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Abstract: The deterioration of the health state of lithium-ion batteries will lead to the degradation of
the battery performance, the reduction of the maximum available capacity, the continuous shortening
of the service life, the reduction of the driving range of electric vehicles, and even the occurrence
of safety accidents in electric vehicles driving. To solve the problem that the traditional battery
management system is difficult to accurately manage and predict its health condition, this paper
proposes the mechanism and influencing factors of battery degradation. The battery capacity is
selected as the characterization of the state of health (SOH), and the long short-term memory (LSTM)
model of battery capacity is constructed. The intrinsic pattern of capacity degradation is detected and
extracted from the perspective of time series. Experimental results from NASA and CALCE battery
life datasets show that the prediction approach based on the LSTM model can accurately predict the
available capacity and the remaining useful life (RUL) of the lithium-ion battery.

Keywords: lithium-ion battery; accurate prediction; state of health (SOH); long short-term memory
(LSTM); remaining useful life (RUL)

1. Introduction

Recently, due to their wide temperature range, high energy density, low self-discharge
rate, and long cycle lifetime, lithium-ion batteries have been widely used in a variety
of industrial sectors such as transportation, electronics, portable mobile devices, and
aerospace [1–4]. Prognostics and health management (PHM) of batteries refers to the
activity of applying PHM methods to the battery domain, including battery health and
health maintenance. Accurately estimating the state of charge (SOC), state of health (SOH),
and remaining useful life (RUL) of batteries is critical to maintaining the remaining charge,
capacity, and life of the battery. Reliable and precise SOH prediction and management can
improve the operational safety of electric vehicles and replace batteries in time to prevent
further damage. At the same time, it allows users to plan battery maintenance strategies
and manage repairs or replacements.

In general, SOH indicates the physical degradation status, and RUL estimation is used
to forecast the future life of batteries [5–10]. Signals of current, voltage, impedance and
capacity are commonly used in the battery system. Although data of voltage and current are
readily available during operation, in most cases, they do not accurately indicate the SOH
of the battery. Capacity degradation during charging-discharging has been widely used for
prediction [11,12]. However, many factors affect the SOH of batteries, making it difficult to
predict the SOH. Currently, there are two approaches (i.e., model-based approaches and
data-driven approaches) for prediction [13].
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Most model-dependent approaches use a priori information of the system degradation
to build mathematical functions to describe the SOH. Xu et al. [14] developed a state-space-
dependent model for predicting degradation of batteries, using the extended Kalman filter
to evaluate the parameters and state. Yang et al. [15] proposed an approach, named the
first-order compatibility method, to determine the values of these arguments and their
periodic evolution. Wei et al. [16] used the particle filter and the support vector regression
method for batteries. The use of particle filters can effectively reduce the measurement
noise of currents and voltages. Model-based approaches are reliable when the degradation
of complex systems is accurately modeled.

Condition monitoring data are used for predicting by data-driven approaches [17–19].
In addition to predictive abilities, features with physical meanings are extracted from
discharge voltage curves, allowing online prediction for a single cell using only its histor-
ical data [20]. In principle, by reason of the powerful transferability of data processing
technology, data-driven methods can be easily extended to different scenarios. However,
the drawback of this approach is that building models usually requires sufficient histor-
ical data. Many data-driven algorithms, such as support vector machine (SVM), neural
network (NN) [21], and relevance vector machine (RVM), have been proposed with good
prediction results.

On the basis of traditional data regression, Yu [11] proposed a SOH prediction method
using multiscale logistic regression and Gaussian process regression, which effectively
captures the time-varying system degradation patterns and suppresses the effects of local
regeneration phenomena. Wu et al. [22] estimated the battery SOH using grouped data
processing based on the input of voltage characteristics. Ma et al. [23] proposed a novel
SOH estimation approach based on improved long short-term memory (LSTM) and health
indicators (HIs) extraction. Chang et al. [24] proposed a hybrid method for prediction of
RUL. Some techniques are combined, including trace-free Kalman filtering, correlation
vector machines, and integrated empirical pattern decomposition. Although confidence
limits for SOH and RUL predictions cannot be obtained intuitively [25–27], neural network-
based methods are promising for prediction problems.

Wu et al. [28] investigated the relationship between the RUL and charge profile us-
ing feedforward neural networks with importance sampling for network input selection.
Sbarufatti et al. [29] combined a particle filter with a radial basis function neural network
for battery prediction. Chemali et al. [30] proposed a recursive neural network (RNN)
with LSTM as a variant of the traditional neural network to predict the SOC. Data-driven
methods can effectively capture the data collected and the potential relationship between
the actual state of battery and can summarize learned knowledge in different scenarios.

In addition, deep learning (i.e., deep neural networks) has been rapidly and success-
fully developed for an efficient pattern recognition tool recently. Deep neural network
architectures with multiple stacked hidden layers significantly improve the learning capa-
bility of data-driven models [31,32], resulting in more efficient feature extraction [33]. In
this paper, a novel data-driven approach for management and prediction of lithium-ion
batteries is proposed to provide a specific description of the hazards of lithium-ion battery-
related degradation mechanisms, along with related measures to mitigate or avoid battery
health degradation. Based on recurrent neural network and LSTM architecture, a deep
learning-based prediction method for lithium-ion batteries was developed. Two popular
Li-ion battery datasets from NASA and CALCE validate the effectiveness and superiority of
the proposed approach, providing a promising tool for the accurate determination of SOH.

2. Lithium-Ion Batteries Health Management
2.1. Factors Influencing SOH

The aging of batteries is a major cause of changes in battery health and life. Over time,
the internal materials and electrochemistry of the battery gradually degrade, resulting in
the degradation of the capacity and power for batteries. The main degradation mechanisms
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of batteries can be divided into three types: loss of lithium storage, loss of active material
in the electrode, and increase of battery internal resistance.

Lithium storage losses are mainly associated with battery-side reactions such as solid
electrolyte interface (SEI) film formation and electrolyte decomposition, which continuously
deplete lithium ions from participating in subsequent charge and discharge processes. The
main factor is the degradation of the electrode structure due to changes in the volume of the
active material during cycling, which can cause mechanical stress to reduce the density of
the lithium storage area and block lithium-ion transport; other factors include: dissolution
reactions of transition metals in the electrolyte and SEI modification.

Factors affecting the SOH are the number of cycles, temperature, charge/discharge
multiplier, depth of discharge (DOD), and charge cut-off voltage. The main influencing
factors, associated degradation mechanisms, and degradation patterns of battery aging are
shown in Table 1. In addition, the degradation mechanisms and hazards of lithium-ion
batteries are specifically described, and related preventive measures are introduced to
provide a reference for battery health management.

Table 1. Battery aging influencing factors and associated degradation mechanisms.

Aging Factors Degradation Mechanisms Degradation Model

Number of cycles SEI membrane growth Increased impedance and loss of
lithium storage

Temperature Electrolyte decomposition, SEI film growth,
electroplating, lithium dendrite formation

Increased impedance, loss of lithium
storage, loss of active material

Overcharge and overdischarge

SEI film growth, electrolyte decomposition,
graphite shedding, electroplating, lithium

dendrite formation, transition metal dissolution,
collector corrosion

Increased impedance, loss of lithium
storage, loss of active material

Charge and discharge rate
SEI film growth, graphite shedding, plating,

lithium dendrite formation, electrode
particle cracking

Increased impedance, loss of lithium
storage, loss of active material

Mechanical stress SEI film growth, electrode particle cracking Increased impedance, loss of lithium
storage, loss of active material

(1) Lithium metal deposition.

Causes: In lithium-ion batteries, there is theoretically no lithium metal, only lithium in
the form of lithium oxide, lithium carbon, or lithium ions. Due to high current charging,
overcharging, insufficient cathode material, etc., the cathode cannot hold excess lithium
ions and cannot diffuse to other areas in a short period of time, so lithium ions are deposited
to form metallic lithium as they diffuse to the cathode surface, which can seriously lead to
lithium channel blockage and loss of recyclable lithium.

Hazard: Not only does it shorten the cycle life, but in severe cases, it can also cause
short circuits, leading to serious safety hazards.

Avoidance: Ensure that the ratio of positive and negative materials is accurate and
reasonable, regulate the conditions of use of lithium-ion batteries, and avoid overcharging
and high-current charging.

(2) Decomposition of positive and negative electrode materials.

Causes: Although the lithium metal oxide has good stability, it also decomposes
slowly during the long-term operation of batteries, especially under high temperature and
overcharge, producing flammable gases and some inert substances, such as Mn2O3, which
disturb the balance between the electrodes and cause loss of battery capacity.

Hazards: This condition usually occurs under relatively high temperature condi-
tions, which not only reduces the battery capacity, but the release of gas during severe
decomposition can cause the battery to bulge, leading to the risk of a runaway battery.

Avoidance: Strictly avoid overcharging and improve the stability of the positive
electrode material.
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(3) Growth of SEI film.

Causes: When the lithium-ion battery is cycled for the first time, a solid interfacial
film is formed on the surface of the negative electrode and the electrolyte, which is not
easily decomposed in organic solvents and is valuable for protecting the structure of the
negative electrode. The SEI film is not stable and will decompose during cycling, exposing
a new graphite surface, which will then react with the electrolyte again, making the SEI
film thicker and depleting the active material.

Hazards: The growth of the SEI film increases the internal resistance and reduces the
energy density of the battery; it blocks some of the diffusion channels of the lithium ions,
resulting in a reduction in the actual capacity of the battery.

Avoidance: Since excessive operating temperatures can cause the SEI film to de-
grade, the lithium-ion battery should be controlled within the appropriate operating
temperature range.

(4) Decomposition of electrolyte.

Cause: The electrolyte will be decomposed and volatilized in small amounts when
the lithium-ion battery is working, so the total amount of electrolyte will become less after
long-term use, and it will not be able to completely wet the positive and negative electrode
materials. Part of the positive and negative electrode materials will lack electrolyte wetting,
the channel of lithium will be missing, and the electrochemical reaction will be insufficient.
The electrolyte contains a small amount of water and a small amount of LiFP6, both of which
will react to produce LiF and HF. HF will destroy the SEI film and continuously consume
the recyclable lithium ions. At the same time, the electrolyte contains hydrogen and metal
ion impurities that are relatively active and can easily react to consume decomposition.

Hazards: It can lead to battery capacity degradation affecting life cycle and self-
discharge affecting calendar life.

Avoidance: Improve electrolyte stability.

(5) Diaphragm blockage or disruption.

Causes: With the increase in the number of lithium-ion batteries, the electrolyte of
lithium-ion batteries is not enough for the wettability of the diaphragm, while the di-
aphragm itself also lacks sufficient stability and mechanical properties, and the diaphragm
gradually failed to trigger the early performance of the battery decline.

Hazard: A diaphragm without sufficient wettability will block the lithium-ion chan-
nels, increasing the Ohmic internal resistance and resulting in an irreversible reduction in
battery capacity.

Avoidance: Improve the electrochemical stability and mechanical properties of the
diaphragm.

(6) Dislodged positive and negative electrode materials.

Cause: The electrode material of batteries is fixed by the binder, and the effect of
the binder gradually disappears after using for a long time, so the active material that is
bonded to the substrate will fall off and enter the electrolyte, at which time the electrode
material is no longer able to form an electrical path with the collector fluid or, due to
mechanical vibration and thermal expansion of the electrode material, etc., will lead to
electrode separation.

Hazard: It leads to the continuous reduction of the electrode active material, which
increases the internal resistance and degrades the performance of batteries.

Avoidance: Improving the quality of the binder and the stability of the electrode
material and the battery pack will slow down the degradation of the positive and negative
battery materials.

2.2. Capacity Decay Simulation

Simulation of lithium-ion battery capacity decay not only allows the characteristics
and mechanism of battery capacity decay to be studied in a simple and efficient way,
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but can also save time and the economic cost of battery aging experiments. The battery
capacity decay data obtained from the simulation also provides basic data for predicting
the battery health state based on LSTM. Lithium-ion battery aging modeling is based
on a one-dimensional isothermal model with additional electrochemical side reactions
defined by the porous electrode reaction of the negative electrode. Capacity degradation is
simulated based on the loss of recyclable lithium. The parasitic side reactions occurring
at the negative electrode during charging are mainly considered in the model, which also
includes the potential loss effect caused by the thickening of the SEI film and the effect
of electrolyte reduction on charge transfer. The process of SEI film formation at the solid
electrolyte interface is represented by Equation (1),

S + Li+ + e− → PSEI (1)

where S is the solvent (vinyl carbonate), and PSEI is the reaction product. The production
of PSEI results in the loss of recyclable lithium in the cell and increases the resistance of the
SEI film.

The general battery needs to undergo many cycles to show significant capacity decay,
with a very small reduction in capacity between each cycle, and assuming that all the lithium
in the SEI film is considered to come from the negative terminal after a full charge/discharge
cycle, the model uses a time acceleration factor τ denoting the number of cycles to simulate
one cycle to represent the actual number of cycles; the acceleration response to capacity
loss is obtained as Equation (2),

(τ − 1)S + (τ − 1)Li(s)→ (τ − 1)PSEI (2)

Add Equation (2) to Equation (1),

τS + Li+ + e− + (τ − 1)Li(s)→ τPSEI (3)

Set the time acceleration factor τ as representing the actual 50 cycles, and the capacity
of the simulation model is the theoretical capacity obtained by calculating the recyclable
lithium, which indicates the capacity of the recyclable lithium in the unit area. The max-
imum embeddable lithium capacity of the cathode material is the theoretical capacity.
During the processing of the battery, part of the capacity will reduce. Part of the non-
recyclable capacity is reflected within the cathode. For the battery cathode, after the first
charge and discharge, electrode material exists within part of the lithium ion concentration
and is the minimum working concentration that the cathode can accommodate. The lithium
ion concentrations should be subtracted for the real battery capacity.

The simulation cycle conditions for capacity decay are set as follows: constant current
and constant voltage charging, then constant current discharging, the charge and discharge
cut-off voltage is 4.1 V~2.5 V, the cut-off current is 0.1 A, and the cycle multiplier is 1C.
The simulation calculates the discharge voltage of the battery under different cycle times,
as shown in Figure 1, and the changes of battery SOC with the cycle times are as shown
in Figure 2.

Under the same working condition and the same discharge time, the more cycles,
the lower the discharge voltage and the shorter the duration of discharge, which is why
the range of electric vehicles becomes shorter and shorter. The theoretical capacity based
on recyclable lithium decreases continuously as the number of cycles increases. From
the changing trend of the battery health state curve, it can be seen that the theoretical
capacity of the battery decreases relatively fast in the initial 0~500 cycles, the decrease of
the theoretical capacity slows down and remains stable in the subsequent cycle stage, the
theoretical capacity of the battery decays by about 20% after 3000 cycles of the battery, and
the main factor of the capacity decay in this stage is the loss of lithium.
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Figure 3 shows the variation of potential drop along the SEI layer at the negative
diaphragm and collector. As the number of cycles increases, the amount of SEI layer
formed also increases, and therefore, the potential drop also increases, so the internal
resistance of the cell increases with the number of cycles. Because the SEI layer is thicker at
the negative diaphragm, the potential drop at the negative diaphragm is greater than the
negative collector. The volume fraction of electrolytes at different locations of the negative
electrode and the variation with the increasing number of cycles are shown in Figure 4. The
volume fraction of electrolyte decreases continuously with the increasing number of cycles,
and after 3000 cycles, the volume fraction of electrolyte is less than 60% of the initial value.
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The volume fraction of electrolyte at the negative diaphragm is lower due to the faster rate
of SEI film formation at this location, which consumes more electrolyte.

Batteries 2023, 9, x FOR PEER REVIEW 7 of 19 
 

3. Data Description 
3.1. Lifetime Experimental Data 
3.1.1. NASA Lithium Battery Life Experiment Data 

NASA life experiments were conducted on 18,650 lithium-ion batteries in nine sets 
of life cycle experiments at three temperature operating conditions, 4 °C, 24 °C, and 44 °C. 
We used cells of 5#, 6#, 7#, and 18# at 24 °C. The data were rated at 2Ah capacity and were 
tested in a standard cycling manner. The cells were charged with 0.75C firstly, standing 
still for 3 h, and then each cell was discharged separately to its respective cutoff voltage 
using the constant current of 1C, and their respective impedances were measured via elec-
trochemical impedance spectroscopy. Experiments consider 70% of the rated capacity (i.e., 
1.4 Ah) as the end-of-life. 

 
Figure 3. Curve of potential drop of SEI layer with the number of cycles. 

 
Figure 4. Variation curve of electrolyte volume fraction with number of cycles. 

The NASA dataset contains information about the battery voltage, battery current, 
battery capacity, and battery internal resistance. Figure 5 is the capacity degradation of 
NASA batteries. Some of the sudden increase in capacity in Figure 5 produces a spike, 
which is due to the self-charging of the battery at rest resulting in a rebound in available 
capacity. 

  

Figure 3. Curve of potential drop of SEI layer with the number of cycles.

Batteries 2023, 9, x FOR PEER REVIEW 7 of 19 
 

3. Data Description 
3.1. Lifetime Experimental Data 
3.1.1. NASA Lithium Battery Life Experiment Data 

NASA life experiments were conducted on 18,650 lithium-ion batteries in nine sets 
of life cycle experiments at three temperature operating conditions, 4 °C, 24 °C, and 44 °C. 
We used cells of 5#, 6#, 7#, and 18# at 24 °C. The data were rated at 2Ah capacity and were 
tested in a standard cycling manner. The cells were charged with 0.75C firstly, standing 
still for 3 h, and then each cell was discharged separately to its respective cutoff voltage 
using the constant current of 1C, and their respective impedances were measured via elec-
trochemical impedance spectroscopy. Experiments consider 70% of the rated capacity (i.e., 
1.4 Ah) as the end-of-life. 

 
Figure 3. Curve of potential drop of SEI layer with the number of cycles. 

 
Figure 4. Variation curve of electrolyte volume fraction with number of cycles. 

The NASA dataset contains information about the battery voltage, battery current, 
battery capacity, and battery internal resistance. Figure 5 is the capacity degradation of 
NASA batteries. Some of the sudden increase in capacity in Figure 5 produces a spike, 
which is due to the self-charging of the battery at rest resulting in a rebound in available 
capacity. 

  

Figure 4. Variation curve of electrolyte volume fraction with number of cycles.

3. Data Description
3.1. Lifetime Experimental Data
3.1.1. NASA Lithium Battery Life Experiment Data

NASA life experiments were conducted on 18,650 lithium-ion batteries in nine sets of
life cycle experiments at three temperature operating conditions, 4 ◦C, 24 ◦C, and 44 ◦C.
We used cells of 5#, 6#, 7#, and 18# at 24 ◦C. The data were rated at 2 Ah capacity and were
tested in a standard cycling manner. The cells were charged with 0.75C firstly, standing
still for 3 h, and then each cell was discharged separately to its respective cutoff voltage
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using the constant current of 1C, and their respective impedances were measured via
electrochemical impedance spectroscopy. Experiments consider 70% of the rated capacity
(i.e., 1.4 Ah) as the end-of-life.

The NASA dataset contains information about the battery voltage, battery current,
battery capacity, and battery internal resistance. Figure 5 is the capacity degradation of
NASA batteries. Some of the sudden increase in capacity in Figure 5 produces a spike, which
is due to the self-charging of the battery at rest resulting in a rebound in available capacity.
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3.1.2. CALCE Lithium-Ion Battery Life Test Data

The CALCE battery research group uses advanced equipment for cell-to-cell cycle
testing, cell building, and teardowning, abuse testing (overheating, overcharging, short
circuiting), and material characterization to reliably and safely develop and operate battery
components and systems in real-world applications. This paper uses data from the four
series LiCoO2 batteries at 1.1 Ah. The batteries are tested at room temperature using
an Arbin battery tester, using the standard constant current/constant voltage, a constant
current of 0.5C, and then 4.2 V is maintained until the charging current drops to 0.05 A,
under the cut off voltage (2.7 V) for 1C constant exile electric. The battery life ended within
80% of the rated capacity (0.88 Ah), after several cycles. This battery dataset contains more
data outliers, which can be considered as noise in the dataset, and no noise reduction is
subsequently applied to the dataset in this paper, to make the battery capacity data more
consistent with the actual extracted battery capacity data, and a prediction algorithm with
better generalization is needed. The capacity degradation is plotted in Figure 6. Each group
of batteries had a similar degradation trend after 500 cycles. Further research could explore
how to train the algorithm over the entire life of some cells to better apply the knowledge
of steeper degradation at the end of life on the other cells.
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3.2. Data Pre-Processing

We used data pre-processing before constructing the lithium-ion battery SOH predic-
tion model. The time series model of power battery capacity is constructed as shown in
Equation (4).

Cp+1 = f
(
Cp, Cp−1, · · · , Cp−q

)
, q < p (4)

where Cp+1 is the battery capacity time series, and f (·) is the time series model, which
means that the historical capacity data is used to apply a time series model to predict the
capacity after the (p + 1) th cycle. Different numerical variables have different ranges of
variation, and they need to be normalized. This can ensure that the time series model
converges quickly in the loss function during learning. The battery capacity data are
normalized to the maximum and minimum values as shown in Equation (5).

x =
x− xmin

xmax − xmin
(5)

After data deflation, the battery capacity data are plotted between the range of [0,1]
and backnormalized to the actual capacity value after prediction by the model. Taking
NASA’s battery #7 as an example, the capacity data is of length 168, where six time steps
are constructed as a set of sequences as input and one time step as the predicted output for
learning, and the training sets X_train and Y_train are constructed.

x1 = {c1, c2, · · · c6}, y1 = {c7}
x2 = {c2, c3, · · · c7}, y2 = {c8}

...
xn = {cn, cn+1, · · · cm}, yn = {cm}

Xtrain = {x1, x2, · · · xn}, Ytrain = {y1, y2, · · · yn}

(6)

The data after pre-processing is fed into the model for learning and training, and
the finished model can predict the capacity by adjusting the size of the training set to set
different prediction starting points.
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4. Battery Health Status Prediction
4.1. Principle of RNN

There are various approaches to the problem of predicting the time series, among
which neural network-based approaches have special nonlinear and adaptive fitting ca-
pabilities that offer unique advantages over other modeling approaches. Artificial neural
networks mimic biological neural networks, using neurons and the mapping relationships
between them to achieve an approximate estimation of functions. A typical neural network
consists of three layered structures, and the learning process is completed by updating the
weights of each layer through error correction of the training samples to create a model,
and this learning process is usually done using a backpropagation algorithm.

To evaluate whether a neural network structure is good or bad is to see if it can
better fit the training data. This evaluation criterion is known as the loss function, and the
feedback optimizer is applied to optimize updated weights in the direction of minimum
loss. Some of the common optimization methods are stochastic gradient descent (SGD),
momentum, adaptive gradient (AdaGrad), adaptive moment estimation (Adam), etc.

The RNN is similar to a typical neural network, but the hidden layer nodes of RNN
are connected with information between them. Such a structure allows the RNN to take
into account the backward and forward connections during training. The output of the
current moment will be associated with the data of the historical moment, which is the
reason why the RNN is memorable. Therefore, RNN is particularly suitable for modeling
predictions for the time series. Figure 7 is a typical RNN structure.
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The input to the RNN is a sequence of seqin = {x1, x2, · · · , xn}, and the output is a
sequence of seqout = {o1, o2, · · · , on}, where U, V, and W represent the weight matrices.
xt−1 is the input to the network, from U into the hidden layer ht−1. The output is obtained
through Vot−1, and the hidden layer ht−1 will retain part of the information for calculating
the next moment xt. Thus, the output ot is related not only to xt, but also to the previous
inputs of the sequence, where t represents the value taken by the sequence at a given time.

The computational process of the hidden layer and the output layer of the RNN can
be described as Equation (7) and (8).

ht = f (U·xt + W·ht−1) (7)

ot = g(V·ht) (8)

The above equations describe that the output of the RNN is influenced by the previous
input, and the RNN has a particular advantage in dealing with time series problems.
However, the RNN also has some disadvantages and is prone to gradient disappearance or
explosion when the network layers are deep or the sequences are too long. The chain rule
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for derivation and concatenation is used, and if there are too many terms less than one, it
will cause the gradient to be unavailable for training. Furthermore, the RNN network can
only learn information that is close in time (i.e., the short-term memory), and it is difficult
to store information from longer periods of time and apply to sequence data that needs to
be relied on for a long time.

4.2. LSTM Network

To address these shortcomings of the simple recurrent neural network RNN, Sepp
Hochreiter and Jurgen Schmidhuber proposed the LSTM recurrent neural network in 1997.
This network model is very effective for long-range sequences and long-distance-dependent
information and is widely used in speech, audio analysis, and time series prediction. The
LSTM network model has been developed over the years for various domains with several
improvements such as stacked LSTM, bidirectional LSTM, CNN-LSTM, and GRU. The
LSTM model is based on the RNN by introducing a three logic gates structure to decide
whether some information needs to be erased or some information needs to be protected to
achieve memory of LSTM information.

Figure 8 is the structure of the gating unit of LSTM. The structure of the gating unit
consists of a Sigmoid layer and a dot product to select whether a message can pass or not.
The Sigmoid layer has unique output vector values between 0 and 1 that indicate the pass
rate of messages, where 0 means that messages are forbidden to pass (i.e., forgotten) and 1
means that all messages are allowed to pass (i.e., remembered).
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The LSTM consists of three logic gates, and the specific LSTM memory cells are shown
in Figure 9 [34]. From left to right, they are the input gate, the output gate, the internal state
update, and the forget gate.
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Where xt means the input to the neuron at the moment t, ht represents the information
of the hidden layer at the moment t, and Ct represents the state of the neuron cell at the
moment t.

(1) Calculation of the forget gate.

The forget gate is used to discard the information from the cells of the neuron, which is
the first step in the computation. The forget gate receives the output information from the
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neuron at the previous moment ht−1 and the current input moment xt. A value between 0
and 1 is output through a Sigmoid function transformation, which directly determines the
internal state information St, as Equation (9),

ft = σ
(

W f ·[ht−1, xt] + b f

)
(9)

where b f is the threshold of the forget gate, and ft is the output information of the forget
gate. The forget gate helps to discard the noise in the power cell capacity data and improves
the prediction accuracy.

(2) Calculation of the input gate.

The input gate is calculated by how much new information will be added to the
internal state. The input gate function is implemented via two steps: the information is
updated by the Sigmoid function, and the update state Ŝt is generated by the tanh function,
which serves as the alternative update information. The specific mathematical expression
is shown in Equations (10) and (11).

it = σ(Wi·[ht−1, xt] + bi), (10)

Ŝt = tan h(WS·[ht−1, xt] + bS), (11)

where it represents the input gate information after the calculation of the Sigmoid function,
and Ŝt represents the input gate information after calculation of the tanh function.

(3) Update of the internal state.

The internal state of the LSTM is updated according to the previous steps, by multi-
plying the old state of the previous cell St−1 by the output information of the forgetting
gate ft and then adding the multiplication of the input gate information it and Ŝt, as shown
in Equation (12).

St = ft ∗ St−1 + it ∗ Ŝt. (12)

(4) Calculation of the output gate.

The output gate is calculated as follows: first, ht−1 and xt are calculated via a Sigmoid
function to obtain a value ot between 0 and 1 and decide which information of the neuron
will be output; then, the current internal state of the cell is processed using a tanh function,
St; finally, the processing result is multiplied by ot to obtain the output information ht of
the hidden layer at time t. The mathematical expression of the above procedure is shown
in Equations (13) and (14).

ot = σ(Wo·[ht−1, xt] + bo) (13)

ht = ot∗ tan h(St) (14)

Based on the characteristics of these three logic gates, gradients can be well passed
between neurons of the LSTM. The LSTM can control the information transfer between
sequences by controlling the switching state of the valves, and the early information of
long-time sequences can be selectively retained. This property allows the LSTM model to
learn long-period time sequences.

The capacity degradation takes a long cycle. Historical capacity data is trained based
on LSTM, and the long-term dependency between capacity sequences is achieved to predict
future capacity. The SOH is predicted according to the principle of the LSTM algorithm
and the characteristics of batteries. Figure 10 is the flowchart of the LSTM-based SOH
prediction algorithm. The historical capacity data of batteries are used as the input, and the
output is the capacity of the predicted model, as the reference of the SOH. In addition to
the input and output layers, a double LSTM layer, a dropout layer to avoid overfitting, and
a fully connected layer are used in the hidden layer. The specific network model structure
is shown in Figure 11.
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The root mean square propagation (RMSprop) model is used to update the parameters
of the LSTM model, which can dynamically adjust the learning rate according to the
amplitude of gradient oscillation and improve the convergence speed compared with the
traditional SGD learning method to ensure the computational efficiency. For the NASA
dataset, the length of the time series input network is set to 6 due to the small data length,
and the hidden layer of the network is set to 12 neurons using the parameter optimization
method; for the CALCE dataset, the length of the time series input network is set to 12,
the hidden layer of the network is set to 24 neurons, and the ReLu function is used as the
activation function.
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4.3. Discussion and Analysis of Results

After constructing the LSTM network model for training, the experimental environ-
ment based on Python 3.8 and Tensorflow’s Keras framework is established. Historical
capacity data are fed into the network for prediction, and the predicted capacity obtained
is a reference for the SOH. In addition, different starting prediction points are set for
the battery capacity. The prediction results are evaluated via two metrics, root mean
squared error (RMSE) and mean absolute percent error (MAPE), which are calculated using
Equations (15) and (16).

RMSE =

√
∑N

i=1(ŷi − yi)
2

N
(15)

MAPE =
∑N

i=1

∣∣∣ ŷi−yi
yi

∣∣∣
N

× 100% (16)

A cycle of 80 times is selected as the starting point for prediction on the NASA dataset
of B5 and B6 cells, as shown in Figure 12. The RMSE of the prediction result for the B5
cell is 0.03423, and the MAPE is 2.10%; the RMSE of the prediction result for the B6 cell is
0.04113, and the MAPE is 2.39%. From the prediction results, the LSTM model performs
better in predicting the health status of B5 and B6 cells, with larger prediction errors at the
abrupt changes in battery capacity and at the end of the cycle, but is able to predict the
future degradation capacity more accurately.
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The CALCE dataset is used to further validate the predictive capability of the LSTM
network model. The different prediction starting points (i.e., 40%, 50%, and 60% of the
battery capacity) are used for the CS-37 and CS-38 cells, as shown in Figure 13. For the
prediction based on 40% of the dataset length, the LSTM network model can accurately
predict the battery capacity degradation before 800 cycles. After that, the prediction result
of the LSTM network has a small deviation from the actual situation, but the deviation
can be acceptable. As the prediction starting point moves backward, the starting point
of the LSTM prediction result deviation also moves forward, reducing from the original
800 cycles to about 600 cycles.

From the capacity prediction results of the CALCE dataset, the LSTM model can
predict the trajectory of battery capacity degradation relatively accurately at different
prediction starting points, and the noisy data in the battery dataset does not have a large
impact on the LSTM network model, but the prediction accuracy of the model decreases
at locations where the battery capacity fluctuates. As with the prediction results for the
NASA dataset, the LSTM network model has a larger prediction error at the end of the
lithium-ion battery cycle, due to the faster rate of battery capacity degradation.
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The prediction errors of battery capacity for different prediction starting points are
shown in Table 2. The RMSE and MAPE metrics of battery capacity prediction using the
LSTM model for different prediction starting points and overall prediction accuracy is high
for different starting points. Among the batteries used in the experiment, CS-35 and CS-38
are in good condition, while CS-36 and CS-37 are in poor condition. The prediction accuracy
of different battery cells with a 40% cycle as the prediction starting point is relatively better
than 50% and 60%, because the battery capacity data decreases smoothly in the middle of
the cycle and the prediction error is small and the capacity decreases rapidly and fluctuates
more at the end of the cycle of the experiment, when the prediction error is larger, leading
to the increase of the average error at the 60% starting point. From the above results, it can
be seen that for the problem of direct prediction battery capacity, the model training using
the LSTM network is more reliable in predicting the SOH. Thus, the SOH can be evaluated
by comparing RMSE and MAPE.

Batteries 2023, 9, x FOR PEER REVIEW 15 of 19 
 

  

(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 13. LSTM-based prediction results for CALCE battery capacity: (a) predicted results for CS-
37 at T = 40%; (b) predicted results for CS-38 at T = 40%; (c) predicted results for CS-37 at T = 50%; 
(d) predicted results for CS-38 at T = 50%; (e) predicted results for CS-37 at T = 60%; (f) predicted 
results for CS-38 at T = 60%. 

From the capacity prediction results of the CALCE dataset, the LSTM model can pre-
dict the trajectory of battery capacity degradation relatively accurately at different predic-
tion starting points, and the noisy data in the battery dataset does not have a large impact 
on the LSTM network model, but the prediction accuracy of the model decreases at loca-
tions where the battery capacity fluctuates. As with the prediction results for the NASA 

Figure 13. LSTM-based prediction results for CALCE battery capacity: (a) predicted results for CS-37
at T = 40%; (b) predicted results for CS-38 at T = 40%; (c) predicted results for CS-37 at T = 50%;
(d) predicted results for CS-38 at T = 50%; (e) predicted results for CS-37 at T = 60%; (f) predicted
results for CS-38 at T = 60%.



Batteries 2023, 9, 177 16 of 18

Table 2. Results of SOH prediction for different starting points.

Prediction Starting Point RMSE MAPE

CS-35
40% 0.05783 5.75%
50% 0.06409 7.00%
60% 0.08223 9.58%

CS-36
40% 0.07342 11.61%
50% 0.09677 14.71%
60% 0.09911 17.79%

CS-37
40% 0.06182 8.27%
50% 0.09898 13.01%
60% 0.10735 15.21%

CS-38
40% 0.06039 6.39%
50% 0.07191 8.84%
60% 0.08088 9.98%

4.4. Open Issues

There are some open issues in the proposed approach that need to be addressed in
future research.

1. The current research results of this paper can only make the LSTM curve predict
the trend of battery health status. For the case of a high cycle number, it is probably
impossible to accurately estimate the remaining capacity. In the following section, the
mathematical fitting can be a method to find out the law of battery capacity decline in
a high cycle number.

2. In this paper, we used a NASA dataset and CALCE dataset. This can basically
support the validation of the proposed method at present, but it may also have some
limitations. We will further update the LSTM network model in this paper using other
datasets from the literature in our continued studies.

3. The LSTM model presented in this paper predicts the battery life, but it has not given
an evaluation of the battery health status or distinguished whether the battery is
suitable. Therefore, batteries in different health states will be classified and evaluated
in future research.

5. Conclusions

In this paper, the degradation mechanism of the SOH of a lithium-ion battery is studied
to provide a reference for health management. The capacity degradation simulation is
performed based on a one-dimensional isothermal electrochemical model. The LSTM-based
approach is applied to directly predict the SOH from a series perspective.

1. The hazards of the degradation mechanisms associated with lithium-ion batteries
are specifically described, and relevant measures to slow down or avoid degradation
of the battery health state are presented. Parasitic side reactions occurring at the
negative electrode during charging, which lead to a reduction of recyclable lithium,
are mainly considered in the capacity degradation model. The cell discharge voltage
and capacity changes are investigated for different cycle counts, with a larger potential
drop along the SEI layer at the negative membrane compared to the collector and a
faster reduction of electrolyte volume fraction at this location.

2. The improved structure and implementation principle of LSTM is compared with
RNN, which is more suitable for predicting of long-time sequences. The LSTM
network model is constructed for the battery capacity sequence as a reference indicator
of SOH and is experimentally validated using pre-processed battery life cycle datasets
from NASA and CALCE datasets. The experimental results for different datasets
show that the LSTM approach has high accuracy for the direct prediction of SOH.
Although the ability to predict the temperature at the stage when the battery capacity
fluctuates is reduced, the trend of the battery capacity degradation can be accurately
predicted. The LSTM model shows good adaptive performance.
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3. In this paper, an accurate prediction approach of SOH for lithium-ion batteries based
on the LSTM method has been proposed. It can solve the problem of accurately
predicting the SOH of lithium-ion batteries, which is a crucial factor in determining
the RUL of the batteries. The proposed approach can help users to better manage
and maintain their batteries, avoid potential safety hazards, and optimize battery
performance and efficiency. Future applications are expected to focus on users such
as electric vehicle manufacturers, battery maintenance and repair service providers,
and energy storage system operators.
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