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Abstract: Large-scale energy storage with high performance and at a reasonable cost are prerequisites
for promoting clean energy utilization. With a high theoretical energy density of 1722 Wh·kg−2,
high element abundance (e.g., Mg of 23,000 ppm, S of 950 ppm on earth), and low theoretical cost,
Mg-S batteries offer considerable potential as candidates for electrical energy storage. However,
due to the intrinsic complex reaction chemistry of sulfur cathodes and metal anodes, such as slow
diffusion of the divalent ion, the shuttle of soluble polysulfide, and irreversible deposition of Mg
ions on metal electrodes, Mg-S batteries still need further optimization to meet requirements for
practical applications. In addition to stabilizing metal anodes, developing a suitable sulfur cathode is
desperately needed. This review summarizes recent research progress in sulfur cathodes, interlayers,
and non-nucleophilic electrolytes, highlighting the main challenges and corresponding strategies for
electrode material designs. Notably, we emphasize a fundamental understanding of the structure-
composition relationship. Furthermore, state-of-the-art characterization techniques are described that
help reveal the pertinent electrochemical mechanisms whereby Mg-S cells function. Finally, possible
research directions are discussed.

Keywords: magnesium sulfur batteries; sulfur-based cathodes; Mg polysulfides; interlayer modification;
functional separator

1. Introduction

To achieve word-wide carbon-neutrality, tremendous attempts have been made to
reduce carbon emissions, putting great pressure on developing green energy technology [1].
However, green energy technologies, such as solar, wind, and tidal, are limited by geogra-
phy or time uncertainty. Because of this, developing large-scale energy storage conversion
systems are urgently required. Although lithium-ion batteries (LIBs) are widely used, they
still suffer from critical defects, including limited reserves, high cost, and potential security
liability [2,3]. Consequently, beyond Li+, e.g., Na+, K+, Mg2+, Zn2+, and Al3+ batteries
remain appealing [4,5]. Among them, rechargeable magnesium-ion batteries (RMBs) have
aroused wide interest, ascribed to Mg metal’s high theoretical volume specific capacity
of 3833 mAh·cm−3, which is close to twice that of lithium (2046 mAh·cm−3) and nearly
five times that of graphite (800 mAh·cm−3). Although magnesium’s standard electrode
potential (Mg2+/Mg, −2.36 V vs. SHE) is lower than lithium (Li+/Li, −3.05 V vs. SHE),
it is significantly higher than aluminum and zinc (Al3+/Al, −1.66 V vs. SHE; Zn2+/Zn,
−0.76 V vs. SHE) [5,6].

Magnesium primary batteries were first commercialized in 1943 (Figure 1), offering a
voltage plateau of 1.6 V, and are widely used in military and aerospace backup power sup-
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plies [7]. Gregory and co-workers at Dow Inc. initiated research on RMB electrolytes with
high Coulombic efficiencies beginning in 1990 [8]. In early 2000, Aurbach and colleagues [9]
made use of Chevrel phase Mo6S8 in RMBs, achieving more than 2000 cycles, signifying
a breakthrough for RMB technology. A second breakthrough came with the discovery of
all-phenyl-complex (APC) electrolyte by Aurbach and co-workers [10]. In 2011, Kim and
Muldoon et al. first proposed a proof-of-concept Mg-S battery with a non-nucleophilic
electrolyte of MgCl2(HMDS)-AlCl3, with a high discharge capacity of 1200 mAh·g−1 and
2484 mAh·cm−3 [11]. Since then, Mg-S battery research has drawn increasing interest
because of the natural earth abundance of the raw materials (e.g., Mg of 23,000 ppm, S of
953 ppm), 1680 Wh·kg−1 and 3220 Wh·L−1 theoretical energy density, a suitable potential
window in ether-based electrolytes, and improved safety from dendrite-free deposition
behavior [12–15].
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use of S/ACC active material [18]. In situ XAS [19] and multiscale X−ray tomography [20] applied to 
investigate the electrochemical conversion in Mg−S batteries. 

Despite its promise, multiple scientific problems need resolution. For example, the 
rapid and facile formation of MgO severely passivates Mg metal anode surfaces, and Mg2+ 
exhibits high polarization greatly impeding diffusion in cathode lattices. Gao et al. [18] 
used X-ray photoelectron spectroscopy (XPS) analysis and found that the discharge path 
in Mg-S batteries is akin to Li-S batteries, for which multiple processes S8 → MgS8 → MgS4 
→MgS2 → MgS occur, indicating that Mg-S batteries must be designed to overcome poly-
sulfide shuttling. In addition, as an electrophilic cathode, sulfur must be matched with a 
non-nucleophilic electrolyte to avoid side reactions. However, regarding Mg-S battery 
technology itself, cathode materials’ development is still in its infancy. There is a critical 
need to understand and improve the structure and compositions of cathode materials to 
enhance storage capacity, rate capability, and cycling performance. 

In this overview, we sum up research progress in sulfur cathodes, interlayers, and 
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to realize commercially viable Mg-S batteries, as well as electrode material design princi-
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Figure 1. The history of RMB development beginning in 1943 in terms of electrolyte (green), cathode
(orange), and characterization techniques (purple). Grignard reagent electrolytes [8]. Mo6S8 as RMB
cathode materials [9]. The invention of APC electrolyte [10]. The first proof-of-concept Mg-S battery
using MgCl2(HMDS)−AlCl3 electrolyte [11]. The first application of ionic liquids as the electrolyte
solvents and S/CMK−3 as the cathode [16]. Investigation of Mg[B(hfip)4]2 electrolyte [17]. The
first use of S/ACC active material [18]. In situ XAS [19] and multiscale X−ray tomography [20]
applied to investigate the electrochemical conversion in Mg−S batteries.

Despite its promise, multiple scientific problems need resolution. For example, the
rapid and facile formation of MgO severely passivates Mg metal anode surfaces, and Mg2+

exhibits high polarization greatly impeding diffusion in cathode lattices. Gao et al. [18]
used X-ray photoelectron spectroscopy (XPS) analysis and found that the discharge path
in Mg-S batteries is akin to Li-S batteries, for which multiple processes S8 → MgS8 →
MgS4 →MgS2 →MgS occur, indicating that Mg-S batteries must be designed to overcome
polysulfide shuttling. In addition, as an electrophilic cathode, sulfur must be matched with
a non-nucleophilic electrolyte to avoid side reactions. However, regarding Mg-S battery
technology itself, cathode materials’ development is still in its infancy. There is a critical
need to understand and improve the structure and compositions of cathode materials to
enhance storage capacity, rate capability, and cycling performance.

In this overview, we sum up research progress in sulfur cathodes, interlayers, and
non-nucleophilic electrolytes, highlighting current major challenges that must be resolved
to realize commercially viable Mg-S batteries, as well as electrode material design princi-
ples. Notably, our focus is on presenting a basic understanding of structure-composition
relationships. In addition, state-of-the-art characterization techniques are described to help
unveil electrochemical behavior in Mg-S batteries. Finally, possible research directions
toward practical applications are discussed.
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2. Reaction Mechanisms and Challenges in Mg-S Batteries
2.1. Reaction Mechanisms in Mg-S Batteries

Although Mg-S batteries were first proposed in 2011, there remain multiple electro-
chemical reactions and failure mechanisms to be clarified [21,22]. Schemes I-III present
sulfur reduction mechanisms extant during the discharge process. Figure 2 illustrates the
process whereby elemental sulfur gradually generates long-chain polysulfides (LCSs) that
are then reduced to short-chain sulfides (SCSs) or MgS.

Scheme I: xS8(s) + 8Mg2+ + 16e− → 8MgSx(aq) (x ≥ 8 or 4)

Scheme II: 2MgSx(aq) + (x− 2)Mg2+ + (2x− 4)e− → xMgS2 (s)

Scheme II: MgS2(s) + Mg2+ + 2e− → MgS(s)
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As mentioned above, Gao et al. [18] found by XPS that sulfur first forms LCSs at
2.4–1.5 V, and then SCSs at 1.5 V, and finally MgS at 1.5–0.5 V in Mg(TFSI)2-DME electrolyte
(Figure 3a). According to the kinetic factor obtained from CV curve fitting and ab initio
molecular dynamics (AIMD) simulation, Schemes I and II are mixing-controlled reactions,
while Scheme III is a diffusion-controlled reaction. As MgS exhibits a strong tendency
to crystallize and MgSx (x = 2–8) tends to remain amorphous, Mg2+ diffusion becomes
difficult when MgS is generated at the interface and the final product has a Mg concentration
gradient from interface to depth. The reaction mechanisms for Mg-S batteries with S/CMK-
3 cathodes and Mg-HMDS-based (glymes and additional ionic liquid as solvents) electrolyte
were also investigated by Zhao-Karger and co-workers (Figure 3b,c) [16]. During discharge,
S8 first forms MgS4 at 1.6 V offering a capacity of ~400 mAh·g−1. Thereafter, liquid-solid
interfacial reduction occurs generating MgS2 with a theoretical capacity of 840 mAh·g−1,
followed by reduction to MgS. This last process suffers from high dynamic barriers and
polarization. Roughly the same conclusions can be reached for different electrolytes.
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of S/CMK400PEG cathode and Mg(HMDS)2 base electrolyte with ionic liquid PP14TFSI additives:
(i) PP14TFSI, (ii) S/CMK400PEG, (iii) discharged to 1.3 V, (iv) discharged to 0.5 V, and (v) charged to
2.6 V, and (c) corresponding proposed mechanisms of discharge process [16]. (d) Charge−discharge
curves and proposed mechanisms in Mg(HMDS)2−based electrolyte [19].

Furthermore, researchers have used various in situ techniques to clarify Mg-S cell
reaction mechanisms [19,23]. Dominko et al. used in situ XANES and RIXS to study Mg-S
battery mechanisms, finding that S8 converts to polysulfides at a high voltage plateau and
is then reduced to solid MgS. They also used NMR to characterize the discharge products.
Mg is tetrahedrally coordinated in electrodeposited MgS, similar to wurtzite, while Mg
in chemically synthesized MgS is octahedrally coordinated. Xu and co-workers [19] used
density functional theory (DFT) calculations and in situ synchrotron X-ray absorption
spectroscopy (XAS) to confirm that Mg3S8 produced in stage II is insoluble in the electrolyte;
a consequence of an overpotential during cycling (Figure 3d). Moreover, the discharge
products Mg3S8 and MgS have poor electrochemical activity and are difficult to oxidize
to high-order polysulfides or sulfur, which leads to rapid capacity decay after the first
discharge, reducing the cycle life. Coincidentally, Bhardwaj et al. [24] applied operando
Raman spectroscopy to confirm the existence of higher-order Mg-polysulfides at high-
voltage plateaus.

In addition, the dissolution and shuttling of S8 and polysulfides in electrolytes is
also a critical problem [16,25,26]. Yellow discoloration of separators is often found in
Mg-S batteries after a few cycles, indicating dissolved polysulfides [11]. Haecker and co-
workers [23] used operando UV-Vis spectroscopy to determine the self-discharge behaviors
under state of charge. After an OCV rest, severe self-discharge occurs, which can be divided
into three stages: First, sulfur dissolves and is reduced to S6

−2 and S4
−2 on the Mg anode.

Then, the S8 concentration in the electrolyte reaches equilibrium and the concentration
of S6

−2 and S4
−2 increase steadily. Finally, the concentrations of S8, S6

−2, and S4
−2 reach

equilibrium. About 0.6% sulfur in the form of MgSx was found on Mg foils after 50 cycles by
ex situ XPS [27]. Coincidentally, Kimberly A et al. [25] employed a quasi-reference electrode
of Ag2S to investigate the reaction between Mg metal and polysulfides, discovering severe
reduction overpotential on the Mg anode surface (Figure 4a,b). Based on the shuttling
of polysulfides, Mg is passivated in early cycles (Figure 4c). In another report, Zhao-
Karger et al. [17] used X-ray energy dispersion spectroscopy (EDS) to analyze the elemental
composition of the Mg anode after the 2nd and 18th cycles in sulfur-impregnated activated-
carbon cloth (ACCS)-Mg cells, Figure 4d. Elemental sulfur was not detected on the Mg
surface after the 2nd cycle, but was evident on the 18th cycle, indicating formation of MgSx
or S films. However, there are no unifying conclusions on the failure mechanisms of Mg-S
batteries. Hence, systematic research on the reaction mechanisms is still important as a
prerequisite to identifying strategies for ameliorating known problems.



Batteries 2023, 9, 203 5 of 19

Batteries 2023, 9, x FOR PEER REVIEW 5 of 21 
 

S batteries. Hence, systematic research on the reaction mechanisms is still important as a 
prerequisite to identifying strategies for ameliorating known problems. 

 
Figure 4. (a) Overpotential tests in Mg Symmetrical cells with and without 2 mg·mL−1 S8; (b) Sche-
matic diagram of the three−electrode test; (c) Self−discharge and anode passivation mechanisms for 
Mg−S batteries [25]. (d) Mg foil EDS in Mg[B(hfip)4]2 electrolyte after different cycle numbers [17]. 

2.2. Challenges in Cathode Materials 
Dan-Thien and co-workers summarized failure mechanisms for Mg-S batteries, as 

shown in Figure 5 [28]. To address these weaknesses, researchers have proposed various 
solutions, such as the improved design of electrolytes [29,30], exploration of solid-state 
cells [31], synthesis of artificial anode SEIs [32], and the introduction of improved designs 
for cathode compositions and structures. Here, we present a review of the main challenges 
and strategies for the cathode side. 

 
Figure 5. The general failure mechanism for Mg−S batteries [28]. 

(1) Improving the conductivity of electrode materials. Sulfur with an electric conduc-
tivity of 5 × 10−30 S·cm−1 at room temperature functions as an electrical insulator, leading 
to severe ohmic polarization in Mg-S batteries. Therefore, compounding with highly con-
ductive materials is a widely used strategy. For instance, graphene, carbon nanotubes 

Figure 4. (a) Overpotential tests in Mg Symmetrical cells with and without 2 mg·mL−1 S8;
(b) Schematic diagram of the three−electrode test; (c) Self−discharge and anode passivation mech-
anisms for Mg−S batteries [25]. (d) Mg foil EDS in Mg[B(hfip)4]2 electrolyte after different cycle
numbers [17].

2.2. Challenges in Cathode Materials

Dan-Thien and co-workers summarized failure mechanisms for Mg-S batteries, as
shown in Figure 5 [28]. To address these weaknesses, researchers have proposed various
solutions, such as the improved design of electrolytes [29,30], exploration of solid-state
cells [31], synthesis of artificial anode SEIs [32], and the introduction of improved designs
for cathode compositions and structures. Here, we present a review of the main challenges
and strategies for the cathode side.
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(1) Improving the conductivity of electrode materials. Sulfur with an electric conduc-
tivity of 5 × 10−30 S·cm−1 at room temperature functions as an electrical insulator, leading
to severe ohmic polarization in Mg-S batteries. Therefore, compounding with highly con-
ductive materials is a widely used strategy. For instance, graphene, carbon nanotubes
(CNTs), MXenes, active carbon cloth (ACC) [18,33–36], and other materials [24,37,38] have
been explored extensively.

(2) Prohibiting the effects of sulfur and polysulfide shuttling. As previously mentioned,
the shuttling of sulfur and polysulfides in electrolytes often causes self-discharge, low
Coulombic efficiency, and anode passivation, leading eventually to battery failures. Self-
discharge has been verified systematically in different electrolytes, such as Mg[B(hfib)4]2/
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DME, MgFPB/DEG, and Mg(HMDS)2-AlCl3/THF [26,39–41]. SCSs are more likely to
generate MgS on the Mg anode compared to LCSs, while MgS is an electrochemically inert
material with a low Mg2+ diffusion rate, which partially passivates Mg surfaces [25].

Various types of sulfur hosts have been used to mitigate shuttling effects, of which
physical confinement and chemisorption are well-known methods. Meanwhile, organic
sulfur copolymers have been introduced to anchor sulfur by covalent bonding [42,43].
Recently, coatings or interlayers have been used between cathode/electrolyte to prohibit S8
and magnesium polysulfide transport, thereby eliminating any reaction of the anode with
sulfur species [44–46].

(3) Mitigating the formation of stable compounds with low-formation energy. Mg-S
batteries typically show severe capacity degradation from the second cycle, accompanied
by high charge/discharge polarization. The discharge products in Mg(HMDS)2-based
electrolytes were thoroughly investigated by Xu et al. [19] using in situ XAS measurement
(Figure 3d). The discharge products Mg3S8 and MgS are nearly inert and do not reverse
to higher-order magnesium polysulfides and S8, leading to rapid capacity degradation in
subsequent cycles. Nakayama and co-workers [47] found that metastable zinc blende MgS
is electrochemically active, while rock salt MgS is electrochemically inert.

(4) Enhancing cathodic mass transfer and reaction kinetics. High charge density is
the source of slow Mg2+ diffusion in solids, more than twice that of Li+, leading to poor
kinetics for Mg-S batteries. Lu and co-workers [48] reported that Mg-S batteries have lower
concentrations of polysulfides during charge and discharge compared to Li-S batteries as
determined by operando UV-Vis spectroscopy. Through three-electrode electrochemical
characterizations, a stable low solubility S2

2− forms at the very beginning of discharge,
which leads to the high overpotential at the cathode, and accounts for more than 50%
of the cell overpotential. Thus, the first discharge capacity was successfully increased
from 650 mAh·g−1 to 1500 mAh·g−1 by using dimethyl sulfoxide (DMSO) as a solvent.
According to the above, increasing the solubility of MgSx could improve polysulfide
dynamic performances and active material utilization rate. Furthermore, the application of
lithium salt additives is also widely used to lower the kinetic barriers of Mg-S cells [49].

Eventually, to realize the commercialization of Mg-S batteries, researchers must focus
on low-priced materials, lower electrolyte solution/sulfur (E/S) ratios and carbon/sulfur
(C/S) ratios, and prolong the battery cycle life.

3. Research Progresses on Sulfur Cathodes

To alleviate the dissolution and shuttle effects of polysulfides, various sulfur hosts have
been proposed; classified as physical adsorption, chemisorption, and hybrid adsorption [50].
In the following, we also discuss interlayers between the cathode interface, electrolyte, and
functional separators.

3.1. Physical Adsorption Cathode

Mg-S cells suffer from issues, especially polysulfide dissolution and shuttling, the
insulating behavior of S8, and critical electrode volume changes. In principle, physically
trapped sulfur compounds with high electronic conductivity and chemical durability can
improve sulfur utilization, mitigate polysulfide migration and retard the volume expansion
of cathode active materials. Widely explored physically adsorbed sulfur hosts including
activated-carbon cloth (ACC) [18,33–36] and porous carbon materials [24,37,38].

Sulfur-impregnated ACC (S/ACC) as a promising method for creating physically
trapped “sulfur” for Li-S cells was first explored by Aurbach et al. [51]. It permits binder-
free, exceptionally conductive three-dimensional structures, and superior specific surface
areas (SSAs), which can decrease the escape of polysulfides allowing high sulfur uti-
lization. Sulfur access to carbon fiber pores in ACC is achieved by melt-diffusion at
155 ◦C. The structure of a S/ACC composite cathode is shown in Figure 6a. Gao and
co-workers [18] applied sulfur-impregnated ACC to investigate sulfur chemistry in Mg-S
batteries with Mg(TFSI)2-DME electrolyte, which shows that S8 reacts stepwise, as illus-



Batteries 2023, 9, 203 7 of 19

trated in Figure 6b–d. Figure 6b,c further illustrate Figure 6b. The different colored arrows
in Figure 6b correspond to different ion and electron transport pathways, and Figure 6c
shows a gradual decrease in x in MgSx (1 ≤ x ≤ 8) as yellow shifts to brown, where brown
indicates the formation of MgS. This also indicates the presence of a Mg concentration
gradient in the final product from the electrode surface to depth. Moreover, a ~70% ca-
pacity retention cycling stability was found after 110 cycles through a combination of
highly concentrated 1 M MgTFSI2/MgCl2/DME electrolyte and sulfur-impregnated ACC
(Figure 6e) [35]. However, this improved electrochemical performance was achieved on the
basis of ultra-low S:C ratios of 0.11, unfortunately not yet useful for practical applications.
Muthuraj [36] used magnesium-polysulfide (MgSx) and polyaniline-coated carbon cloth
(CC@PANI) to form self-supporting cathodes. First, a PANI layer was deposited on the
ACC by in situ polymerization, and then the CC@PANI@MgSx cathode was synthesized by
dropwise addition of MgSx solution (Figure 7a). CC@PANI serves as both a chemisorption
and physical adsorption material. CC@PANI@MgSx cathodes show a discharge capacity of
514 mAh·g−1 and are stable for more than 20 cycles. Currently, the S/ACC sulfur loading
is usually below 2 mg·cm−2, resulting in ultra-low S:C ratios.

Batteries 2023, 9, x FOR PEER REVIEW 7 of 21 
 

Sulfur-impregnated ACC (S/ACC) as a promising method for creating physically 
trapped “sulfur” for Li-S cells was first explored by Aurbach et al. [51]. It permits binder-
free, exceptionally conductive three-dimensional structures, and superior specific surface 
areas (SSAs), which can decrease the escape of polysulfides allowing high sulfur utiliza-
tion. Sulfur access to carbon fiber pores in ACC is achieved by melt-diffusion at 155 °C. 
The structure of a S/ACC composite cathode is shown in Figure 6a. Gao and co-workers 
[18] applied sulfur-impregnated ACC to investigate sulfur chemistry in Mg-S batteries 
with Mg(TFSI)2-DME electrolyte, which shows that S8 reacts stepwise, as illustrated in 
Figure 6b–d. Figure 6b,c further illustrate Figure 6b. The different colored arrows in Figure 
6b correspond to different ion and electron transport pathways, and Figure 6c shows a 
gradual decrease in x in MgSx (1 ≤ x ≤ 8) as yellow shifts to brown, where brown indicates 
the formation of MgS. This also indicates the presence of a Mg concentration gradient in 
the final product from the electrode surface to depth. Moreover, a ~70% capacity retention 
cycling stability was found after 110 cycles through a combination of highly concentrated 
1 M MgTFSI2/MgCl2/DME electrolyte and sulfur-impregnated ACC (Figure 6e) [35]. How-
ever, this improved electrochemical performance was achieved on the basis of ultra-low 
S:C ratios of 0.11, unfortunately not yet useful for practical applications. Muthuraj [36] 
used magnesium-polysulfide (MgSx) and polyaniline-coated carbon cloth (CC@PANI) to 
form self-supporting cathodes. First, a PANI layer was deposited on the ACC by in situ 
polymerization, and then the CC@PANI@MgSx cathode was synthesized by dropwise ad-
dition of MgSx solution (Figure 7a). CC@PANI serves as both a chemisorption and physical 
adsorption material. CC@PANI@MgSx cathodes show a discharge capacity of 514 mAh·g−1 
and are stable for more than 20 cycles. Currently, the S/ACC sulfur loading is usually 
below 2 mg·cm−2, resulting in ultra-low S:C ratios. 

 
Figure 6. (a) Structure of the S/ACC composite cathode. (b–d) The proposed sulfur reduction mech-
anism. ① Surface magnesiation. ② Bulk magnesition. [18]. (e) The S/ACC electrochemical perfor-
mance in various concentrations of MgTFSI2−MgCl2/DME electrolytes [35]. 

Figure 6. (a) Structure of the S/ACC composite cathode. (b–d) The proposed sulfur reduction
mechanism. 1© Surface magnesiation. 2© Bulk magnesition. [18]. (e) The S/ACC electrochemical
performance in various concentrations of MgTFSI2−MgCl2/DME electrolytes [35].
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(c) Preparation schematic diagram of S/CMK−3 [52]. (d,e) The S/CMK−3 electrochemical perfor-
mance in Mg [B(hfip)4]2 electrolyte. (f) S/AMC, S/CNT, and S/CMK−3 cycling performance in
0.5 M OMBB electrolyte with Cu current collector at 160 mA·g−1 [53].

CMK-3, a highly ordered mesoporous carbon, with SSAs up to 2500 m2·g−1 and pore
volumes up to 2.25 cm3·g−1, can be considered to offer significant potential as a physical
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absorption S host (Figure 7b) [16,52,54,55]. CMK-3 is first oxidatively carboxylated in
HNO3 solution at 80 ◦C, then melt-diffused with S8 at 160 ◦C for 12 h (Figure 7c). S8 fills the
3 nm pores of CMK-3 [52]. Zhao-Karger and coworkers used S/CMK-3 cathodes and the
non-nucleophilic electrolyte of Mg[B(hfip)4]2/DEG-TEG in Mg-S cells, successfully demon-
strating an initial discharge capacity of almost 400 mAh·g−1 and cycling performance of
200 mAh·g−1 after 100 cycles at 167 mA·cm−2 (Figure 7d,e) [55].

Carbon S/nanofiber [56] and S/ketjen black [41] physisorbed hosts have also been
prepared by melt-diffusion, showing specific capacities of 920 mAh·g−1 and 770 mAh·g−1

respectively. Du and colleagues [53] compared the performances of S/amorphous meso-
porous carbon (S/AMC), S/CMK-3, and S/CNTs in Mg-S batteries, all of which showed
excellent cycling performance with copper collectors, with discharge-specific capacities
higher than 800 mAh·g−1 after 100 cycles (Figure 7f). However, capacity decay was detected
for most carbon hosts after 20 cycles without Cu current collectors or lithium-salt additives.

Two-dimensional transition metal compounds (MXenes) are attracting increasing
attention for their high electrical conductivity, rich surface functionality, and unique
two-dimensional morphology, especially in energy storage devices [57]. Kaland and co-
workers [38] first proposed Ti3C2Tx MXene as a free-standing material for Mg-S batteries.
The cells achieved a specific capacity of 530 mAh·g−1 using an MXene interlayer (Figure 8a),
and exhibited stable cycling with retention of >400 mAh·g−1 after 10 cycles, while the cells
with no interlayer attained only 200 mAh·g−1 (Figure 8b). Xu [58] and Zhao [59] also prepared
MXene with metal oxides/sulfide as a S host, which permits Mg2+ diffusion and transfer.
S/Co3S4@MXene [59] with 75 wt.% sulfur loading and S/CoO@MXene [58] with 60 wt.% S
loading exhibits high specific capacities of 1220 mAh·g−1 and 1500 mAh·g−1, respectively.
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3.2. Chemisorbed Cathode

Strengthening stable chemical bonds with sulfur via heteroatoms in the host structure
is an effective strategy to enhance sulfur loading and reduce polysulfide solubilization [60].
Lee et al. [37] demonstrated that N-doped mesoporous carbon (NdMC, Figure 8c) can
serve as promising catalytic hosts that suppress magnesium polysulfide dissolution in



Batteries 2023, 9, 203 9 of 19

electrolytes. The synergistic effect ascribed to nitrogen in NdMC comes from a strong
chemical affinity for Mg polysulfides while also offering an electron-deficient structure
to accelerate electron transfer between critical sites. As a result, the plateau potential
of S8@NdMCs is 0.2 V or higher than that of S8@CMK-3 (Figure 8d,e). Pyridinic-N in
S8@NdMCs also effectively promotes S6

2− diffusion to generate MgS as determined by
UV-Vis studies.

Metal-organic frameworks (MOFs) with ultra-high SSAs, for instance, UN-110, show
an SSA of 7000 m2·g−1; and diverse topologies, have been shown to capture polysulfides
by appropriate channel structures and strong chemical interactions [45,49,61,62]. Li’s
group [49] used a MOF-derived carbon matrix as an S host with a sulfur loading of
47 wt.%, synthesized by thermolysis of ZIF-67 under an inert atmosphere, followed by acid
leaching with H2SO4 to degrade active metallic particles, followed by a thermal process
to diffuse S8 into the pores or interstices of N- and Co-doped carbon (ZIF-C) (Figure 9a).
The potential catalysis by Co species and N-doped carbon in ZIF-C coupled with an
rGO-coated separator exhibited a specific capacity of >900 mAh·g−1 in Mg-S batteries,
maintaining a capacity of 450 mAh·g−1 after 250 cycles at 0.1 C with highly concentrated
Li-salt additives. Complicated syntheses result in high manufacturing costs in addition to
the charge-discharge profiles in Figure 9b,c, high concentrations of Li-salts play a pivotal
role in ensuring the good kinetic performance of these Mg-S cells, with further increases
in costs.

Batteries 2023, 9, x FOR PEER REVIEW 10 of 21 
 

 
Figure 9. (a) S/ZIF−C synthesis method. (b) The discharge−charge profiles (b) with added LiTFSI 
and (c) without added LiTFSI in Mg(HMDS)2−base electrolyte [49]. (d) Ti3C2 and Ti3C2@CoO syn-
thesis methods [58]. (e) Comparison of charge−discharge profiles for copper (red) and aluminum 
(blue) current collectors [63]. 

In parallel with metal elements [64] and nitrogen-doped carbon [37], metal oxides 
[58], sulfides [44,59,65], phosphides [45], and nitrides [23] have also been shown to be ef-
fective adsorbents for magnesium polysulfides. Xu and coworkers [58] demonstrated the 
strong adsorption of polysulfides on CoO by UV-Vis spectroscopy, XPS, and DFT calcu-
lations, and synthesized MXene@CoO lamellar structures that also facilitate the transport 
of Mg species (Figure 9d). S/Ti3C2@CoO with sulfur loadings of ~60 wt.% exhibit a high 
specific capacity of 1500 mAh·g−1 and remains 540 mAh·g−1 after 70 cycles at 100 mA·g−1 in 
1 M Mg(TFSI)2-AlCl3/DME electrolyte. 

To date, much work has been done to enhance electrochemical performance by using 
Cu current collector, with significant benefits achieved [34,63,66-71]. In a study by Nu et 
al. [72], Mg-S cell cycling performance with copper and stainless steel current collectors 
was compared. The stainless steel collector provided a discharge capacity of only 9 
mAh·g−1 but 200 mAh·g−1 was found with copper in APC electrolyte. Lee et al. [63] de-
scribed the reaction mechanisms of S8 with Cu in rechargeable Mg-S batteries with boron-
centered anion-based magnesium electrolytes (BCM) electrolyte. Mg-S batteries on the ba-
sis of that cathode electrodes with an Al current collector gave capacities of only 50 
mAh·g−1 at 0.02 C, while a Cu current collector provided a reversible capacity of 720 
mAh·g−1, accompanied by an obvious discharge plateau of 1V (Figure 9e). Lee et al. de-
duced that in the initial stage of discharge, S8 was reduced to MgS8, and then continued to 
react with Cu metal to form SCSs and Cu+, and then SCSs reacted with Cu+ and Cu to form 
Cu2S; finally, Cu2S was reduced to Cu and MgS (Figure 10a). During the charging process, 
Cu nanowires formed after discharge, and the unreacted Cu2S was evenly distributed 
around the MgS, helping to enhance positive electrode electronic conductivity. Simulta-
neously, some Cu+ diffuses, forming Cu2S particles in MgS, promoting the charging reac-
tion (Figure 10b). Although copper collectors can significantly improve electrochemical 
performance, collector corrosion during discharge can be fatal to the working life and 
safety. The SEM images in Figure 10c–f show the morphology of Cu collectors in different 
states. After the first cycle, the microscopic surface coarsens and significant corrosion oc-
curs, which is fatal to electrode structures. He et al. [67] employed Cu nanoparticles grown 
on carbon nanofiber (CNF) as a sulfur host to explore the influence of different Cu load-
ings on Mg-S cells and found that with Cu:S mass ratios from 1:4 to 1:1, the cycling and 

Figure 9. (a) S/ZIF−C synthesis method. (b) The discharge−charge profiles (b) with added LiTFSI
and (c) without added LiTFSI in Mg(HMDS)2−base electrolyte [49]. (d) Ti3C2 and Ti3C2@CoO
synthesis methods [58]. (e) Comparison of charge−discharge profiles for copper (red) and aluminum
(blue) current collectors [63].

In parallel with metal elements [64] and nitrogen-doped carbon [37], metal oxides [58],
sulfides [44,59,65], phosphides [45], and nitrides [23] have also been shown to be effective
adsorbents for magnesium polysulfides. Xu and coworkers [58] demonstrated the strong
adsorption of polysulfides on CoO by UV-Vis spectroscopy, XPS, and DFT calculations,
and synthesized MXene@CoO lamellar structures that also facilitate the transport of Mg
species (Figure 9d). S/Ti3C2@CoO with sulfur loadings of ~60 wt.% exhibit a high specific
capacity of 1500 mAh·g−1 and remains 540 mAh·g−1 after 70 cycles at 100 mA·g−1 in 1 M
Mg(TFSI)2-AlCl3/DME electrolyte.

To date, much work has been done to enhance electrochemical performance by us-
ing Cu current collector, with significant benefits achieved [34,63,66–71]. In a study by
Nu et al. [72], Mg-S cell cycling performance with copper and stainless steel current col-
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lectors was compared. The stainless steel collector provided a discharge capacity of only
9 mAh·g−1 but 200 mAh·g−1 was found with copper in APC electrolyte. Lee et al. [63]
described the reaction mechanisms of S8 with Cu in rechargeable Mg-S batteries with boron-
centered anion-based magnesium electrolytes (BCM) electrolyte. Mg-S batteries on the basis
of that cathode electrodes with an Al current collector gave capacities of only 50 mAh·g−1

at 0.02 C, while a Cu current collector provided a reversible capacity of 720 mAh·g−1,
accompanied by an obvious discharge plateau of 1V (Figure 9e). Lee et al. deduced that in
the initial stage of discharge, S8 was reduced to MgS8, and then continued to react with Cu
metal to form SCSs and Cu+, and then SCSs reacted with Cu+ and Cu to form Cu2S; finally,
Cu2S was reduced to Cu and MgS (Figure 10a). During the charging process, Cu nanowires
formed after discharge, and the unreacted Cu2S was evenly distributed around the MgS,
helping to enhance positive electrode electronic conductivity. Simultaneously, some Cu+

diffuses, forming Cu2S particles in MgS, promoting the charging reaction (Figure 10b). Al-
though copper collectors can significantly improve electrochemical performance, collector
corrosion during discharge can be fatal to the working life and safety. The SEM images in
Figure 10c–f show the morphology of Cu collectors in different states. After the first cycle,
the microscopic surface coarsens and significant corrosion occurs, which is fatal to electrode
structures. He et al. [67] employed Cu nanoparticles grown on carbon nanofiber (CNF)
as a sulfur host to explore the influence of different Cu loadings on Mg-S cells and found
that with Cu:S mass ratios from 1:4 to 1:1, the cycling and rate performances of Mg-S cells
gradually became better. However, excessive Cu additive can be expected to cause a loss of
energy density, and the cost of adding copper to the cathode may limit the practicality of
such Mg-S cells. In principle, the introduction of various forms of copper, e.g., Cu single
atoms, Cu nanoparticles, Cu nanowires, and other structures improves the utilization of
Cu [73]. It is also possible to synthesize copper derivatives such as CuSx, CuSex, CuPx, etc.,
to obtain higher reaction kinetic performances [45,74,75].
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Figure 10. The proposed reaction mechanism diagram during (a) discharge and (b) charge. SEM of
the Cu collector in Mg−S batteries: (c,d) original electrode, and (e,f) fully charged electrode after the
first cycle [63]. (g) Structures of BUMB18C6 and UOEE. (h) Electrochemical reaction principles of
sulfur−containing composites [76]. (i) The preparation process of SGDY, and corresponding (j) SEM
image, (k) SEM images and corresponding element mapping, (l) HRTEM image [77].
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3.3. Covalently Bonded Sulfur Cathode

Polymers containing S-S bonds may become a promising direction since the design
principle for Mg-S batteries is similar to that of Li-S batteries [78,79]. In 2007, Feng [80] and
NuLi [81] first used organosulfur compounds with S-S bonds in Mg-S batteries. Never-
theless, all of these organosulfur compounds exhibit poor electrochemical performance,
which could be attributed to the mismatched electrolyte. As a follow-up, S-bis(undec-10-
enoyloxymethylbenzo)-18-crown-6-ether (BUMB18C6) and S-oxybis (2,1-ethanediyloxy-2,1-
ethane-diyl) ester (UOEE) (Figure 10g) were prepared by a simple solvothermal method [76].
Figure 10h shows the suggested mechanism of formation for these types of compounds
during discharge. S-BUMB18C6 has similar initial discharge capacities to S-UOEE, while
the cycling performance of S-BUMB18C6 is better than the S-UOEE electrode, which can be
ascribed to the ionic conduction path created by the crown ether unit in S-BUMB18C6.

Graphdiyne (GDY) has a unique structure with uniformly distributed pores of 5.42 Å
diameter and 0.365 nm interplanar spacing formed by benzene rings and connected by
butadiene bonds. Du et al. [77] successfully synthesized sulfide graphdiyne (SGDY) by
thermally inducing a reaction with S8 forming SCSs (Sx, 1 < x < 5) at 350 ◦C, which anchored
in the GDY triangular pores (Figure 10i–l). Both C-S bonds and S-S bonds are observed in
SGDY, but not S8. However, acceptable electrochemical performance was only achieved by
using LiCl additives in the electrolyte, with a specific capacity of 1125 mAh·g−1 and 41%
capacity retention after 36 cycles at 50 mA·g−1, which may be related to the slow dynamic
performance of Mg2+ with SCSs in the solid state.

Sulfurized polyacrylonitrile (SPAN) is one of the most promising covalently bonded
sulfur cathode materials for Li-S batteries, with the ability to chemically bind sulfur to the
polymer backbone. SPAN was first used in magnesium-sulfur batteries in 2007 and was
prepared by thermal treatment of PAN/S8 mixtures [80]. In one study on SPAN utility
for Mg-S cells, Wang and co-workers [82] combined SPAN with 0.8 M Mg[B(hfip)4]2 in
DME/TEG. They observed a discharge capacity of 550 mAh·g−1 (ca. 207 mAh·g−1

SPAN)
and stable cycling over 70 cycles at 0.033 C (Figure 11a,b). Mg-SPAN cells with Mg2+/Li+

hybrid electrolytes were also explored [42,43]. Cycling for 100 cycles at 1.67 mA/cm2 with
a capacity of 1100 mAh·g−1 and a Coulombic efficiency >99.9% (Figure 11c,d) [42]. EIS
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AlCl3−1.6 M LiCF3SO3 electrolyte [42]. (e) Schematic of a CNF−coated separator in Mg−S cell and
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Selenium-sulfur composites have been used to enhance cathode electrical conduc-
tivity and mitigate the polysulfide shuttle problem [46,83–85]. For example, Du and
colleagues [46] explored selenium-sulfur (SeS2) in Mg-S batteries targeting high energy
and efficient kinetics. SeS2/CMK-3 cathode with a mass loading of ~2 mg·cm−2 shows
~1000 mAh·g−1 discharge capacity at 112 mA·g−1, and lower charge-discharge polarization
voltage than Se/CMK-3 and S/CMK-3. Hence, selenium can act as a eutectic promoter,
greatly increasing the electronic conductivity of sulfur compounds and leading to lower
voltage polarization and higher sulfur utilization.

3.4. Interlayer Modification on Cathode Side

The introduction of functionalized separators on the cathode side also offers significant
suppression of the polysulfide shuttle effect [19,44,49,86]. Yu [56] found that an active CNF-
coated separator can act both as an absorption host to trap soluble polysulfides and as a
current collector to enhance the conversion of polysulfides, which delivers a remarkable
discharge capacity of 1200 mAh·g−1 in Mg-S cells (Figure 11e,f).

Because Mo6S8 offers a combination of high electronic, high ionic conductivity, and
high affinity for polysulfides, Wang et al. coated Mo6S8 (0.2–0.3 mg·cm−2) on a Celgard
separator (CG@CP) to effectively enhance the conversion of polysulfides [44]. In Mg–S
pouch cell tests, the initial discharge capacity reached 510 mAh·g−1, and the reversible
capacity was 182 and 103 mAh·g−1 after 50 and 100 cycles, respectively (Figure 12a–c).
CG@CP promotes the reversibility of the S8 redox chemistry and maintains cycling stability,
as confirmed by XPS analysis and ex situ Raman measurements (Figure 12d,e). Analogously,
Xu et al. [19] promoted the performance of Mg-S cells by activating unreacted MgS and
Mg3S8 species using a TiS2 coated separator (TiS2@separator) with a TiS2 mass loading
of 0.15 mg·cm−2 (Figure 12f). The cells with TiS2@separators had a reversible capacity of
900 mAh·g−1 after 30 cycles at 83 mA·g−1 with a sulfur loading of 1 mg·cm−2 (Figure 12g).
According to DFT calculations, the decomposition energy barrier for chemisorbed MgS on
TiS2 is reduced by 0.88 eV compared to graphene, thus Ti2S could facilitate the conversion
of SCSs to LCSs (Figure 12h). Recently, Nu’s group [45] found that metal phosphides (Cu3P)
also exhibit high conductivity and electrocatalytic activity, which is favorable for Mg-S cells.
In long-term tests, pouch cells with Cu3P@carbon separators exhibited a reversible capacity
of over 200 mAh·g−1 after 100 cycles. Zhou et al. [86] designed an advanced metal-sulfur
cell Janus separator using intrinsically safe polyimide films, highly reactive metallic copper
nanowires, and a rigid solid electrolyte. The assembled Mg-S battery delivered a high
capacity of 915 mAh·g−1 at 50 ◦C even after 25 cycles.

In addition to modifications on cathode side separators, interface modification between
the cathode and electrolyte can also improve polysulfide shuttling issues. Cui’s group [46]
first applied copper foam as an interlayer between SSe2/CMK-3 cathodes and separators,
boosting the overall charge-discharge kinetics by promoting reversible reactions between
copper sulfide/copper selenide and magnesium species. It was demonstrated by ex situ
XRD and XPS that the rapid chemical reactions between the polysulfide capture layer
of copper foam and Sx

2− accelerate the discharge process and improve the utilization of
cathode material. Karger’s group [87] investigated graphene-PAN-coated carbon cloth as a
multifunctional interlayer to suppress self-discharge and adsorbing polysulfides, showing
lower polarization and nearly 380 mAh·g−1 after 150 cycles. Design approaches like these
provide a promising way to effectively improve the performance of metal-sulfur batteries.
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4. Research Progresses on Non-Nucleophilic Electrolytes

The compatibility of the electrolyte with the sulfur cathode in Mg-S batteries is critical
to battery performance given the electrophilic nature of sulfur cathodes. In addition, Mg
can react with ester, sulphone, amides, and nitriles to produce passivated films. Therefore,
ether-based solvents are often used in RMBs systems. Anions with solvation structure play
a crucial role in the electrochemical performance of electrolytes [88]. BF4

−, PF6
−, AsF6

−,
and ClO4

− will decompose on Mg metal and form stable MgO, Mg(OH)2, MgF2, etc., which
impede Mg2+ diffusion, resulting in irreversible dissolution and deposition. As a result,
electrolytes such as sulfonate and boron-based compounds are promising options due to
their stability in relation to magnesium metal [89].

Non-nucleophilic electrolytes such as MgCl2(HMDS)-AlCl3 were first proposed by
Kim and Muldoon et al. in 2011 [11]. They mixed non-nucleophilic HMDS·MgCl with AlCl3
in a ratio of 3:1 in THF to form the [Mg2(µ-Cl)3·6THF]+ cation and the [HMDSn·AlCl4-n]−

anion as the electrochemically active roles of the electrolyte, which has a voltage stability
of 3.2 V vs. Mg and is compatible with the electrophilic sulfur cathode. As shown in
Figure 13a, the central magnesium atoms are coordinated to two octahedra by three Cl
atoms, while the THF molecules are linked to the other triple positions on each magne-
sium atom by oxygen atoms. However, MgCl2(HMDS)-AlCl3 electrolyte cannot prevent
sulfide dissolution, resulting in a fast capacity decay of 390 mAh·g−1 after the first cycle of
1200 mAh·g−1 (Figure 13b).To avoid the formation of the HMDSAlCl2 by-product, they
introduced MgCl2 to convert it into [HMDSAlCl3]− [16]. In 2014, Ha et al. [54] reported
that Mg(TFSI)2 in a glyme/diglyme solvent allows the electrochemical conversion of sul-
fur to MgS in Mg/CMK3-S batteries, but faces a rapid capacity decay after the initial
cycle (Figure 13b) and 2.0 V large overpotential before activation. To alleviate the passi-
vation of the Mg anode caused by H2O and impurities, MgCl- was introduced [35,90,91].
Gao et al. [35] used 1M Mg(TFSI)2-MgCl2 and obtained cycling stabilities exceeding 100 cy-
cles (Figure 13c). However, Both MgCl2(HMDS)-AlCl3, Mg(TFSI)2-MgCl2 and Mg(TFSI)2-
MgCl2-AlCl3 electrolytes are corrosive to metal current collectors, severely limiting their
large-scale application [92]. Accordingly, there is an urgent need for the development of
non-corrosive and high voltage electrolytes for Mg-S batteries.
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Figure 13. (a) Crystal structure of [Mg2(µ−Cl)3·6THF][HMDSAlCl3] and corresponding
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electrolyte [35]. (d) Charge−discharge curves of Mg−S cells with BCM electrolyte at 0.05 A·g−1 [93].

Mg(BH4)2 as a hydrogen storage material was first applied in RMBs as a borohydride
electrolyte in 2012 [94]. However, the oxidation potential of 1.7 V limits its application in Mg-
S cells. Later, Zhao-Karger et al. developed an electrolyte tetrakis(hexafluoroisopropyloxy)
borate (Mg[B(hfip)4]2) with boron as the central atom [17,55]. Mg[B(hfip)4]2 has promising
electrochemical properties, high oxidative stability (4.3 V with stainless steel), high elec-
trical conductivity (6.8 mS·cm−1 at 25 ◦C), and excellent Mg stripping/plating coulombic
efficiency (>98%), and most importantly, good chemical compatibility making it well suited
for high energy Mg cells. Cui et al. used THFPB with magnesium salts such as MgF2 and
MgO as electrolytes for Mg-S batteries [93,95]. The oxidative voltage of BCM electrolyte
reached 3.5 V (vs. Mg/Mg2+), the ionic conductivity is 1.1 mS·cm−1, and the first discharge
specific capacity reached 1081 mAh·g−1 (Figure 13d).

In addition, electrolyte additives are also introduced by researchers as a means to
improve the performance of electrolytes. It was found that the use of LiCl [96,97] and
YCl3 [98] as additives can effectively improve the cycle life and rate performance of Mg-
S batteries. These additives effectively lower the overpotential and inhibit polysulfide
shuttling. Thus, magnesium-sulfur batteries with high energy densities can be produced in
the near future by adopting non-nucleophilic electrolytes with proper additives.

5. Conclusions

Since the potential of Mg-S batteries was first identified, researchers have carried
out extensive efforts to clarify and detail their electrochemical behavior seeking ways
to realize the anticipated performance. Although similar to Li-S batteries, numerous
difficulties remain unresolved. First, the solubility of magnesium polysulfides is lower
than lithium polysulfides in typical electrolytes, but a serious shuttle problem exists,
likely related to the slow kinetics of Mg2+ diffusion or the special characteristics of some
intermediates. Second, the exact mechanism of the rapid capacity decay remains unknown.
There are reports attributing this to the formation of electrochemically inert MgS and
MgSx by the first discharge, and there are also reports indicating that the dissolution
and shuttling of sulfur and polysulfides is the main reason [17,19]. Third, the severe self-
discharge behavior of Mg-S batteries (up to 90% capacity loss) needs to be more deeply
investigated. To date, this serious self-discharge has attracted great interest and must
be addressed to commercialize Mg-S batteries. The application of operando UV-Vis [23],
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XAS [19,21], and Raman spectroscopies [24] to reveal the potential mechanisms whereby
Mg-S batteries function remains a rich area in need of more attention. The operando
Raman mapping technique allows real-time monitoring of the in-plane distribution of
ions and the evolution of the chemical environment [99]. In addition, RIXS and XANES
assays can provide an accurate characterization of elemental valence and coordination
environments, compensating for the shortcomings of XRD and XPS [21]. Finally, there is a
lack of quantitative models proposed for Mg-S batteries.

In terms of the cathode side, multiple efforts have been devoted to exploring porous
and high-conductivity materials to anchor sulfur and polysulfides and improve the kinetic
performance of active materials. Nevertheless, reported sulfur loadings are generally at
1 mg·cm2, which is far below the requirements of commercial applications. In addition, the
large overpotential causes ultra-low energy efficiencies, as low as 30%. Hence, achieving
high performance and high surface loading is one important direction for cathode material
development. For interlayers between the cathode and separator, TiS2 [19], Mo6S8 [44],
Cu3P [45], and graphene [49] can effectively mitigate polysulfide shuttling by physical
limitations or catalysis. However, the added volume and mass will reduce energy densities.
Therefore, the key challenge is to develop coatings or interlayers that can effectively prevent
sulfur and polysulfide from shuttling, have low mass and volume, and are able to selectively
conduct magnesium ions. Moreover, it is important to explore the underlying mechanisms
behind the improved electrical performance.

With regards to electrolytes, developing non-nucleophilic non-corrosive electrolytes
is the future direction. Boron-based electrolytes with large anions can effectively reduce
the Mg2+ dissociation energy but also increases electrolyte mass. Additionally, suitable
additives can alleviate negative electrode passivation, form a protective layer, etc. In
principle, all-solid-state Mg-S cells are one effective solution to address polysulfide migra-
tion [100,101]. However, this approach likely suffers from slower redox kinetics and the
sluggish migration of magnesium ions. On this account, quasi-solid-state electrolytes may
offer a compromise.

In summary, Mg-S batteries still need further optimization to meet requirements for
practical applications. We hope this review will provide some insight into the development
of Mg-S batteries.
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