.
**2019**, 138, 1178–1187. [Google Scholar] [CrossRef] - Wang, H.; Tao, T.; Xu, J.; Mei, X.; Liu, X.; Gou, P. Cooling capacity of a novel modular liquid-cooled battery thermal management system for cylindrical lithium ion batteries. Appl. Therm. Eng.
**2020**, 178, 115591. [Google Scholar] [CrossRef] - Gao, R.; Fan, Z.; Liu, S. A gradient channel-based novel design of liquid-cooled battery thermal management system for thermal uniformity improvement. J. Energy Storage
**2022**, 48, 104014. [Google Scholar] [CrossRef] - Feng, X.; Zheng, S.; Ren, D.; He, X.; Wang, L.; Cui, H.; Liu, X.; Jin, C.; Zhang, F.; Xu, C.; et al. Investigating the thermal runaway mechanisms of lithium-ion batteries based on thermal analysis database. Appl. Energy
**2019**, 246, 53–64. [Google Scholar] [CrossRef]

**Figure 1.**Liquid-cooled battery module test system with the battery modules for thermal management and suppression of thermal propagation.

**Figure 2.**An illustration of the new liquid-cooled shell battery module: (

**a**) overall structure of battery module system with both positive and negative connections (yellow color); (

**b**) top view of the battery module with positive terminal connection; (

**c**) grid model. 1-busbar, 2-cell, 3-lateral channel, 4-longitudinal channel, 5-liquid channel, 6-shell, 7-inlet, 8-outlet.

**Figure 4.**Comparison of experimental and simulation results for the temperature of cell #1 in the battery module.

**Figure 5.**The change in battery module temperature with different discharge and charge rates. (

**a**) 1C charge, (

**b**) 1C discharge, (

**c**) 2C charge, (

**d**) 2C discharge, (

**e**) 3C charge, and (

**f**) 3C discharge.

**Figure 6.**The change of battery module temperature with discharge time at different flow speeds [31]: (

**a**) 0.2 m/s, (

**b**) 0.3 m/s, (

**c**) 0.5m/s, (

**d**) 0.7 m/s.

**Figure 7.**The change in maximum temperature, maximum temperature difference, and pressure difference with different flow rates.

**Figure 9.**Thermal imaging of battery module nickel busbars under the conditions of 2C, 40 °C, and (

**a**) 0 s or (

**b**) 1590 s (the end of discharge), with the spot temperatures Sp1–9 marked in the right upper corner.

**Figure 10.**The change in battery module temperature with time at different flow speeds. (

**a**) 0.2 m/s, (

**b**) 0.5 m/s, (

**c**) 0.8 m/s, (

**d**) 1.0 m/s, (

**e**) 1.3 m/s, and (

**f**) 1.6 m/s. (For #14 near the middle.)

**Figure 11.**The maximum temperature of the battery module at different flow speeds. (For #14 near the middle.)

**Figure 12.**The change in battery module temperature with time at different flow speeds. (

**a**) 0.4 m/s, (

**b**) 0.5 m/s, (

**c**) 0.8 m/s, (

**d**) 1.0 m/s, (

**e**) 1.3 m/s, and (

**f**) 1.6 m/s. (For #20 in the corner.)

**Figure 13.**Variations in the maximum temperature of the battery at different flow rates. (For #20 in the corner.)

**Figure 14.**Battery module temperature contour viewed from the top and bottom at 2 C discharge rate and 40 °C ambient temperature: (

**a-1**) and (

**a-2**) are model A and (

**b-1**) and (

**b-2**) are model B.

**Figure 15.**Battery module temperature contour viewed from top and bottom at a 3C discharge rate and 25 °C ambient temperature: (

**a-1**) and (

**a-2**) are model A and (

**b-1**) and (

**b-2**) are model B.

**Figure 16.**Battery module temperature contour viewed from top (upper) and bottom (lower) at a 2C discharge rate and 25 °C ambient temperature: (

**a-1**) and (

**a-2**) are model A and (

**b-1**) and (

**b-2**) are model B.

Materials | Density (kg/m^{3}) | Specific Heat Capacity (J/kg∙K) | Thermal Conductivity (W/m∙K) |
---|---|---|---|

Water | 996.95 | 4178.5 | 0.6 |

Cell | 2510 | 1025 | 36.96 (X)/1.63 (Y/Z) |

Cathode pole | 2791 | 871 | 155 |

Anode pole | 8978 | 381 | 387.6 |

Shell | 2791 | 871 | 155 |

Busbar | 8900 | 460.6 | 91.7 |

Apparatus | Model | Range | Uncertainty |
---|---|---|---|

Thermocouple | ETA-TK-30 | −200–260 °C | 2% |

Data acquisition | HIOKI LR8410-30 | −200–2000 °C | 1% |

DC power supply | GWINSTEK-PSW | 0–160 V/0–21.6 A | 1% |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Xu, K.; Zhang, H.; Zhu, J.; Qiu, G. Thermal Management for Battery Module with Liquid-Cooled Shell Structure under High Charge/Discharge Rates and Thermal Runaway Conditions. *Batteries* **2023**, *9*, 204.
https://doi.org/10.3390/batteries9040204

**AMA Style**

Xu K, Zhang H, Zhu J, Qiu G. Thermal Management for Battery Module with Liquid-Cooled Shell Structure under High Charge/Discharge Rates and Thermal Runaway Conditions. *Batteries*. 2023; 9(4):204.
https://doi.org/10.3390/batteries9040204

**Chicago/Turabian Style**

Xu, Kangdi, Hengyun Zhang, Jiajun Zhu, and Guojun Qiu. 2023. "Thermal Management for Battery Module with Liquid-Cooled Shell Structure under High Charge/Discharge Rates and Thermal Runaway Conditions" *Batteries* 9, no. 4: 204.
https://doi.org/10.3390/batteries9040204