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Abstract: This article deals with the solution of a mixed-integer nonlinear programming (MINLP)
problem related to the efficient reallocation of battery energy storage systems (BESS) in monopolar
direct current (DC) grids through a master–slave optimization approach. The master stage solves the
integer nature of the MINLP model, which is related to the nodes where the BESS will be located.
In this stage, the discrete version of the vortex search algorithm is implemented. To determine the
objective function value, a recursive convex approximation is implemented to solve the nonlinear
component of the MINLP model (multi-period optimal power flow problem) in the slave stage.
Two objective functions are considered performance indicators regarding the efficient reallocation
of BESS in monopolar DC systems. The first objective function corresponds to the expected costs of
the annual energy losses, and the second is associated with the annual expected energy generation
costs. Numerical results for the DC version of the IEEE 33 bus grid confirm the effectiveness and
robustness of the proposed master–slave optimization approach in comparison with the solution of
the exact MINLP model in the General Algebraic Modeling System (GAMS) software. The proposed
master–slave optimizer was programmed in the MATLAB software. The recursive convex solution
of the multi-period optimal power flow problem was implemented in the convex discipline tool
(CVX) with the SDPT3 and SEDUMI solvers. The numerical reductions achieved with respect to the
benchmark case in terms of energy loss costs and energy purchasing costs were 7.2091% and 3.2105%,
which surpassed the results reached by the GAMS software, with reductions of about 6.0316% and
1.5736%.

Keywords: expected annual energy loss costs; expected annual energy purchasing costs; battery
energy storage systems; renewable energy resources

1. Introduction

Battery energy storage systems (BESS) are efficient energy storage technologies that
allow one to deal with the uncertainties introduced by renewable energy resources in electri-
cal systems [1,2]. Currently, most BESS for grid-scale applications correspond to lithium-ion
batteries that can store hundreds of kilowatt-hours (kWh) in a few hours at a high-efficiency
conversion rate via power electronic converters [3–5]. This energy is stored in periods with
high renewable generation availability and returned to the electrical network when energy
consumption increases and energy production by renewables decreases [6]. The main
advantage of optimally integrating BESS in electrical networks lies in the possibility of
improving different performance indicators of the electrical distribution grid [7], such as
minimizing energy losses [8], reducing greenhouse emissions [9,10] and energy purchasing
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costs [11], and maximizing the use of renewable energy [12], among others. Neverthe-
less, the optimal integration and operation of BESS in electrical networks constitute one
of the main challenges in distribution systems analysis, as the mathematical model that
expresses these problems belongs to the family of mixed-integer nonlinear programming
(MINLP) models [13,14]. The binary variables are related to the nodal allocation of the
BESS, and the continuous variables refer to voltages, currents, and powers, among others.
In addition, the nonlinearities of the MINLP formulation are associated with the power
balance constraints, which are nonlinear and non-convex. Even if the MINLP model is
complex, the operation problem of BESS is a complex task since it depends on renewable
energy and demand prediction, which is a time-coupling problem [15].

In the specialized literature, the problems associated with the optimal integration
and operation of BESS have been widely explored. Some of these literature reports are
presented below.

The authors of [11] studied the problem concerning the optimal selection and location
of distributed energy resources in medium- and low-voltage distribution networks using
a two-stage optimization strategy. To determine the best set of nodes to locate BESS,
a sensitivity analysis is conducted in order to reduce the size of the solution space (number
of candidate nodes). Then, in the first stage, the simulated annealing optimization approach
obtains the final nodes where the distributed energy resources must be installed. In the
second stage, the operation problem regarding the distributed energy resources is analyzed
via convex programming. Numerical results in test systems composed of 11, 135, and
230 nodes demonstrated the effectiveness of the proposed optimization strategy. However,
the authors did not present any comparative analysis with other solution methodologies
regarding nodal selection. In [1], a methodology for the optimal participation of BESS in the
Colombian electricity market is presented. A comparative analysis with different operation
strategies (i.e., seasonal, statistical, and neural network-based models) was conducted
in this work. The problem regarding the optimal operation of BESS was addressed by
proposing a mixed-integer linear programming model. Numerical results demonstrated
that, in order to obtain a better performance of BESS in the Colombian electricity market,
the most important factor corresponds to the historical data available. However, in the
proposed modeling, the electrical network configuration (i.e., the grid topology) was
neglected. The study by [15] presented a recursive convex approximation approach to
solving the problem pertaining to the optimal operation of BESS in monopolar direct current
(DC) grids with high penetration of renewable energy resources. Numerical results in the
DC version of the IEEE 33-node feeder demonstrated the effectiveness of the recursive
convex formulation in comparison with combinatorial optimization methods regarding
the final value of the energy losses within a day-ahead operation scenario. The research
conducted by [16] presented a mixed-integer convex approximation to reallocate BESS in
monopolar DC grids. The objective function under analysis was the minimization of the
daily energy loss costs. Numerical results in the 21-node grid confirmed the effectiveness
of the proposed convex approach in comparison with the exact MINLP solution of the
GAMS software. A complete literature review regarding the design of efficient energy
management systems for microgrids was proposed by the authors of [17]. This work is very
relevant for understanding how multiple distributed energy resources can be efficiently
integrated/operated in microgrids to minimize/maximize some objective function of
interest (economic, technical, or environmental). The authors of [18] presented an efficient
strategy for the optimal sizing of PV-BESS units that takes into account day-ahead load
scheduling for demand response and self-consumption for home energy management
system-equipped households. A mixed-integer linear programming model was proposed
to solve the optimization model with excellent numerical results regarding the net profit
for the designed system.

The main approaches presented in the literature regarding the optimal operation of
BESS in electrical systems are summarized in Table 1. The data in this Table are structured
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as follows (from left to right): solution methodology, objective function, grid type, year of
publication, and reference.

Table 1. Summary of the main the literature approaches regarding the integration and operation of
BESS in electrical networks.

Solution Methodology Objective Function Grid Year Ref.

Mixed-integer linear and conic program-
ming

Energy purchasing costs minimization AC 2015 [19]

Hybrid tabu search and particle swarm
optimizers

Investment and operating costs AC 2016 [20]

Mixed-integer linear programming Maximization of energy market profits
and battery degradation rates minimiza-
tion

AC 2017 [21]

Mixed-integer nonlinear programming Energy generation costs minimization AC 2017 [22]
Nonlinear programming Power system regulation and peak-load

shaving services
AC 2018 [23]

Mixed-integer linear programming Cost of energy minimization and peak
power demand reduction

AC 2019 [24]

Mixed-integer conic programming Investment and operating costs AC 2019 [25]
Mixed-integer programming Operating costs minimization in electric

vehicle charging substations
AC 2021 [26]

Simulated annealing and convex pro-
gramming

Investment and operating costs AC 2021 [11]

Mixed-integer linear programming Net present value minimization AC 2021 [1]
Stochastic programming Energy costs minimization and battery

use maximization
AC 2021 [27]

Mixed-integer quadratic convex model-
ing

Energy loss costs minimization DC 2022 [16]

Recursive convex programming Energy loss minimization DC 2023 [15]

These are the main characteristics of the above-presented summary of the literature
review. (i) Most of the operating problems in electrical networks with AC and DC distribu-
tion system technology have been explored using mixed-integer linear programming or
mixed-integer conic programming, i.e., models with convex properties. (ii) In the case of
the problems regarding the optimal integration of BESS, mixed-integer nonlinear program-
ming models have been presented with combinatorial optimization methods as solution
alternatives. (iii) Most objective functions are related to minimizing energy purchasing or
investment and operating costs [28]. In addition, it is essential to note that there is a clear
tendency to analyze AC distribution networks instead of DC grids, which may be due to
the fact that DC grids are emerging technologies that are still in development, unlike AC
distribution grids, which have decades of studies and improvements.

In light of the above, this work presents the contributions detailed below:

i. The formulation of the problem concerning the optimal location reallocation of BESS
in monopolar DC distribution networks as a mixed-integer convex recursive program-
ming model by linearizing the power balance constraints via Taylor’s series expansion;

ii. A hybrid solution methodology which combines a metaheuristic optimization method
that defines the buses where the batteries must be located–reallocated in the master
stage, and a recursive convex programming model to define the optimal operation of
the BESS in the slave stage.

As the objective functions of the problem under study, this research considers the
minimization of the expected annual costs of energy purchasing at the substation and the
minimization of the expected energy loss costs in all of the network branches. However,
the optimization of these objective functions is carried out using a single-objective optimiza-
tion structure, applying the proposed master–slave optimization technique. In this sense,
offering multi-objective optimization methodologies is an important area of research that
could be covered in future research works [15]. In addition, in the scope of this study, the fol-
lowing is taken into consideration: (i) the initial location of the renewable generation units
and the BESS have been previously defined by the distribution company in the benchmark
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case; (ii) the data regarding renewable power generation profiles and expected demand
behaviors are considered as inputs in the optimization model, i.e., no uncertainties are taken
into account; and (iii) the energy purchasing costs per kilowatt-hour at the terminals of the
substation are modeled as a linear function with constant parameters, and a day-ahead
operation scenario is considered for the optimal operation of renewables and batteries.
Note that, in order to solve the slave component of the proposed master–slave optimization
model, the convex discipline tool (CVX) of the MATLAB programming environment is
used in conjunction with the SDPT3 and SEDUMI solvers. These optimization solvers for
convex optimization problems can be installed at no cost, although it requires an academic
or professional MATLAB license [29,30].

The remaining sections of this paper have the following structure. Section 2 explains
the general mixed-integer nonlinear programming (MINLP) model that constitutes the
problem regarding the optimal location reallocation of BESS in monopolar DC distribution
networks. Section 3 presents the convexification associated with the product between volt-
age variables in the power balance constraints via a first-order Taylor’s series expansion and
the generation solution methodology via a master–slave optimization method. Section 4
shows the main features of the distribution network under analysis, i.e., the monopolar
version of the IEEEE 33-node grid. Section 5 presents all the main numerical validations
carried out on the proposed optimization methodology, and the results are compared to
the MINLP model’s solution as obtained by the GAMS software. Finally, the concluding
remarks and possible future works related to this research are listed in Section 6.

2. Exact MINLP Modeling

The problem regarding the optimal reallocation of BESS in electrical monopolar DC
systems can be formulated as an MINLP model, where the binary variables are related to
the nodes where the BESS will be reallocated, and the continuous variables are related to
the current, powers, and voltage variables, among others.

This problem can be addressed by considering two objective function formulations
(technical and economic). In the case of the technical objective function, the expected
costs of the annual energy losses are used to determine the best points to locate all the
battery packs. However, some authors believe that the costs of energy purchasing at
the terminals of the substation are the most suitable objective function, as it reflects the
actual, simultaneous use of the renewables and the BESS. Here, both objective functions
are presented.

2.1. Minimizing the Costs of Energy Losses

The cost of energy losses can be modeled as a quadratic function associated with the
square value of the current flowing through each distribution line and its corresponding
resistive effect. This objective function is defined in (1) [16].

min Eloss = TCs
kWh ∑

h∈H
∑
j∈L

rji2j,h∆h, (1)

where rj is the resistive parameter related to the distribution line that connects nodes k
and m; ij,h is the current flow on the route j in period h; T is the number of days in a
year; Cs

kWh denotes the average energy loss costs calculated at the substation terminals;
and ∆h corresponds to the time fraction where electrical variables take constant values,
i.e., typically periods of 1 h. Note that H is the set containing all periods under analysis
in a day-ahead operation dispatch scenario, and L is the set that contains all distribution
branches with cardinality l.
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Remark 1. The objective function (1) is strictly convex since all the resistive parameters are positive
values, which implies that it can be represented as the sum of a definite positive quadratic function
with the structure shown in (2).

min Eloss = TCs
kWh ∑

h∈H
I>h RIh∆h, (2)

where Ih ∈ Rl×1 is a vector containing the current flows in all the distribution lines per period,
and R ∈ Rl×l is a square positive definite matrix containing all of the distribution branches’
resistive parameters.

2.2. Minimization of Energy Purchasing and Operating Costs

One of the critical factors in the optimal location reallocation of BESS in electrical
distribution networks is the minimization of the total energy purchasing costs at the
terminals of the substation, in addition to the maintenance (operating) costs of renewable
energy resources. Here, an economic objective function regarding the energy purchasing
and maintenance costs of photovoltaic (PV) plants is presented, as defined in (3) [15].

min Ecosts = T ∑
h∈H

∑
k∈N

(
Ccg

kWh pcg
k,h + Cs

kWh ps
k,h + Cpv

O&M ppv
k,h

)
∆h, (3)

where Ecosts denotes the expected annual energy operating costs of the monopolar DC
distribution grid for an operation horizon of one year; Ccg

kWh and Cs
kWh correspond to the

energy purchasing costs stemming from a thermal generation source (typically a diesel
one) and those from the terminals of the equivalent electrical substation for grid-connected
monopolar DC grids; and pcg

k,h and ps
k,h are the power generation outputs in the thermal and

slack generation sources. Note that Cpv
O&M is a constant parameter regarding the expected

maintenance and operating costs of generating power with PV sources (ppv
k,h), and N is the

set containing all of the network buses.

Remark 2. The objective function (3) has a linear structure, which implies that its mathematical
properties make it simultaneously concave and convex, which implies that, from a geometrical
perspective, it is part of the convex space and will facilitate the solution of the studied problem if all
the constraints are convex.

2.3. Model Constraints

The studied problem involves multiple technical constraints associated with the ex-
pected physical behavior of the DC network. These constraints include voltage regulation
bounds, device capabilities (power generation and thermal bounds), and Kirchhoff’s laws,
among others. To obtain all the set of physical constraints, the branch-to-node incidence
matrix A was used. Each one of its elements is defined as follows:

i. The component of the branch-to-node incidence matrix Ajk is assigned as 1 if the
distribution line j is connected to node k and the current is leaving this node;

ii. The component of the branch-to-node incidence matrix Ajk is assigned as −1 if the
distribution line j is connected to node k and the current is arriving at this node;

iii. The component of the branch-to-node incidence matrix Ajk is assigned as 0 if the
distribution line j is not connected to node k.

Now, considering the structure of the branch-to-node incidence matrix A, Tellegen’s
theorem can be applied to each node of the network as a function of the product between
the nodal voltage and the branch currents. The power balance constraint is thus defined in
(4) [15]:

pcg
k,h + ps

k,h + ppv
k,h + ∑

b∈B
pb

k,h − pd
k,h = vk,h ∑

j∈L
Ajkij,h, {k ∈ N , h ∈ H} (4)
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where pd
k,h represents the constant power load consumption at node k in period h; pb

k,h
corresponds to the power injection/absorption in a type b BESS connected to node k in
period h; and vk,h is the voltage variable assigned to node k per period. Note that B
corresponds to the set containing all of the available BESS types.

To determine the current flowing through each line, it is possible to employ the
difference between voltages at the terminals of each distribution line and its resistive effect
(rj). In other words, Ohm’s law is applied to each branch and period, as shown in (5) [16].

∑
k∈N

Aj,kvk,h = rjij,h, {j ∈ L, h ∈ H} (5)

The operation of the BESS requires defining the battery’s state of charge (SoCb
k,h) for

each period (note that the state of charge is a normalized measure of the energy storage
capability of each BESS). This variable is defined as follows [22]:

SoCb
k,h = SoCb

k,h−1 − φb
k pb

k,h∆h, , {k ∈ N , h ∈ H, b ∈ B} (6)

where φb
k is the efficient charging/discharging coefficient of the type b battery assigned to

node k.
To guarantee the correct operation of the BESS at the beginning and end of each day,

energy storage consigns are typically assigned, i.e., SoCb
k,t0

and SoCb
k,t f

, where t0 and t f are
the initial and final periods of analysis, respectively. These are stated in (7) and (8) [16].

SoCb
k,t0

= xb
kSoCb

k,0, {k ∈ N , b ∈ B}, (7)

SoCb
k,t f

= xb
kSoCb

k,H , {k ∈ N , b ∈ B} (8)

where SoCb
k,0 and SoCb

k,H are the initial and final operative consigns assigned to the opera-
tion of the BESS by the utility (note that H denotes the cardinality of the setH). Note that
xb

k is a binary variable associated with the possibility of assigning (xb
k = 1) or not assigning

(xb
k = 0) a type b BESS to node k.

To guarantee the adequate operation of the generation sources and the BESS, their
generation outputs must be contained within their lower and upper bounds, as expressed
in (9)–(12) [15].

pcg,min
k,h ≤ pcg

k,h ≤ pcg,max
k,h , {k ∈ N , h ∈ H} (9)

ps,min
k,h ≤ ps

k,h ≤ ps,max
k,h , {k ∈ N , h ∈ H} (10)

ppv,min
k,h ≤ ppv

k,h ≤ ppv,max
k,h , {k ∈ N . h ∈ H} (11)

xb
k pb,min

k,h ≤ pb
k,h ≤ xb

k pb,max
k,h , {k ∈ N , h ∈ H, b ∈ B} (12)

where pcg,min
k,h and pcg,max

k,h correspond to the lower and upper power generation limits

for the conventional generation source; ps,min
k,h and ps,max

k,h represent the minimum and

maximum generation limits at the substation node; ppv,min
k,h and ppv,max

k,h are the minimum

and maximum generation bounds for the PV plants; and pb,min
k,h and pb,max

k,h correspond to
the lower and upper power injection/absorption characteristics of the BESS, respectively.

To ensure the correct operation of the distribution lines when it comes to their thermal
capabilities, i.e., imax

j , it is necessary to assign the lower and upper current flow limits of
each branch. This set of constraints is presented in (13) [31].

−imax
j ≤ ij,h ≤ imax

j , {j ∈ L, h ∈ H} (13)

Now, considering the regulatory policies regarding the behavior of the voltage profiles
in the entire monopolar DC grid, the voltage regulation bounds (vmin and vmax) are defined
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as presented in (14). In addition, the operating voltage of the substation bus (i.e., the slack
node) is defined in (15) [15].

vmin ≤ vk,h ≤ vmax, {k ∈ N , h ∈ H} (14)

vk,h = vnom, {k = slack, h ∈ H} (15)

where vnom represents the operating voltage of the monopolar DC network under analysis.
Finally, three constraints are added to ensure that the BESS are correctly assigned to

different network nodes and that only the numbers of BESS initially installed in the studied
system are reallocated. In addition, the binary nature of the decision variables is confirmed.
These constraints are presented below [32].

∑
b∈B

xb
k ≤ 1, {k ∈ N}, (16)

∑
k∈N

xb
k ≤ 1, {B ∈ B}, (17)

∑
k∈N

∑
b∈B

xb
k = Nava

b , (18)

xb
k ∈ {0, 1}, {k ∈ N , b ∈ B}. (19)

where Nava
b is the number of BESS available for location or reallocation.

Remark 3. The main characteristic of the solution space defined in (4)–(19) is that it constitutes
a mixed-integer nonlinear space. However, the only set of nonlinear equations corresponds to the
power equilibrium at each node, as shown in Equation (4), which implies that a convexification
method is applied to this set of equations. Thus, the whole solution space will take a mixed-integer
convex structure.

3. Solution Methodology

To solve the MINLP model (1)–(19) that constitutes the problem regarding the location
reallocation of BESS in monopolar DC networks, a hybrid optimization method is proposed,
which involves a master–slave interaction. The master stage employs a combinatorial
optimization method based on the vortex search algorithm to define the buses where the
BESS must be placed. In the slave stage, a recursive convex programming approach is
used to define the daily operating dispatch of the BESS, renewables, and conventional
sources in order to minimize each one of the objective functions (i.e., the expected energy
purchasing and maintenance costs or the expected costs of the energy losses). Each one of
the optimization stages is described below.

3.1. Master Stage: Vortex Search Algorithm

To establish the set of nodes where the BESS must be reallocated, a vortex search
algorithm (VSA) with discrete variables is proposed. The VSA approach is a physics-
inspired combinatorial optimization method based on the vortex behavior experienced by
starrier fluids in pipes [33]. The main feature of the VSA approach is that it explores and
exploits the solution space using two concepts [34]: (i) the generation of solution individuals
around the best current solution through a Gaussian distribution, and (ii) the size reduction
in the solution space using an adaptive radius based on a decreasing exponential function.

To apply the VSA approach to determine the set of nodes associated with the BESS
location reallocation problem, consider the following codification for the solution individual
i in iteration t. The codification is a typical way to represent the decision variables with
combinatorial optimizers, that in the case of the binary variables, is preferred to use a
discrete codification with integer numbers to make it more compact for programming
purposes [35].
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xt
i =

[
7, k, 12, · · · , 4

]
. (20)

Note that the dimension of xt
i is associated with the number of BESS available to be located

and reallocated in the monopolar DC distribution grid, i.e., 1× Nava
b . In addition, i varies

from 1 to the number of individuals set for the population (i.e., Ps), and k represents the
node where the BESS must be placed.

Next, details are provided on each one of the steps to apply the VSA approach to an
optimization problem.

3.1.1. Generating the Initial Solution

At the start of the iteration process, the VSA uses the largest possible hyper-ellipse,
i.e., the hyper-ellipse that contains all the possible solutions for the studied problem. It
defines the initial solution alternative as the center of this hyper-ellipse by µt, with t = 0,
as defined in (21) [33].

µt =
xmin + xmax

2
. (21)

Here, xmin and xmax are vectors with the same dimension as xt
i , such that they con-

tain the lower and upper limits of the decision variables, i.e., xmin =
[
1, 1, · · · , 1

]
and

xmin =
[
n, n, · · · , n

]
, where n is the number of buses in the system (cardinality of the set

N ). Note that µt can contain continuous variables that need to be rounded to the feasibility
of the solution space with regard to the nodes, which are integer numbers.

3.1.2. Generation of Candidate Solutions

The candidate solutions are generated using a Gaussian distribution, which allows ob-
taining each vector st

i (note that this vector can contain continuous variables), as presented
in [33]. These candidates are generated using (22) [33].

st
i = p

(
ζt

i , µt, V
)
=
(
(2π)d|V|

)1/2
e
(
− 1

2 (ζt
i−µt)

T
V−1(ζt

i−µt)
)

. (22)

where ζt
i is a vector with random values (note that ζt

i follows a uniform distribution), µt
corresponds to the current center of the hyper-ellipse (best current solution in iteration
t), and V is a square matrix associated with the co-variances. To simplify the structure
of V, a diagonal matrix with identical values in its diagonal (the same variance for each
variable) is advised [33]. This is defined as V = σ0INava

b ×Nava
b

, where σ0 is, in turn, defined
as presented in (23) [36].

σ0 =
max{xmax} −min

{
xmin}

2
, (23)

Note that one of the main key factors in implementing the VSA approach is the
reduction in the adaptive radius, i.e., the calculation of rt in each iteration [33]. However,
at the beginning of the iterative process (t = 0), it is recommended that the initial radius
(r0) be assigned as σ0 [33].

Remark 4. The variable radius of the hyper-ellipse is the parameter entrusted with controlling the
dispersion of the random values of the vector ζt

i , which can be defined as ζt
i = rtrand

(
Nava

b
)
. Note

that rand
(

Nava
b
)

generates a random vector with dimension Nava
b and values between 0 and 1 using

a uniform distribution.
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3.1.3. Fitting of Candidate Solutions

Because the solution space in the studied problem is defined by a set of discrete
numbers between 1 and n, it is necessary to check whether the feasibility of each solution st

i
takes the structure xt

i . Each candidate solution is checked through Formula (24) [33].

xt
i =

{
round

(
st

i
)

xmin ≤ st
i ≤ xmax

round
(

xmin +
(
xmax − xmin) · rand

(
Nava

b
))

otherwise
(24)

where x · y is the inner product between two vectors.

3.1.4. Selection of the Hyper-Ellipse Center

The evolution of the VSA approach is determined by the location of the best current
solution, which is defined as the center of the hyper-ellipse. For this reason, the next center
of the hyper-ellipse (i.e., µt+1) is set as µt+1 = xt

i,best [37]. Note that xt
i,best is determined

once each candidate solution xt
i is evaluated in the slave stage problem (which will be

described in the next section). However, it is worth mentioning that, due to the discrete
nature of the solution space, each solution provided by the VSA approach is 100% feasible,
as it only corresponds to the set of nodes where the BESS must be placed.

3.1.5. Adaptive Reduction in the Hyper-Ellipse Radius

To obtain an adaptive reduction in the hyper-ellipse radius, this research adopted an
exponential function instead of an incomplete Gamma function. The exponential function
is preferred because of its simple calculation [37]. The structure of the radius calculation
for the next iteration is defined in (25) [37].

rt+1 = σ0

(
1− t

tmax

)
e(−θ t

tmax ), (25)

where tmax is the maximum number of iterations assigned for the VSA approach, and θ
is an adjusting parameter that allows controlling the radius reduction speed rate. As rec-
ommended by the authors of [37], this parameter is set as 6 because, with this number,
the exponential function (25) behaves like an incomplete inverse Gamma function [38].

3.1.6. Stopping Criteria

To determine whether the exploration and exploitation of the solution space conducted
by the VSA must finish, these two stopping criteria are tested:

X When the maximum number of iterations tmax is reached, the VSA stops, and the best
solution corresponds to µtmax ;

X If, during τmax consecutive iterations, the center of the hyper-ellipse has not been
improved, the VSA stops, and the best current solution µt+1 is reported.

3.1.7. General Implementation of the VSA

Algorithm 1 illustrates the implementation of the VSA approach in solving optimiza-
tion problems [37]. Note that Algorithm 1 can be applied to any optimization problem
where the objective function is tested through a slave stage, as the VSA approach governs
the exploration and exploitation of the solution space via an initial population that evolves
based on Gaussian distribution rules and a variable radius. The slave stage is used to guide
the exploration path throughout the solution space as a function of the best solution found.

Remark 5. The solution to the problem concerning the optimal location reallocation of BESS in
monopolar DC networks with the VSA approach summarized in Algorithm 1 depends on the slave
stage, which, as mentioned before, controls the evolution of the VSA through the solution space.
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Algorithm 1: General implementation of the VSA approach
Data: Read the information of the monopolar DC network under analysis
Obtain the per-unit equivalent of the studied monopolar DC network;
Define the initial values for µt and rt with t = 0;
Obtain the set of candidate solutions st

i with (22);
Revise the upper and lower bounds for xt

i through (24);
Evaluate each xt

i in the slave stage (approximated convex optimal power flow
model);

Determine the best current solution vector xt
i,best;

for t = 1 : tmax do
Update the center of the hyper-ellipse µt+1 = xt

i,best;
Set the new value of the radius rt+1 using (25);
Create the new set of solutions st+1

i through (22);
Check the upper and lower bounds for xt

i through (24);
Evaluate each xt

i in the slave stage (approximated convex optimal power flow
model);

Determine the best current solution vector xt
i,best;

if τ ≥ τmax then
Set the values in µt+1 as the solution to the problem;
BREAK;

end
end
Result: Report the best solution in µt.

3.2. Slave Stage: Recursive Hourly Optimal Power Flow Solution

In this study, the slave stage is entrusted with determining the objective function value
(economic or technical) by ensuring the fulfillment of all the constraints associated with the
expected electrical performance of the DC network under study. This research implements
an iterative convex approach, as reported in [15]. As previously mentioned, in order to
obtain a convex solution space, it is necessary to approximate the power balance constraints
in (4) via a convexification method.

To obtain a linear approximation of the power balance constraints defined in (4),
the McCormick approximation of the product between two positive variables is imple-
mented [39]. The McCormick approximation is equivalent to linearizing two continuous
variables (wy) using Taylor’s series expansion around the operating point (w0, y0) [40].

f (w, y) = wy ≈ w0y + y0w− w0y0. (26)

Note that if ω is set as vk,h and y is set as ij,h, then (4) can be transformed as follows:

pcg
k,h + ps

k,h + ppv
k,h + ∑

b∈B
pb

k,h − pd
k,h = ∑

j∈L
Ajk

(
v0

k,hij,h + i0j,hvk,h − v0
k,hi0j,h

)
, {k ∈ N , h ∈ H} (27)

In Equation (27), it is necessary to define v0
k,h and i0j,h. In the case of v0

k,h, these values
are equal to the substation voltage. The initial current values are obtained from (5) as
defined in (28).

i0j,h =
1
rj

∑
k∈N

Aj,kvk,h
0, {j ∈ L. h ∈ H} (28)

Algorithm 2 presents the implementation of the slave stage for each solution xt
i pro-

vided by the master stage.
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Algorithm 2: General implementation of the recursive convex solution for the
optimal operation of BESS in monopolar DC grids

Data: Read the information of the monopolar DC network
Set the binary variables xb

k = 1 for the nodes defined in xt
i ;

Make m = 0 and define the maximum number of iterations mmax;
Define ε = 1× 10−8 as the convergence error;
Set the initial voltages vm

k,h = Vnom, {k ∈ N . h ∈ H};
for m = 1 : mmax do

Determine the values of im
j,h using (28);

Define (1) (or (3)) as the objective function;
Set the set of constraints as (5)–(18) and (27);
Solve the optimization model using a convex tool available in CVX for
MATLAB (i.e., the SDPT3 or SEDUMI solvers);

if maxk∈N , h∈H
{∣∣∣∣∣∣vm+1

k,h

∣∣∣− ∣∣∣vm
k,h

∣∣∣∣∣∣} ≤ ε then
Find the objective function values min Eloss

(
xt

i
)

or min Ecosts
(
xt

i
)
;

BREAK;
else

Make vm+1
k,h = vm

k,h;
end

end
Result: Report the optimal value of the selected objective function

Remark 6. The solution to the recursive convex optimization problem obtained via Algorithm 2
ensures that the optimal solution of the day-ahead operation of BESS and renewables in monopolar
DC grids is found via sequential quadratic programming [41].

4. Test Feeder Characteristics

To evaluate the effectiveness of our master–slave optimization method based on the
VSA approach and the recursive optimal power flow solution, this section outlines the
main characteristics of the studied test feeder.

In this work, in order to demonstrate the validity of the proposed convex model used
to operate BESS and PV sources in monopolar distribution networks, the IEEE 33-bus
feeder configuration was employed [15]. It was adjusted for monopolar DC operation with
a voltage value of 12.66 kV at the terminals of the substation. The configuration of this test
feeder is shown in Figure 1.

DC
1 2

3 4 5

6

7 8 9 10 11 12 13 14 15 16 17 18
19

20

21

22

23

24

25

26 27 28 29 30

31

32 33
BESS

PV system

Figure 1. Single-line diagram of the IEEE 33-node grid.

The parametric information of this test system is reported in Table 2.
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Table 2. Parametric information for branches and loads in the IEEE 33-node grid.

Branch Node i Node j R (Ω) Pj (kW) Imax (A)

1 1 2 0.0922 100 320
2 2 3 0.4930 90 280
3 3 4 0.3660 120 195
4 4 5 0.3811 60 195
5 5 6 0.8190 60 195
6 6 7 0.1872 200 95
7 7 8 17114 200 85
8 8 9 10300 60 70
9 9 10 10400 60 55

10 10 11 0.1966 45 55
11 11 12 0.3744 60 55
12 12 13 14.680 60 40
13 13 14 0.5416 120 40
14 14 15 0.5910 60 25
15 15 16 0.7463 60 20
16 16 17 12890 60 20
17 17 18 0.7320 90 20
18 2 19 0.1640 90 30
19 19 20 15042 90 25
20 20 21 0.4095 90 20
21 21 22 0.7089 90 20
22 3 23 0.4512 90 85
23 23 24 0.8980 420 70
24 24 25 0.8900 420 40
25 6 26 0.2030 60 85
26 26 27 0.2842 60 85
27 27 28 10590 60 70
28 28 29 0.8042 120 70
29 29 30 0.5075 200 55
30 30 31 0.9744 150 40
31 31 32 0.3105 210 25
32 32 33 0.3410 60 20

Figure 1 illustrates the location of the BESS and PV systems. However, its parametriza-
tion is presented below [15]:

i. The BESS at bus 6 has an energy storage capability of 2 MWh, with a charging/discharging
rate of 5 hours (C-type BESS). The BESS at bus 14 can store 1.5 MWh with a charg-
ing/discharging rate of 4 hours (B-type BESS). At node 31, there is a battery package
with a capacity of 1 MWh with a charging/discharging rate of 4 hours (A-type BESS);

ii. Regarding the PV generation units, it is assumed that each one was assigned to
generate a maximum of 2.4 MWp, being located at nodes 12, 15, and 31. In addition,
the expected generation curve for these units is presented in Table 3.

Table 3. Generation and demand curves.

Hour ppv,max
k,h (%) pd

k,h (%) Hour ppv,max
k,h (%) pd

k,h (%)

1 0 65.5092 13 61.8091 94.3876
2 0 63.0152 14 55.7162 93.1269
3 0 61.5570 15 45.2364 92.5406
4 0 61.5830 16 32.0524 92.2598
5 0 64.4567 17 17.6932 90.8070
6 0 69.8937 18 5.0658 88.8587
7 4.5411 73.4230 19 0.0499 94.6218
8 18.4242 79.3483 20 0 95.6175
9 34.0999 84.3313 21 0 91.5546

10 48.1610 87.6224 22 0 84.7794
11 57.3749 91.7021 23 0 76.8311
12 62.5715 94.5951 24 0 70.2960

5. Computational Validation

The computational implementation of the proposed master–slave optimization ap-
proach was performed in the MATLAB software (version 2021b) on a PC with an AMD
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Ryzen 7 3700 @2.3 GHz processor and 16.0 GB RAM, on a Microsoft Windows 10 sin-
gle language operating system. Note that the VSA approach (see Algorithm 1) was im-
plemented using MATLAB scripts, and the recursive convex approach in Algorithm 2 is
solved via the convex disciplined tool environment (CVX) of MATLAB via the SDPT3 and
SEDUMI solvers.

The implementation of the exact MINLP model using the GAMS software follows the
recommendations of [22,32]. It is worth mentioning that the processing times required by
the BONMIN and the VSA-Convex approach are not comparable, since each methodology
uses a different software platform, as mentioned earlier. However, in order to give an idea
regarding the expected processing times, the BONMIN solver in the GAMS environment
took about 25 minutes to solve the exact MINLP model. On the other hand, the proposed
VSA-Convex approach took about 176 minutes to solve the studied problem. However,
the CVX tool spent most of the time constructing all of the convex optimization models for
each combination of batteries provided by the master stage.

5.1. Optimal Reallocation of BESS to Minimize min Eloss

Table 4 presents the numerical results obtained with our master–slave method and the
BONMIN solver in the GAMS software when minimizing the costs of the energy losses
(i.e., Eloss).

Table 4. BESS location reallocation when Eloss is minimized.

Scenario Eloss (USD/year) BESS Reduction (%)

Benchmark case 45,246.3020 6 (C), 14 (B), 31 (A) —
BONMIN 42,517.2110 15 (C), 18 (A), 31 (B) 6.0316

VSA-Convex 41,984.4063 13 (A), 15 (C), 31 (B) 7.2091

The results in Table 4 allow stating the following:

i. The solution provided by the BONMIM solver (i.e., the MINLP solution of GAMS)
allowed for a reduction of about 6.0316% with respect to the benchmark case, which
corresponds to a gain of about USD/year 2729.0910 (net profit regarding energy loss
costs). To reach this solution, all the three BESS available were reallocated as follows:
the C-type BESS at node 6 was transferred to node 15, the B-type BESS at node 14
was moved to node 31, and the A-type BESS at node 31 (A-type) was reallocated to
node 18;

ii. The proposed VSA-Convex solution method found an energy loss cost reduction of
about 7.2091% regarding the benchmark case, i.e., a reduction of about USD/year 3261.8957
in the annual costs of the energy losses. This solution reallocated all the BESS as fol-
lows: the C-type BESS at node 6 was transferred to node 13, the B-type BESS at
node 14 was moved to node 31, and the A-type BESS at node 31 was reallocated
to node 13. Note that the VSA-Convex method allowed for an additional gain of
about USD/year 532.8047 when compared to the BONMIN solution, which demon-
strates that the VSA-Convex finds a better solution via the proposed master–slave
optimization approach than that of the exact MINLP model of the GAMS software;

iii. The solutions in Table 4 exhibit the following features. (a) Node 31 is the only bus that
is maintained in all three options as an excellent candidate to connect a BESS. This is
because a PV generation system is connected at this node, and its surplus of power
can be directly stored at this generation point. (b) the BONMIN and VSA-Convex
methodologies share 66.67% of the solution with the exact location and type of BESS
at nodes 15 and 31.

To illustrate the positive effect of the reallocation of BESS on minimizing the expected
energy loss costs in monopolar DC networks, Figure 2 presents the comparative daily
energy loss curve for the benchmark case and the BONMIN and VSA-Convex approaches.
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Figure 2. Energy loss behavior for the benchmark case and the solution methods.

The behavior of the energy losses during a day of operation (Figure 2) allows noting the
following:

i. The energy loss curve for the benchmark case is the higher curve (due to the initial
location of the BESS). The current flow for some specific distribution lines is higher
than the solutions obtained with the BOMIN and VSA-Convex approaches, which
implies that the energy losses increase quadratically with them. Note that the daily
energy losses in the benchmark case are 952.2670 kWh/day; in the case of the exact
MINLP solution, the total energy losses were 894.8310 kWh/day; and, for the proposed
VSA-Convex approach, these were 883.6200 kWh/day;

ii. By comparing the BONMIN and VSA-Convex curves, it can be observed that both
solutions follow a similar behavior. However, the main difference is in favor of the
proposed approach during periods 1 to 7, where the BONMIN curve is higher;

iii. As expected, when the renewable energy generation increases considerably (periods 7
to 17), the total energy losses per hour decrease, which can be attributed to the fact that
dispersed generation allows for the reduction in current flows in some distribution
lines near the generators, directly impacting the reduction in the grid power losses.

5.2. Optimal Reallocation of BESS to Minimize min Ecosts

Table 5 presents the numerical results obtained with our master–slave strategy and
the BONMIN solver in the GAMS software when minimizing the energy purchasing and
maintenance costs (i.e., Ecosts).

Table 5. BESS location reallocation when Ecosts is minimized.

Scenario Ecosts (USD/year) BESS Reduction (%)

Benchmark case 2,450,204.72 6 (C), 14 (B), 31 (A) —
BONMIN 2,411,648.34 15 (A), 18 (B), 31 (C) 1.5736

VSA-Convex 2,371,542.06 14 (A), 15 (C), 31 (B) 3.2105

The numerical results in Table 5 show that

i. The GAMS solution of the exact MINLP model with the BONMIN solver found
an objective function value of USD/year 2,411,648.34, which implies a reduction of
USD/year 38,556.38 with respect to the benchmark case by reallocating all the batteries
as follows: the C-type BESS at node 6 was transferred to node 31, the B-type BESS at
node 14 was moved to node 18, and the A-type BESS in node 31 was reallocated to
node 15;

ii. The proposed VSA-vortex approach reallocated batteries as follows: the C-type BESS
at node 6 was transferred to node 15; the B-type BESS at node 14 was moved to
node 31, and the A-type BESS at node 31 was reallocated to node 14. These move-
ments allowed for a reduction of about 3.2104% with respect to the benchmark case,
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i.e., USD/year 78,662.66. Note that, regarding the comparison between the BONMIN
solution and the VSA-Convex approach, an additional gain of about 40,106.28 dollars
per year of operation is obtained if the latter is implemented;

ii. As with Eloss minimization, when the annual energy purchasing and maintenance
costs of the PV systems are minimized, in all the solutions, node 31 continues to be
part of the set of nodes where BESS must be placed. This is also explained by the fact
that there is a PV source at this node, and it is necessary to store the energy surplus
during the solar hours in order to inject it when the renewable input is zero and the
demand increases.

To illustrate the effect of reallocating batteries in the operation of the monopolar DC
grid, Figure 3 presents the generation outputs at the terminals of the substation bus for the
benchmark case and the solutions reached by the BONMIN and VSA-Convex approaches.
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Figure 3. Output generation in terminals of the substation bus.

The generation behavior at the terminals of the substation bus depicted in Figure 3
shows that

i. The benchmark case (i.e., the initial location of the BESS) does not allow efficiently
taking advantage of the available renewable energy, given that, when compared to
the BONMIN and VSA-Convex solutions, in the period where renewable generation
is significant (between hours 7 and 17), there is more generation at the substation
bus, which implies that, due to the technical constraint regarding current flows in the
distribution branches, less energy can be stored in contrast with that involved in BESS
reallocation;

ii. The final objective function value is directly related to the amount of energy generated
at the substation bus, which corresponds to the area of the generation curve in Figure 3.
Note that the energy generation in the benchmark case was 51.2530 MWh/day,
whereas the BONMIN solver reports a daily energy generation of 50.4260 MWh,
and the VSA-Convex method generates 49.5730MWh/day.

6. Conclusions and Future Works

This research proposed a master–slave optimization methodology to deal with the
problem regarding the optimal location reallocation of battery energy storage systems
(BESS) in monopolar DC distribution grids. The master stage defined the set of nodes
where the BESS must be located or reallocated, along with their corresponding types.
In this stage, the discrete version of the vortex search algorithm (VSA) was implemented.
To determine the optimal operation of the BESS with the aim of minimizing the costs of
energy losses or energy purchasing and maintenance, a recursive convex optimization
tool was proposed. The convexification approach was implemented via Taylor’s series
expansion applied to the product of two continuous variables, which is equivalent to the
McCormick approximation of this product. Numerical results in the monopolar version of
the IEEE 33-node grid demonstrated the following:
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i. The proposed master–slave optimization approach (i.e., the VSA-Convex approach)
achieved reductions of about USD/year 3261.8957 when the objective function was the
minimization of the annual energy loss costs. In contrast, the solution of the MINLP
model with the BONMIN solver of the GAMS programming environment reached a
reduction of about USD/year 3261.8957. These results imply that the proposed VSA-
Convex approach allows finding additional improvements of about USD 532.8047 per
year of operation by redistributing the nodal location of the BESS with high efficiency
when compared to the BONMIN solution;

ii. The minimization of the energy purchasing and maintenance costs confirms that the
VSA-Convex approach finds better numerical solutions in comparison with the exact
MINLP solution obtained via commercial tools. In this sense, the VSA-Convex approach
outperforms the benchmark case by about 3.2105%, i.e., USD/year 78,662.66. In contrast,
the BONMIN solver finds an improvement of about 1.5736% (USD/year 38,556.38).
These results show that, with the proposed master–slave optimization method, the so-
lution of the BONMIN solver was surpassed by more than twice its value, i.e., an
additional gain of USD/year 40,106.28;

iii. All of the numerical results show that, with the proposed distribution of the PV
generation plants, bus 31 of the IEEE 33-bus system is an efficient node to locate BESS.
It was observed that, for the BONMIN and the proposed VSA-Convex approaches
regarding both objective functions, node 31 was part of the optimal solution, increasing
the energy storage capabilities from type A to types B and C. This change in the size
of the BESS at this node can be attributed to the fact that this node contains a PV
generation system, and, with a BESS on this node, better energy storage properties are
provided to the monopolar DC network without causing further energy loss costs due
to energy transportation between different nodes.

As future research, the following works can be carried out: (i) proposing a mixed-
integer convex model to locate and size BESS in monopolar DC networks while considering
different charging and discharging efficiencies and operation cycles, among other im-
portant factors; (ii) extending the proposed VSA-Convex model to the optimal location
reallocation problem of BESS in AC distribution networks while including a multi-objective
optimization analysis; (iii) combining the problem regarding the optimal location realloca-
tion problem of BESS with that of the optimal sizing and operation of renewable energy
resources while considering demand and generation uncertainties; and (iv) evaluating the
proposed optimization model with multiple demand profiles in order to demonstrate its
efficiency and robustness against exact optimization tools for different operation scenarios
with uncertainties in generation sources.
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