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Abstract: Battery state of power (SOP) estimation is an important parameter index for electric vehicles
to improve battery utilization efficiency and maximize battery safety. Most of the current studies on
the SOP estimation of lithium–ion batteries consider only a single constraint and rarely pay attention
to the estimation of battery state on different time scales, which can reduce the accuracy of SOP
estimation and even cause safety problems. In view of this, this paper proposes a multi-time scale
and multi-constraint SOP estimation method for lithium–ion batteries based on H∞ filtering. Firstly,
a second-order RC equivalent circuit model is established with a ternary lithium–ion monolithic
battery as the research object, and parameter identification is performed by using the recursive least
squares method with a forgetting factor. Secondly, the H∞ filtering algorithm is applied to estimate
the state of charge (SOC), and then the joint multi-time scale multi-constrained SOC-SOP estimation
is performed. Finally, the joint estimation algorithm is validated under UDDS conditions. The mean
absolute value relative error (MARE) of SOC estimation is 1.17%, and the MARE of SOP estimation at
different time scales is less than 1.6%. The results indicate the high accuracy and strong robustness of
the joint estimation method.

Keywords: FFRLS; H∞ filtering; SOC; SOP

1. Introduction

At present, the energy crisis and environmental pollution are worsening continuously,
which makes sustainable, green development the focus of attention in all countries around
the world [1]. So far, there has been significant progress made by humans in energy
conservation and carbon emission reduction, which contributes to environmental protection.
In this context, electric vehicles have been vigorously developing. Lithium–ion batteries
have now been widely used in electric vehicles due to their high power ratio, high energy
density, long cycle life, low cost, and environmental friendliness. As the core component
of electric vehicles, the battery management system plays a crucial role in estimating the
status of the lithium–ion battery. The most critical measures of battery state include SOC
and SOP [2]. The real-time estimation of battery SOC can accurately indicate the remaining
battery power to improve the range while extending the life of electric vehicles. However,
it is difficult to measure SOC directly. As a nonlinear, complex process, the charging
and discharging processes of lithium–ion batteries involve various energy conversion
reactions [3,4], which makes it practically difficult for the existing SOC estimation strategies
to accurately estimate the online SOC values in real time. In the course of acceleration,
regenerative braking, and gradient climbing, accurately estimating the SOP is conducive
to the optimal matching of vehicle power performance and the optimization of vehicle
control under the premise of ensuring battery safety [5]. However, SOP can be affected
by temperature, SOC, aging degree, internal resistance, etc. [6], for which it is difficult to

Batteries 2023, 9, 191. https://doi.org/10.3390/batteries9040191 https://www.mdpi.com/journal/batteries

https://doi.org/10.3390/batteries9040191
https://doi.org/10.3390/batteries9040191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/batteries
https://www.mdpi.com
https://orcid.org/0000-0002-6504-6179
https://orcid.org/0000-0003-4593-0757
https://doi.org/10.3390/batteries9040191
https://www.mdpi.com/journal/batteries
https://www.mdpi.com/article/10.3390/batteries9040191?type=check_update&version=1


Batteries 2023, 9, 191 2 of 25

achieve direct quantification through some specific parameters. Consequently, there is a
decline in the accuracy of battery SOP estimation and a more complex estimation method
is required.

Accurate SOC estimation is essential for the practice of SOP estimation. The existing
SOC estimation methods can be divided into various categories: ampere hour integration
method, open-circuit voltage method, data-driven method, and adaptive filter method, as
shown in Figure 1. As for the ampere hour integration method, it is applied to estimate
the battery SOC by collecting the information about battery charging and discharging
current through the sensor, and then by accumulating the product of current and time.
However, the ampere hour integration method is heavily dependent on the accurate initial
SOC value and high-precision current sensor. As an open-loop algorithm, the ampere
hour integration method tends to have cumulative measurement error if it runs for a long
time. Additionally, the accurate SOC estimate requires the open-circuit voltage rule to
be shelved for a long period of time, which is impractical for online applications. With
the basic data of the battery (such as voltage, current, temperature, and impedance) as
the input and the battery SOC as the output, the data-driven method relies on machine
learning to train the black box model. Then, the battery SOC is mapped according to the
new sampling data. Chen et al. [7] adopted the adaptive catastrophic genetic algorithm
to optimize the initial weight and threshold of a recurrent neural network (RNN), which
improved the global search ability of the optimal weight and threshold, thus enhancing
the accuracy of SOC estimation. By settling time, voltage, current, and temperature as
the factors affecting the accuracy of SOC estimation, Qian et al. [8] applied the fuzzy rule
optimization algorithm to optimize the structure of the neural network, which improved
the convergence speed of the network. However, their effectiveness is easily affected by the
quantity and quality of training datasets and the training methods used, which constrains
their practical application to a certain extent. In the literature [9,10], some solutions are
proposed to meet the data demand of batteries, but how to reduce the calculation cost
incurred by offline data training remains a problem.

Batteries 2023, 8, x FOR PEER REVIEW 2 of 27 
 

can be affected by temperature, SOC, aging degree, internal resistance, etc. [6], for which 

it is difficult to achieve direct quantification through some specific parameters. Conse-

quently, there is a decline in the accuracy of battery SOP estimation and a more complex 

estimation method is required. 

Accurate SOC estimation is essential for the practice of SOP estimation. The existing 

SOC estimation methods can be divided into various categories: ampere hour integration 

method, open-circuit voltage method, data-driven method, and adaptive filter method, as 

shown in Figure 1. As for the ampere hour integration method, it is applied to estimate 

the battery SOC by collecting the information about battery charging and discharging cur-

rent through the sensor, and then by accumulating the product of current and time. How-

ever, the ampere hour integration method is heavily dependent on the accurate initial SOC 

value and high-precision current sensor. As an open-loop algorithm, the ampere hour in-

tegration method tends to have cumulative measurement error if it runs for a long time. 

Additionally, the accurate SOC estimate requires the open-circuit voltage rule to be 

shelved for a long period of time, which is impractical for online applications. With the 

basic data of the battery (such as voltage, current, temperature, and impedance) as the 

input and the battery SOC as the output, the data-driven method relies on machine learn-

ing to train the black box model. Then, the battery SOC is mapped according to the new 

sampling data. Chen et al. [7] adopted the adaptive catastrophic genetic algorithm to op-

timize the initial weight and threshold of a recurrent neural network (RNN), which im-

proved the global search ability of the optimal weight and threshold, thus enhancing the 

accuracy of SOC estimation. By settling time, voltage, current, and temperature as the fac-

tors affecting the accuracy of SOC estimation, Qian et al. [8] applied the fuzzy rule opti-

mization algorithm to optimize the structure of the neural network, which improved the 

convergence speed of the network. However, their effectiveness is easily affected by the 

quantity and quality of training datasets and the training methods used, which constrains 

their practical application to a certain extent. In the literature [9,10], some solutions are 

proposed to meet the data demand of batteries, but how to reduce the calculation cost 

incurred by offline data training remains a problem. 

Battery state estimation

Ampere hour 
integration

Open circuit 
voltage

Data-driven
Adaptive 

filter
Interpolation Model-based Data-driven

Method Method

SOC estimation SOP estimation

 

Figure 1. Battery state estimation methods classification. 

For the data-driven method, it is difficult to ensure the quality of battery data and 

address the slow convergence of the algorithm. Currently, scholars have widely adopted 

adaptive filters to estimate SOC. Regarding the selection of adaptive filter, a Kalman Filter 

(KF)-improved algorithm is a major solution. In the literature [11,12], the extended Kal-

man filter (EKF) algorithm is applied to estimate the SOC, and the state variables can be 

correctly observed even when the initial value parameters are inaccurate. The Jacobian 

matrix needs to be calculated when estimating the EKF algorithm, which in turn affects 

the accuracy of estimating SOC [13]. One limitation of the EKF algorithm is that using 

first-order Taylor expansion in linearization can only obtain first-order accuracy. The ac-

curacy of the EKF algorithm depends on the prior knowledge of battery model parameters 

and system noise signals. For example, if the prior knowledge is incorrect, the estimation 

process error may lead to deviation [14]. However, the EKF algorithm makes the SOC 

estimation error more significant due to its approximation to the distributed Gaussian 

Figure 1. Battery state estimation methods classification.

For the data-driven method, it is difficult to ensure the quality of battery data and
address the slow convergence of the algorithm. Currently, scholars have widely adopted
adaptive filters to estimate SOC. Regarding the selection of adaptive filter, a Kalman Filter
(KF)-improved algorithm is a major solution. In the literature [11,12], the extended Kalman
filter (EKF) algorithm is applied to estimate the SOC, and the state variables can be correctly
observed even when the initial value parameters are inaccurate. The Jacobian matrix needs
to be calculated when estimating the EKF algorithm, which in turn affects the accuracy of
estimating SOC [13]. One limitation of the EKF algorithm is that using first-order Taylor
expansion in linearization can only obtain first-order accuracy. The accuracy of the EKF
algorithm depends on the prior knowledge of battery model parameters and system noise
signals. For example, if the prior knowledge is incorrect, the estimation process error may
lead to deviation [14]. However, the EKF algorithm makes the SOC estimation error more
significant due to its approximation to the distributed Gaussian random variables and
the neglect of higher order terms in the process of linearization. In order to improve the
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accuracy of SOC estimation through the extended Kalman filter method, Xiong et al. [15]
proposed to achieve robust SOC estimation by using the AEKF algorithm based on the
electrochemical model, which to some extent reduced the impact of parameter uncertainty
on the accuracy of SOC estimation. However, the noise covariance may lose its positive
definiteness due to the adaptive process of noise parameters. Li [16] and Wang [17] et al.
proposed that the method of SOC estimation based on the unscented KF can be used to
retain as many nonlinear characteristics of the system as possible. When the sampling data
exceed the specified limit due to external factors, however, significant errors may arise
and the convergence speed may be reduced. In the case of severe measurement noise, the
results may show divergence.

The traditional SOC estimation method is ineffective in guaranteeing accuracy when
the sensor suffers from serious measurement noise or the vehicle runs in a highly dynamic
environment. In recent years, a filter-based SOC estimation method has attracted extensive
attention due to its high accuracy and strong robustness. With the accurate estimation of
SOC, some scholars focus on the joint estimation of SOC–SOP, with consideration given to
the correlation between SOC and SOP estimation.

As defined by SOP, it can provide or feedback the peak power capacity of electrical
energy at the next time (5 s, 10 s, 30 s, or another defined time) while ensuring the normal
operation of the battery. Accurate SOP estimation plays a vital role in judging whether the
vehicle meets the requirements of acceleration, regenerative braking, etc., which not only
avoids the excessive charging or discharging of the battery, but also prevents the impact
on battery life and potential safety hazards. The commonly used SOP estimation methods
include interpolation, data-driven and model-based estimation methods, as shown in
Figure 1. The interpolation method requires the building of an offline feature map. Despite
the ease of its implementation, the amount of testing increases dramatically due to various
influencing factors, which not only consumes a lot of resources, but also causes the poor
adaptability of static test results to dynamic conditions [18]. In the data-driven method, the
battery is regarded as a black box, with the reaction mechanism and characteristics inside
the battery ignored. For data analysis and machine learning, SOP is taken as the output of
the model, while voltage, temperature, SOC, and other influencing factors are taken as the
input. Sun et al. [19] used the grid generation method and subtractive clustering method
to generate fuzzy sets. Then, they used a single BP neural network method and mixed
training method to conduct model training. With 125 sets of datasets used for verification,
the prediction error was found in no excess of 10%. Zhu et al. [20] established a neural
network battery model by using a hybrid algorithm of simulated annealing + BP (back
propagation) neural network based on data statistics and machine learning. Despite the
excellent performance of such data-driven methods in addressing nonlinear problems, their
effectiveness is easily affected by the quality of training datasets and training methods.
Moreover, it is difficult to apply them under dynamic conditions, which limits their practical
application to a certain extent.

Considering the complexity and estimation accuracy of interpolation and data-driven
methods, most scholars currently adopt model-based power estimation methods. In order
to address the limitations of experimental testing methods, Plett et al. [21] proposed to
improve the HPPC (Hybrid Pulse Power Characteristic) method through two voltage-based
modified rate limiting methods, which takes into account the impact of multiple constraints
on peak power. On this basis, Xavier et al. [22] achieved the optimal control of “pseudo
minimum time” by using a simple and robust quadratic programming solver, so as to
obtain power limits. Thus, the need to solve nonlinear optimization at each time step is
removed. Compared with the method proposed in [21], the model predictive control (MPC)
method proposed by Xavier et al. enables the more dynamic estimates of available power.
In order to improve the estimation accuracy and reliability of battery energy state and
power capability, Zhang et al. [23] proposed a joint estimation method based on a three-
dimensional response surface open circuit voltage model by considering the uncertain
external operating conditions and internal degradation state of battery cells. By using
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the equivalent circuit model of the double extended Kalman filter (DEKF), Pei et al. [24]
put forward a non-training battery parameter/state estimator to estimate the peak power
through the combined limitation of current and voltage. However, there is no SOC as a
limit when the battery is close to saturation or depletion, which may lead to the excessive
charging and discharging of the battery. To solve this problem, Tang et al. [25] proposed a
high-fidelity migration model based on particle filter for SOC and SOP estimation, which
takes into account multiple constraints such as voltage, current, and SOC constraints. Zhang
et al. [26] carried out experimental characterization of the battery polarization resistance in
the whole SOC operating range under constant current quasi-steady state and used this
experimental characteristic together with voltage measurement to form the observation
equation in the Kalman filter to improve the model accuracy in SOC and SOP estimation.
In addition, some scholars proposed a new data model fusion method. For example, Guo
et al. [27] combined, with the first-order RC model, a feedforward neural network with
SOC, discharge rate, and pulse operation time as inputs. The battery polarization voltage
is characterized by simulating current excitation and polarization resistance to achieve
accurate online SOP estimation in a long prediction window of 30 s to 120 s. Hu et al. [28],
taking into account the potential coupling and characteristics among SOC, state of health
(SOH), and SOP, developed a multi-time scale estimation framework to achieve accurate
estimation and moderate calculation costs. The experimental results show that the proposed
joint estimation has significant advantages over the single estimation solution. Given the
mutual coupling relationship between different battery states, Dong et al. [29] established a
simplified linear equivalent circuit model to simulate the dynamic characteristics of the
battery, which reduced the computational complexity through KF. Moreover, they proposed
a joint estimator of the SOC and functional state (SOF) of the lithium–ion battery (LIB).
Rahimifard et al. [30] proposed another multi state estimation algorithm for SOC, SOH,
and SOP, adopted an interactive multi-model strategy to analyze the likelihood function
of battery models in different aging states, and then updated model parameters through
model fusion. However, many mathematicians pay attention only to the instantaneous
power capability or the peak power capability of a single time scale. When the changes in
time scale are estimated, the algorithm may fail to ensure the accuracy of the estimation.

According to the above research, it is more important to study the battery SOP estima-
tion within a certain time frame as it takes time for electric vehicles to complete acceleration,
climbing, and braking energy recovery. However, most of the current studies are limited
to studying the SOP estimation with a time scale of 30 s, which leads to a large gap in the
research on SOP estimation with multiple time scales.

Accurate SOC estimation is a prerequisite for accurate SOP estimation. Kalman
filtering is an effective tool for system state estimation, but the Kalman filtering algorithm
relies heavily on the system model. That is, the higher the accuracy of the system model, the
higher the estimation accuracy of the Kalman filter. Conversely, if the accuracy of the system
model is low or the model parameters cannot be determined, the estimation accuracy of
the Kalman filtering algorithm becomes poor, and even prone to problems such as iterative
divergence. Secondly, the Kalman filtering algorithm requires that the process noise and
measurement noise meet the conditions for known statistical characteristics, and is assumed
to be Gaussian white noise. However, this assumption evidently cannot be well consistent
with the actual operating conditions of electric vehicles, and inaccurate initial covariance
values may lead to slow convergence or low estimation accuracy. In view of this, we aim to
find a new filter that can handle modeling errors and noise uncertainty to solve the above
problems. Generally speaking, state estimation that can tolerate this uncertainty is called
robustness. Robust estimators can precisely be designed as estimators based on the Kalman
filtering theory, but such methods are to some extent unique because they attempt to modify
an existing method, and H∞ filters are designed specifically for robustness. The H∞ filter is
less dependent on the system model and still has good estimation performance even when
the model of the system to be estimated is uncertain. Secondly, data measurement noise
from current, voltage, temperature, and other sensors is inevitable, and the accumulation of
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errors can lead to large errors in battery state estimation. The H∞ filtering algorithm does
not require the accurate prediction of noise statistical characteristics, minimizing the impact
of system process noise, measurement noise, and uncertainty of initial state variables on
estimation accuracy, achieving minimum estimation error in the worst cases, suppressing
the impact of noise on the desired output, and ensuring good robustness.

In this paper, a second-order RC equivalent circuit model is established, and the
forgetting factor recursive least squares (FFRLS) is used to identify the parameters of
the battery equivalent circuit model. Not considering the initial value of the system, the
H∞ filtering algorithm is used to estimate the SOC. Furthermore, a multi-time scale SOP
estimation method with voltage, current, and SOC as constraints is proposed to improve
the accuracy of SOP estimation.

2. Battery Modeling and Parameter Identification
2.1. Battery Modeling

To reduce the complexity of the model and improve its accuracy, this paper adopts the
second-order RC equivalent circuit model, as shown in Figure 2.
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The state equation of the battery model is as follows:

SOCk
U1,k
U2,k

 =

1 0 0

0 e
−∆t

R1C1 0

0 0 e
−∆t

R2C2


SOCk−1

U1,k−1

U2,k−1

+


−∆t

C·3600 η(
1− e

−∆t
R1C1

)
R1(

1− e
−∆t

R2C2

)
R2

Ik−1 (1)

UT,k+1 = UOCV(SOCk)− R0 Ik −U1 −U2, (2)

where UT,k+1, is the value of the terminal voltage at the moment, UOCV(SOCk) is the
open circuit voltage as a function of SOC, R0 is the ohmic resistance, R1 and R2 are the
polarization resistances, C1 and C2 denote the polarized capacitance, Ik−1 denotes the
operating current at the k − 1 moment, where η is the Coulomb efficiency, and C is the
battery capacity.

2.2. Forgetting Factor Recursive Least Squares (FFRLS)

In this paper, the FFRLS method is used to identify the model parameters online,
which can not only reduce the length of computation, but also have high accuracy, prevent
the algorithm from data saturation, and enhance the tracking and correction ability of the
algorithm. The performance index of the FFRLS method is as follows:

J =
N

∑
k=1

λN−k
[
yk −ΦT

k θ̂k−1

]2

, (3)
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For the performance index Equation (3), the FFRLS method equation is obtained as
follows:

θ̂k = θ̂k−1 + Kk

[
yk −ΦT

k θ̂k−1

]
(4)

Kk =
Pk−1Φk

λ + ΦT
k Pk−1Φk

(5)

Pk =
1
λ

(
Pk−1 − KkΦT

k Pk−1

)
, (6)

where θ̂k−1 denotes the estimated value of the parameter at the previous moment, ΦT
k θ̂k−1

denotes the observed value at the current moment, yk denotes the actual observed value at
the current moment, Kk denotes the gain term, and the revised value of the predicted value
at the current moment is the product of the expected error and the gain term, while the
final estimate is the sum of the revised value of the predicted value at the current moment
and the estimated value at the current moment, and λ is the forgetting factor. In general,
the forgetting factor takes a range of values 0.95 < λ < 1, the size of λ, which affects
the algorithm tracking ability. The flowchart of FFRLS identifying parameters is shown
in Figure 3.
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3. Joint Multi-Time Scale SOC-SOP Estimation
3.1. H∞ Filtering

Accurate SOC estimation is not only crucial to ensuring the charging and discharging
of the lithium–ion battery of electric vehicles within the working range, but also essential
for improving the life and safety of the lithium–ion battery of electric vehicles, optimizing
the driving conditions, and ensuring the efficiency of energy utilization by electric vehicles.
It is also an important factor affecting the accuracy of SOP estimation.

The design of the H∞ filtering algorithm is that it is not required to predict the precise
statistical characteristics of noise, so as to minimize the impact of system process noise,
measurement noise and uncertainty of initial state variables on the estimation accuracy,
minimize the estimation error in the worst case, suppress the impact of noise on the
expected output, and achieve a better anti-interference performance.

The following discrete systems are established:{
xk = Ak−1xk−1 + ωk−1
yk = Ckxk + vk

, (7)

where ωk−1 and vk are system process noise and measurement noise, respectively. These
noises may be random, with unknown statistical characteristics or known, and the mean
value of noise may be non-zero.

The design principle of the H∞ algorithm is as follows: In order to obtain the optimal
estimation value at time k, the cost function is defined as J1, and the objective of estimation
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is to find an estimation value x̂k of xk, so as to minimize the value of cost function J1.
However, there are interferences in nature, and these interferences (such as ωk−1 and vk)
maximize the cost function J1. The ultimate goal of nature is to maximize the estimation
error by selecting appropriate process error ωk−1, observation error vk, that is, maximize
xk − x̂k by ωk−1 and vk. Therefore, when defining the cost function J1, H∞ filtering places
ωk−1, vk, and the estimation error on the denominator and xk − x̂k on the numerator to
prevent the maximization of the estimation error caused by the increase in ωk−1 and vk.
The defined cost function J1 is as follows:

J1 =

N−1
∑

K=0
‖xk − x̂k‖2

Sk

‖x0 − x̂0‖2
P−1

0
+

N−1
∑

K=0

(
‖ωk‖2

Q−1
k

+ ‖vk‖2
R−1

k

) . (8)

In the formula, x0 represents the initial value set value of the state quantity, x̂0 repre-
sents the estimated value of the state quantity, P0 represents the initial state error covariance
matrix, Qk represents the noise covariance matrix of the state equation, and Rk represents
the covariance matrix of the measurement equation, where Sk is designed according to the
attention paid to the state variable.

However, it is not easy to minimize the value of cost function J1 in practice. If we
simply make x0, ωk, vk infinite to make the value of cost function J1 infinitesimal, which
does not conform to the law, it is necessary to select and design reasonable estimation
strategies to minimize the cost function. Since direct minimization is difficult to achieve,
we often choose a performance boundary λ to meet the following requirements:

J1 <
1
λ

, (9)

Reorganizing Formula (8), we can obtain that the cost function J2 based on the perfor-
mance boundary is

J2 = − 1
λ
‖x0 − x̂0‖2

P−1
0

+
N−1

∑
k=0

(
‖x0 − x̂0‖2

Sk
− 1

λ

(
‖ωk‖2

Q−1
k

+ ‖vk‖2
R−1

k

))
< 0. (10)

By rearranging the formula, the objective is as follows. When x0, ωk, and vk make J2
maximum, the appropriate x̂k that makes J2 minimum is chosen. The recurrence relation
that makes the cost function J1 smaller than 1/λ can be obtained after calculation as follows:

Kk = Pk

(
I − λSkPk + CT

k R−1
k CkPk

)−1
CT

k R−1
k

x̂k+1 = Ak x̂k + AkKk(yk − Ck x̂k)

Pk+1 = AkPk

(
I − λSkPk + CT

k R−1
k CkPk

)−1
AT

k + Qk

, (11)

where Kk is the gain matrix, Pk is the selected symmetric positive definite array, and P0 is
the matrix obtained based on the above recurrence relation.

To better distinguish the estimation results obtained before and after the update, x̂−k is
used to denote the value of x̂k after the time update, P−k is used to denote the value of Pk
after the time update, x̂+k is used to denote the value of x̂k after the measurement update,
and P+

k is used to denote the value of Pk after the measurement update. The flowchart of
this algorithm is shown in Figure 4.

3.2. Multi-Time Scale SOP Estimation

The accurate estimation of SOP of the lithium–ion battery can not only ensure the
optimal power distribution, but also avoid overcharge and overdischarge, which extends
the service life of the lithium–ion battery. The sustained peak SOP is mainly limited by
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three conditions: the current terminal voltage, the current SOC size, and the design limit
of the battery itself. The actual running state of the electric vehicle works continuously
with the time peak current of a few seconds or dozens of seconds, and the continuous peak
power state has more characterization significance than the instantaneous peak power state
(the peak power capacity at the next moment, which means that ∆T is 1 s). In this paper, the
SOC estimation strategy is adopted to establish a joint estimation algorithm of multi-time
scale SOP.
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In this paper, SOP is defined as the continuous peak power level that the battery can
reach in the next specified time range:{

SOPdis = pdis = UT × Idis

SOPch = pch = UT × Ich , (12)

where SOPdis and SOPch are discharge SOP and charge SOP, respectively, pdis and pch are
discharge power and charge power, respectively, UT is terminal voltage, Idis and Ich are the
peak discharge current and peak charge current that the battery can maintain in the next
time range, respectively.

∆t is the sampling time. It is assumed that the peak current from k sampling time to k
+ L sampling time is constant, which means that Ik+1 = Ik+2 = Ik+L. Then, the polarization
voltage at k + L sampling time can be expressed as follows:

U1,k+L = U1,ke−
L×∆t

τ1 +

(
1− e−

L×∆t
τ1

)
R1 Ik+L

U2,k+L = U2,ke−
L×∆t

τ2 +

(
1− e−

L×∆t
τ2

)
R2 Ik+L

. (13)

By using Taylor formula to expand UOC(SOCk+L) at k sampling time, and ignoring
multiple higher-order terms, we can obtain.

UOC(SOCk+L) = UOC(SOCk)− IT,k+L
L× ∆t

Qn

∂UOC(SOCk)

∂SOCk
. (14)

Then, the terminal voltage UT,k+L of the lithium–ion battery after the action of a
continuous current for time L× ∆t can be expressed as follows:

UT,k+L = UOC(SOCk)−U1,ke−
L×∆t

τ1 −U2,ke−
L×∆t

τ2

−IT,k+L

[
L×∆t

Qn

∂UOC(SOCk)
∂SOCk

+ R0 +

(
1− e−

L×∆t
τ1

)
R1 +

(
1− e−

L×∆t
τ2

)
R2

] . (15)
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Then, the current at the moment k + L can be expressed as follows:

IT,k+L =
UOC(SOCk)−U1,ke−

L×∆t
τ1 −U2,ke−

L×∆t
τ2 −UT,k+L

L×∆t
Qn

∂UOC(SOCk)
∂SOCk

+ R0 +

(
1− e−

L×∆t
τ1

)
R1 +

(
1− e−

L×∆t
τ2

)
R2

. (16)

3.2.1. Continuous Peak Current Based on Voltage Constraints

For the lithium–ion batteries in actual operation, it is necessary to consider the exis-
tence of end voltage design limits (charge or discharge cut-off voltage). That is to say, the
operating voltage at any moment needs to meet the condition that UT,min < UT,k < Umax.
Therefore, the charge and discharge sustained peak currents at end voltage limits (maxi-
mum 4.2 V, minimum 2.75 V) are expressed as follows:

Idischarge,L
max,k =

UOC(SOCk)−U1,ke
− L×∆t

τ1 −U2,ke
− L×∆t

τ2 −UT,min

L×∆t
Qn

∂UOC(SOCk)
∂SOCk

+R0+

(
1−e

− L×∆t
τ1

)
R1+

(
1−e

− L×∆t
τ2

)
R2

Icharge,L
max,k =

UOC(SOCk)−U1,ke
− L×∆t

τ1 −U2,ke
− L×∆t

τ2 −UT,max

L×∆t
Qn

∂UOC(SOCk)
∂SOCk

+R0+

(
1−e

− L×∆t
τ1

)
R1+

(
1−e

− L×∆t
τ2

)
R2

, (17)

where Idischarge,L
max,k and Icharge,L

max,k , are the estimates of the peak continuous discharge current
and the peak continuous charge current at the moment of k sampling based on the voltage
limitation condition at the model’s end, respectively.

3.2.2. Continuous Peak Current Based on SOC Constraints

In order to ensure the safe operation of the lithium–ion battery pack for electric
vehicles, the SOC of the lithium–ion battery at any moment is required to meet a certain
restrictions, that is, SOCmin < SOCk < SOCmax (where the maximum SOC is 100% and the
minimum is 0%). Then, under the limit of SOC at the current moment, the continuous peak
discharge current and continuous peak charge current for the future time period L× ∆t
can be expressed, respectively, as follows: Idis,L

SOC,k =
SOCk−SOCmin

∆t
Qn

Ich,L
SOC,k =

SOCk−SOCmax
∆t
Qn

, (18)

where SOCk is the SOC value at the moment k, Idis,L
SOC,k denotes the maximum discharge

current in the time period L× ∆t under the current SOC conditions, and Ich,L
SOC,k denotes the

maximum charge current in the time period L× ∆t under the current SOC conditions.

3.2.3. Continuous Peak Charge/Discharge Current under Multiple Constraints

By combining the above two constraints and considering the design limits of the
Li–ion battery itself (peak discharge current Idis and peak charge current Ich), the sustained
peak charge and discharge current with multiple constraints can be obtained: Idis,L

k = min
{

Idis,L
SOC,k, Idischarge,L

max,k , Idis
}

Ich,L
k = max

{
Ich,L
SOC,k, Icharge,L

max,k , Ich
} , (19)

where Idis,L
k indicates the maximum discharge current in the next L× ∆t time period, and

Ich,L
k indicates the maximum charge current in the next L× ∆t time period.
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Based on Formula (15), the SOP of lithium–ion battery in the time period L× ∆t is
expressed as follows: {

SOPdis,L
k = pdis,L

k = UT,k+L × Idis,L
k

SOPch,L
k = pch,L

k = UT,k+L × Ich,L
k

. (20)

3.2.4. Algorithm Flow

Model based peak power estimation is currently the mainstream estimation method.
However, using SOC based methods alone or considering only single parameter constraints
can often cause safety issues such as excessive instantaneous peak current. Combining the
previous derivation process, SOP estimation with multiple constraints is performed. Firstly,
a second-order RC equivalent circuit model is established, and the measured voltage and
current are used as input for parameter identification. Then, combined with the results
of SOC estimation using the H∞ algorithm, the battery design limits, and the current
terminal voltage constraints, the continuous peak SOP is jointly estimated under multiple
constraints, and the accuracy of SOP estimation under different time scales is verified. The
algorithm flow is shown in Figure 5.
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4. Validations and Discussion
4.1. Experimental Setup and Test Procedure

In this paper, a ternary lithium–ion battery with a rated capacity of 1000 mAh is used
as the experimental object. As shown in Figure 6, the test platform consists of the host
computer, the battery under test, and the battery test system of ArbinMitsPro7.0 to conduct
the following experiments.
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1. Battery capacity test 

Figure 6. Battery testing system.

1. Battery capacity test

(1) Charge the battery with a current from 0.5 C to 4.2 V, and then change it to a
constant voltage of 4.2 V to charge the battery. When the charging current drops
to 50 mA, stop charging, and the battery is considered to be fully charged;

(2) Let stand for 2 h;
(3) Discharge at a constant current of 0.2 C until the terminal voltage is less than

2.75 V, and integrate the discharge current with time, that is, use the ampere-
hour integration method to obtain the current discharge capacity;

(4) Repeat steps (1) to (3) three times. If the error of the capacity obtained for
three times is less than 2%, take the average of the three discharge capacities
as the maximum usable capacity, otherwise repeat steps (1) to (3) until the
requirements are met.

2. Open-circuit voltage test

(1) Charge the battery to 4.2 V with a current of 0.5 C, and then convert it to a constant
voltage of 4.2 V to charge the battery pack. When the charging current drops to
50 mA, stop charging, and then the battery is considered to be fully charged;

(2) After standing for 2 h, the measured terminal voltage is OCV when fully
charged (i.e., SOC = 100%);

(3) Discharge at 1C constant current for 3 min, and then let it stand for 2 h. The
terminal voltage after standing for 2 h is the OCV under the current SOC state;

(4) Repeat the third step until the terminal voltage of the tested object is less than
2.75 V and stop discharging, and collect the experimental data.

3. UDDS working condition test

In order to provide data support for the accuracy of the proposed state estimation
algorithm under actual dynamic conditions, the robustness of the algorithm is verified
through the UDDS condition test to simulate the working condition of the battery when it
is used on the actual vehicle.

(1) Charge the battery with a current of 0.5 C to 4.2 V, and then change it to a constant
voltage of 4.2 V to charge the battery. When the charging current drops to 50 mA, stop
charging, and the battery is considered to be fully charged;

(2) Let stand for 2 h;
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(3) Input the UDDS working condition excitation current (as shown in Figure 7) into the
battery test system to conduct the cyclic working condition test until the terminal
voltage of the tested object is less than 2.75 V and stop discharging, and collect the
experimental data.
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Figure 7. Excitation current under UDDS condition.

In order to verify the accuracy of estimation by the algorithm proposed in this paper,
three mathematical indicators, namely, relative error (RE), mean absolute relative error
(MARE), and root mean square error (RMSE), are used to evaluate the joint estimation
performance of SOC–SOP.

The definitions are given out as follows:

RE =
y∗ − y

y
(21)

MARE =
1
N

N

∑
1

∣∣∣∣y∗ − y
y

∣∣∣∣ (22)

RMSE =

√√√√ 1
N

N

∑
1
(y∗ − y)2, (23)

where y∗ is the estimated value, y is the reference value, and N is the number of samples.

4.2. Validation of FFRLS Parameter Identification Results

The open-circuit voltage (OCV)–SOC relationship curve of the battery is obtained
by using the constant-current discharge gap method. An eighth-order polynomial fit is
performed in MATLAB to obtain the expression of the battery open-circuit voltage as a
function of SOC below:

UOCV = k1SOC8 + k2SOC7 + k3SOC6 + k4SOC5 + k5SOC4 + k6SOC3 + k7SOC2 + k8SOC1 + k9. (24)

The OCV–SOC fitting curve was obtained, as shown in Figure 8.
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Figure 8. Experimental data and fitting curve of OCV–SOC.

Based on the mathematical form of the second-order RC equivalent circuit model de-
rived above, online parameter identification is performed with the data of UDDS operating
conditions as input. The five parameters (R0, R1, R2, C1, C2) as identified by the FFRLS
online are shown in Figure 9.
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Figure 9. Parameter identification results of FFRLS algorithm under UDDS condition: (a) R0, R1, R2;
(b) C1, C2.

As for C1 and C2 in the previous stage of identification, the circuit model parameters
change more significantly due to the differences in the selection of the initial values of
the model parameters and the large deviations caused by their initial values. Moreover,
the values of each parameter gradually stabilize as the identification process continues.
Therefore, as can be seen from Figure 9, even if the given initial values are inaccurate, the
FFRLS algorithm can still correct each parameter in time, so that the parameters converge
rapidly to approach the true value and remain stable. The five parameters are iteratively
updated in real time according to the UDDS operating data, so that the battery model can
be transformed into a time-varying system. Thus, the self-adaptation of the battery model
parameters is achieved and the estimation accuracy of the battery state is improved.

In order to evaluate the validity and accuracy of the circuit model selected in this paper,
a comparison is performed between the end voltage estimated by the FFRLS algorithm and
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the actual measured end voltage at the end under UDDS operating conditions, as shown
in Figure 10. Figure 10a shows the comparison of end voltage estimation, and Figure 10b
shows the end voltage estimation error. From these two figures, it can be seen that the end
voltage trend estimated by FFRLS is similar to the reference value with a small error. In
the place where the larger error occurs, there are more frequent charging and discharging
transitions under the operating conditions, and the time that this process lasts is too short
for the end voltage to be measured accurately in time. As a result, the error becomes larger.
According to the whole estimation cycle, the two curves basically overlap, the discriminated
voltage RE is within ±0.8%, and MARE is only 0.58%, which indicates the high stability
and high tracking accuracy of the FFRLS algorithm for parameter discrimination.
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Figure 10. Terminal voltage response and relative error of FFRLS parameter identification under UDDS
condition: (a) estimated terminal voltage; (b) corresponding error of terminal voltage estimation.

4.3. Verification of SOC Estimation

Figure 11 shows the results of SOC estimation by different methods and the cor-
responding terminal voltage errors under UDDS conditions. In order to evaluate the
convergence and performance of the proposed method, a large initial SOC error is set in
this paper. Although the initial value is uncertain in the initial stage of estimation, the H∞
algorithm can still track the SOC reference value in a very short time. Under the UDDS
working condition, the current changes dramatically. In this case, the noise of the battery
model is very large, the characteristics of white noise are not shown any more, and the
parameters of the battery model change significantly as well due to the drastic change in
the current. It can be clearly seen from the figure that the H∞ algorithm outperforms the
EKF algorithm and the UKF algorithm in tracking the change of the SOC reference value.
Figure 12 shows the SOC estimation error. The MARE of H∞ algorithm for estimating SOC
is less than 1.5%, and the RMSE is less than 0.5%. That is to say, the proposed method of
SOC estimation through the H∞ algorithm has absolute advantages.

4.4. Validation Results of Online SOP Estimation

In the process of estimating the battery SOP, the main constraints on the sustained
peak current include the current terminal voltage, the current SOC value, and the design
limit of the battery itself. Among them, the current terminal voltage is obtained from
the current SOC value combined with the OCV–SOC function relationship through the
battery state equation. Therefore, in the process of SOP estimation of the Li–ion battery,
the accuracy of SOP estimation is largely determined by the accuracy of SOC estimation.
Based on this, the joint SOC–SOP estimation method is established in this paper, and the
estimation effect of the joint estimation algorithm is verified under the dynamic working
condition of UDDS.
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Figure 11. The results of SOC and voltage estimation using different methods under UDDS conditions:
(a) SOC estimation results; (b) terminal estimation results.
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Figure 12. Error of SOC estimation by H∞ algorithm under UDDS condition.

4.4.1. Discharge SOP Estimation

Figures 13 and 14 show the results of sustained peak discharge current estimation
under different constraints for a duration of 10 s, 30 s, and 2 min. The sustained peak
discharge current as estimated by the SOC or under the terminal voltage constraint alone
is too large, which can lead to the over-discharge of the lithium–ion battery and seriously
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affect the battery performance and service life. The sustained peak discharge current is
mainly determined by the maximum discharge current of the lithium–ion battery itself, and
this phase is shortened as the discharge time increases. This is due to the fact that the longer
the sustained discharge time, the easier it is to reach the set cut-off condition (end-voltage
discharge cut-off condition, 2.75 V) at the same discharge current. Then, it shifts to the
current SOC constraint, which is due to the fact that the peak current estimation condition
based on the SOC value can reduce the current of discharge when the actual SOC value of
the Li–ion battery is too low or even close to the SOC limiting condition, thus avoiding the
over-discharge to the lithium–ion battery.
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Figure 13. Results of multi-constraint peak discharge current estimation in different time scales:
(a) 10 s; (b) 30 s; (c) 2 min.

Figures 15 and 16 show the sustained peak discharge power curves and the cor-
responding error results for 10 s, 30 s, and 2 min of sustained discharge. In the ini-
tial stage of estimation, the sustained peak discharge power error is large. This is be-
cause there is an error between the initial estimate of the H∞ algorithm and the true
value, and as the difference in the estimated end voltages increases, there is an increase
in the error of sustained peak discharge power. Therefore, increasing the convergence
speed of the SOC estimation algorithm is conducive to reducing the sustained peak dis-
charge power estimation error. In addition, the longer the duration of continuous dis-
charge, the lower the continuous peak discharge power at the same moment. This is
because the sustained peak discharge power decreases when the current of sustained
discharge decreases with the extension of discharge time under multiple constraints. Ac-
cording to the results listed in Table 1, the peak discharge power MARE is less than
1.5% and the RMSE is less than 1.5 W at different sustained discharge times.
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Figure 14. Results of peak discharge current estimation in different time scales: (a) 10 s; (b) 30 s; (c) 2 min.
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Figure 15. Results of peak discharge power estimation: (a) 10 s; (b) 30 s; (c) 2 min.
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Figure 16. Results of peak discharge power relative error: (a) 10 s; (b) 30 s; (c) 2 min.

Table 1. Estimation errors of sustained peak charging power for different time scales.

Time Scale RMSE (W) MARE (%) Title 1 Title 2 Title 3

10 s 0.4298 0.25 entry 1 data data
30 s 0.7652 0.83 entry 2 data data

2 min 1.3047 1.21

4.4.2. Charging SOP Estimation

Figures 17 and 18 show the estimation results of the sustained peak charging current
under different constraints for a duration of 10 s, 30 s, and 2 min. It can be seen that the
sustained peak charging current estimated by the SOC or end voltage constraints alone
is too large, which can lead to the overcharging of the Li–ion battery and seriously affect
the battery performance and service life. The sustained peak charge current is mainly
determined by the current terminal voltage of the lithium–ion battery, and this phase is
gradually shortened as the charge time increases. This is due to the fact that the longer
the sustained charge time, the easier it is to reach the set cutoff condition (terminal voltage
charge cutoff condition, 4.2 V) at the same charge current. Then, it shifts to the current
SOC constraint, due to the fact that the longer the sustained charge time, the more charge
is required to reach the preset cutoff condition at the same moment. This is due to the
fact that the longer the continuous charging time, the less current is required to charge
at the same moment to reach the set cut-off condition. The required charging current
reaches the maximum battery design charging current at a slower rate, and this phase time
is shortened.
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Figure 17. Results of multi-constraint peak charge current estimation in different time scales: (a) 10 s;
(b) 30 s; (c) 2 min.

Figures 19 and 20 show the continuous peak charging power curves and the correspond-
ing error results for 10 s, 30 s, and 2 min of continuous charging. As the continuous charging
time increases, the charge current required to reach the set cutoff condition (SOC charging
limit condition or end-voltage charging cutoff condition) at the same moment is reduced,
as is the value of the continuous peak charging power at the same moment. According to
the results listed in Table 2, the sustained peak charging power MARE at different sustained
charge times is less than 1.6% and the RMSE falls within the range of 2.3 W.

4.4.3. Comparison of SOP Estimates

As the SOP of the lithium–ion battery reflects the charging/discharging capacity of
the battery, its accurate estimation can not only provide guidance on how to use the battery
rationally and ensure the optimal power distribution, but also avoid the overcharging and
overdischarging of the battery and extend the service life of the lithium–ion battery. From
Tables 1 and 2, it can be seen that the SOP estimation error increases with the increase in
time scale, with the acceleration, climbing, and braking energy recovery process of the
electric vehicle completed in a period of time. Therefore, it is necessary to consider the
time scale for the accurate SOP estimation. Figure 21 shows the comparison of the relative
error of the average absolute value of SOP estimation under different constraints at the
time scale of 30 s. It can be seen from this figure that only a single constraint leads to
overcharge and overdischarge of the battery, and the battery SOP is constrained by the
common constraints of voltage, current, and SOC. Moreover, the three constraints work
alternately at different stages of the charging/discharging process, and the multi-constraint
SOP estimation MARE does not exceed 1.1%. In the extreme SOC state of the battery, there
is a risk of overcharging and overdischarging for the battery, and the SOC limit is dominant
at this stage. For this reason, the H∞ filter algorithm with evident estimation accuracy
advantage as described in Section 4.3 is used for SOC estimation, and the result of this
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estimation is taken as a constraint for SOP estimation. The results listed in Tables 1 and 2
show that the MARE of SOP estimation is less than 1.6% and the RMSE is less than 2.3 W.
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Figure 18. Results of peak charge current estimation in different time scales: (a) 10 s; (b) 30 s; (c) 2 min.
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Figure 19. Results of peak charge power estimation: (a) 10 s; (b) 30 s; (c) 2 min.
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Figure 20. Results of peak charge power relative error: (a) 10 s; (b) 30 s; (c) 2 min.

Table 2. Estimation errors of sustained peak charging power for different time scales.

Time Scale RMSE (W) MARE (%) Title 1 Title 2 Title 3

10 s 0.9019 0.77 entry 1 data data
30 s 1.5034 1.02 entry 2 data data

2 min 2.2763 1.53
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Batteries 2023, 9, 191 22 of 25

It can be seen from the SOP calculation process in Section 3.2 that the prerequisite for
calculating SOP is to calculate the peak current. The SOP value in the current time scale can
be obtained by multiplying the calculated peak current and the battery terminal voltage.
The peak current based on voltage constraint and SOC constraint and the terminal voltage
of the battery are calculated based on the current SOC of the battery. It can be seen that
the accuracy of SOC estimation is important for SOP estimation. In order to evaluate the
convergence and performance of the proposed method, the EKF algorithm, UKF algorithm,
and H∞ algorithm are used to jointly estimate SOC–SOP under the condition that SOC has
a large initial error. Figure 22 shows the comparison diagram of charging and discharging
SOP estimation based on the H∞, UKF, and EKF algorithms to estimate SOC at a 30 s time
scale. From the partial enlargement of Figure 22, it can be seen that the joint SOC–SOP
estimation based on the H∞ algorithm can accurately estimate the SOP in the high, middle,
and low SOC intervals. The accuracy of the SOP estimation depends largely on the accuracy
of the SOC estimation. When the SOC estimation does not converge, the result of the SOP
estimation does not converge. From the initial stage of estimation in Figure 22, it can
be seen that the given initial value of SOC has a large error, resulting in a large error in
SOP estimation. With the rapid convergence of SOC under the H∞ algorithm, SOP also
converges rapidly. It can be seen that the convergence of SOC affects the convergence of
SOP. From Table 3, we can see that the convergence time of joint SOC–SOP estimation
based on the H∞ algorithm is less than 100 s, and its effect is far greater than that of joint
SOC–SOP estimation based on the EKF algorithm or the UKF algorithm.
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Table 3. Convergence time of charge and discharge SOP estimation of SOC based on H∞, UKF, and
EKF algorithm in 30 s time scale.

Technique Discharge (s) Charge (s)

H∞ 80 90
UKF 821 1088
EKF 1426 1605

5. Conclusions

The accurate management of lithium–ion batteries plays a key role in not only the
safe and reliable operation of electric vehicles, which requires the accurate estimation
of lithium–ion battery state, but also the effective monitoring and control, which mainly
involves SOC estimation and SOP estimation of lithium–ion batteries. In this paper, the
focus of study is placed on three aspects: model parameter identification, SOC estimation,
and the SOP estimation of the power lithium–ion battery.

(1) To address the significant computational workload required by traditional online
identification methods, it is proposed in this paper to address the online identification
of model parameters through the recursive least squares method with forgetting factor,
which achieves a high accuracy and a strong tracking capability under the condition
of low computational workload;

(2) To eliminate the unavoidable measurement noise from current, voltage, and other
sensors, H∞ filtering is performed for process noise and measurement noise. SOC
estimation is also carried out;

(3) To resolve problems such as insufficient constraints, the low accuracy of SOC esti-
mation, and single time scale, a multi-constraint SOP estimation method based on
multiple time scales is proposed in this paper.

It is verified under the context of UDDS that the H∞ filtering algorithm still performs
well in tracking the SOC reference value changes when the initial value of SOC shows
a large error, which is evidently superior to the EKF algorithm and the UKF algorithm.
The estimated MARE of SOC is less than 1.5%, and the RMSE is less than 0.5%. Based
on high-precision SOC, the multi-constrained charge and discharge SOP is estimated to
have a MARE of less than 1.6% and an RMSE of less than 2.5 W at two different time
scales: 10 s, 30 s, and 2 min. The verification results show the high accuracy and strong
robustness of the proposed multi-time scale lithium–ion battery SOP estimation method
based on H∞ filtering. As the changes in temperature and parameters (internal resistance
and capacity) are ignored in this paper, the accuracy of SOP estimation is affected. For
example, a temperature rise accelerates the internal side reactions of lithium batteries [31,32].
The reduction in temperature causes active lithium to deposit on the electrode surface, which
affects the available capacity, internal resistance, and other characteristic parameters of the
lithium battery [33–35]. In future studies, temperature and aging conditions will be taken
into account for SOP estimation.
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Abbreviations
The following abbreviations are used in this manuscript:
SOP State of Power
SOC State of Charge
MARE Mean Absolute Relative Error
RNN Recurrent Neural Network
KF Kalman Filter
EKF Extended Kalman Filter
DEKF Double Extended Kalman filter
BP Back Propagation
HPPC Hybrid Pulse Power Characteristic
MPC Model Predictive Control
SOH State of Health
SOF Functional State
LIB Lithium–Ion Battery
FFRLS Forgetting Factor Recursive Least Squares
OCV Open-Circuit Voltage
RE Relative Error
RMSE Root Mean Square Error
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