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Abstract: Copper hexacyanoferrate (CuHCF) has become an attractive Zn2+ insertion material as
a positive electrode in aqueous zinc-ion batteries thanks to its high reversibility towards Zn2+ (de-
)insertion, its simple, inexpensive and easily scalable synthesis route, its low toxicity, and its high
working potential. It is known that the physiochemical properties of CuHCF can be modified by
manipulating its synthesis parameters. However, the effect of these parameters on the material’s
electrochemical performance and cycle life needs further investigation. Here, the structure and
composition of CuHCF treated at different temperatures are studied through crystallographic, com-
positional, and thermogravimetric analyses. The resulting CuHCF powders were galvanostatically
cycled to assess their electrochemical performance in relation to their annealing temperature. The
results showed that the annealed CuHCF electrodes exhibited longer cycle life while maintaining a
coulombic efficiency≥ 99.5%. The longest cycle life was achieved by annealing the CuHCF electrodes
at 100 ◦C.

Keywords: aqueous zinc-ion batteries (ZIBs); copper hexacyanoferrate (CuHCF); cycle life; Prussian
blue analogues (PBAs); thermal treatment

1. Introduction

To meet the increasing energy demands of current society, together with the need for
independence from fossil fuels, it has become of critical importance to develop sustainable
and low-cost methods to store electrical energy harvested from renewable sources [1–3].
Developing bulk energy-storage systems that meet the strict standards required by the
stationary market in terms of high-rate capability, high safety, and low environmental
impact is therefore essential for the cost-effective and sustainable integration of renewable
energy into the power grid [4–8]. Aqueous metal-ion batteries are ideal candidates for such
applications, as they are intrinsically cheap and safe energy-storage devices. However, they
require further advancements to reach higher efficiency and longer cycle life, in order to
compete with the more mature organic-based Li-ion technology [9–12].

In the current research on aqueous metal-ion batteries, there is a rising interest in
developing aqueous Zn-ion batteries (A-ZIBs). The high specific power and high reversibil-
ity in aqueous solutions of these batteries, combined with their low cost, environmental
friendliness, and earth-abundance of metallic zinc, have made them appealing choices for
large-scale grid-energy-storage applications [5,6,13–17].

Despite the promising advantages of A-ZIBs, their commercial application remains
limited due to the low efficiency of the zinc electrodeposition reaction occurring at the
negative electrode [16,18] and the lack of suitable Zn-insertion materials for the positive
electrode. To resolve the latter problem, it is crucial to consider different aspects, such as
economics, safety, and ecology. Ideally, the cathode material needs to be non-toxic and
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cost-effective, and, at the same time, highly durable when cycled in aqueous electrolytes
without compromising its reversibility [4,9,19,20].

Among the insertion materials for the positive electrode of an A-ZIB, the hexa-
cyanometallates of transition metals, generally known as Prussian blue analogues (PBAs),
have generated significant interest due to their high reversibility towards the (de-)insertion
of many cations, low volume changes during the ion-insertion reaction, low toxicity, and
low costs [4,21–24]. As shown in Figure 1, the compounds belonging to the PBA family are
characterized by an open-framework structure, with large cavities and channels created
by two transition metals that are octahedrally linked together by CN ligands [25–27]. The
face-centered cubic crystal lattices of PBAs allows the rapid movement of ions, enabling
high-rate performance due to the fast (de-)insertion of a wide variety of ions, such as Li+,
Na+, K+, Zn2+, Mg2+, and Al3+ [4,20,28–33].
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Among the materials belonging to the PBA family, copper hexacyanoferrate (CuHCF)
has attracted significant attention as an active material for the positive electrode in aqueous
Zn-ion batteries since the first time it was used for this purpose, in 2015 [31].

Copper hexacyanoferrate shows high reversibility towards the (de-)insertion reaction
of various monovalent, divalent, and trivalent ions in aqueous electrolytes [6,19,34]. It can
be synthesized using abundant and non-toxic elements through a simple and inexpensive
synthesis route that can be easily scaled up to an industrial level. Moreover, this material is
well suited to power-grid applications because of its excellent power-rate capability and
high cell-working potential, of about 1.7 V, compared with Zn2+/Zn. The latter enables
CuHCF-based A-ZIBs to utilize the electrochemical-stability window of water almost
fully [30,34–37].

Despite its many advantages, CuHCF suffers from a relatively short cycle life when
operated in rechargeable aqueous-based systems, compared to the commercial insertion
materials employed in organic lithium-ion batteries. Interestingly, it has been observed that
the stability and the electrochemical properties of CuHCF can be tuned by changing various
parameters, such as the reaction time, the temperature, and the reactant concentration
during the material-synthesis procedure. According to previous studies, these strategies
mainly affect the positioning of the elements, the potassium or iron content, and the amount
of coordinated (interstitial) water in the CuHCF lattice [6,20,35,38,39].
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As part of our previous efforts to optimize CuHCF’s properties [6], we adjusted the
reactants’ (i.e., Cu(NO3)2 and K3Fe(CN)6) ratio and concentration during the synthesis of
CuHCF. Our physicochemical analyses of our pristine CuHCF samples synthesized with
different reactant concentrations and ratios indicated different potassium contents in the
lattice. In particular, an increasing amount of potassium within the initial CuHCF lattice led
to smaller bond distances, namely smaller crystal dimensions, resulting in the higher long-
term stability of the material and, therefore, an improved cycle life. The initial potassium
content within the lattice of CuHCF was also considered by Ojwang et al. [35,38,40]. In
their work, K2S2O3 was incorporated into the synthesis according to Equation (1).

CuII
[
FeIII(CN)6] 2

3
.nH2O + 2x/3.K+ + 2x/3.S2O2−

3

↔ K 2x
3

CuII[FeII
x FeIII

1−x(CN)6] 2
3
.nH2O + 1x/3.S4O2−

6
(1)

Infra-red (IR) spectroscopy measurements associated with synchrotron-based experi-
ments showed that a lower FeIII/FeII ratio in the lattice and smaller cell dimensions were
associated with a higher initial potassium content. Variations in the FeIII/FeII ratio in the
lattices of hexacyanometallates were also observed by Gerber et al. [41] while employing
different precursors, such as Fe, Co, Ni, and Cu, in the coprecipitation reaction of their hex-
acyanoferrates. Their IR measurements revealed that the utilized metal precursor strongly
influenced the peak position and the intensity of the FeIII-CN and of the FeII-CN bands in
the IR spectrum. In another study on the magnetic properties of CuHCF, by Ng et al. [42],
variations in the FeIII/FeII ratio in the lattice were also observed while investigating the
effects of thermal treatment on CuHCF’s crystal structure. According to their findings,
annealing the CuHCF powder led to the conversion of the material’s microstructure from an
initial composition of FeIII-CN-CuII to FeII-CN-CuIII and CuII-CN- FeIII, with a progressive
decrease in the lattice parameter.

In light of the studies mentioned above, both the crystal structure and the chemical
composition of CuHCF can be modified by adjusting the synthesis parameters. Moreover,
it appears that the potassium and the iron (either FeII or FeIII) contents in the CuHCF
lattice play a pivotal role in determining its unit cell’s parameters. There are, however,
only a few studies on how these modifications influence the electrochemical performance
of the material. The tuning of the crystal structure of PBAs in general, and of CuHCF in
particular, is primarily studied in non-battery research areas, and, therefore, assessments of
the electrochemical performance are not routinely provided.

In our previous study, the highest initial potassium content related to the smallest unit
cells was associated with the longest cycling lifetime of our CuHCF-based electrodes [6]. In
this work, we addressed the question of how thermally induced structural changes influ-
ence the electrochemical performance of CuHCF. Here, CuHCF powder was synthesized
via the routinely used coprecipitation method and thermally treated at various temper-
atures before its electrochemical testing in three-electrode flooded cells. Structural and
chemical analyses were performed on the thermally treated CuHCF powders to correlate
the effect of the annealing temperature with the changes in the material’s crystal structure.
Moreover, galvanostatic cycling of the CuHCF-based electrodes was performed to assess
the material’s cycle life as a function of its thermal treatment.

2. Experimental Methods
2.1. Material Synthesis

Copper hexayanoferrate (CuHCF) was synthesized through the standard coprecip-
itation method reported in [43]. Briefly, under vigorous stirring at room temperature,
two solutions, of 50 mM Cu(NO3)2•3H2O (Sigma Aldrich, Munich, Germany) and 100
mM K3Fe(CN)6 (Sigma Aldrich), were added simultaneously and dropwise to 60 mL of
deionized water. A brown suspension was formed immediately, which was subsequently
bath-sonicated for 30 min and then allowed to settle overnight. The formed precipitate
was centrifuged and subsequently washed with a solution containing 1 M KNO3 (Sigma
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Aldrich) and 10 mM HNO3 (Sigma Aldrich), followed by rinsing with deionized water, in
order to eliminate any remaining impurities or unreacted precursors from the synthesis
of the CuHCF. Subsequently, the drying of the CuHCF powder at 60 ◦C was carried out
overnight. The resulting material was then ground using mortar and pestle.

2.2. Electrochemical Characterization

The electrochemical measurements were carried out using a BioLogic VMP3 instru-
ment in a flooded three-electrode cell consisting of a CuHCF-based working electrode, two
zinc foils (99.99%, Good Fellow) as counter and reference electrodes, and a 100-millimolar
ZnSO4 (Heptahydrate, 99.95%, Sigma Aldrich) aqueous solution as electrolyte. The work-
ing electrodes were prepared by hand brushing the CuHCF-based slurry on carbon cloth
(Fuel Cell Earth) current collector with a mass loading of approximately 10 mg cm−2. To
make the slurry, CuHCF powder, amorphous carbon (Super C65, Timcal), polyvinylidene
fluoride (PVdF) (Solef S5130, Solvay, Brussels, Belgium), and graphite (SFG6, Timcal) were
dispersed in N-methyl-2-pyrrolidone (NMP) (Sigma Aldrich) with a weight ratio of 80:9:9:2.
The dispersion was then mixed thoroughly for 30 min at 4000 rpm using an Ultra-Turrax
disperser (T10, IKA). Prior to the assembly of the electrochemical cells, the CuHCF-based
working electrodes were annealed at 60◦, 80◦, 100◦, 120◦, and 150 ◦C for 6 h under vacuum.
Before each electrochemical test, the open-circuit potential was measured for one minute.

2.3. Material Characterization

The thermo-gravimetric properties of the CuHCF were studied using a NETZSCH
STA 449 F3 thermogravimetric analyzer under an inert argon atmosphere at 35–250 ◦C
(5 K min−1 rate) in Al2O3 crucibles.

Prior to the scanning electron microscopy (SEM), IR spectroscopy analysis and X-ray
powder diffraction (XRPD), pristine CuHCF powder samples were annealed under the
same thermal conditions as the electrodes (namely, at 60◦, 80◦, 100◦, 120◦, and 150 ◦C for
6 h under vacuum). The attenuated total reflectance infrared Fourier transform (ATR-FTIR)
spectra were generated and acquired using a Bruker ALPHA II compact spectrometer
configured in the mid-IR range. The spectra were acquired with a resolution of 2 cm−1.

To record the XRPD patterns, a Miniflex Rigaku® diffractometer was utilized, with
CuKα radiation at room temperature in the 2θ range of 10–60◦ at a scan speed of 5 s per
step and a step width of 0.03◦. A quartz holder was used without the help of any solvents
to hold the powder sample. The diffractograms were normalized based on their highest
peak intensity.

The SEM images were acquired using a FEI Helios NanoLan 600 DualBeam® apparatus
with an acceleration voltage of 10 kV. To overcome the inadequate electronic conductivity
of the particles, platinum/palladium coatings were employed.

3. Results and Discussion

Initially, the thermal stability of our synthesized CuHCF powder was analyzed with a
thermogravimetric analyzer between 35 ◦C and 250 ◦C. The thermogravimetric analysis
(TGA) was carried out under an inert argon atmosphere. As observed in the thermogravi-
metric curve reported in Figure 2, upon increasing the temperature, the CuHCF powder
showed a mass loss, which slowly started at around 80 ◦C and was continuous until a
temperature of ca. 170 ◦C was reached. When the CuHCF powder was exposed to a
temperature of 148 ◦C, a sharp, exothermic peak appeared in the corresponding differen-
tial scanning calorimetry (DSC) curve. This exothermic peak was attributed to the rapid
decomposition of the cyanide groups present in the CuHCF lattice [42,44], which led to the
significant degradation of its crystal structure. It is worth noticing that an initial partial
decomposition of cyanide groups might start even at temperatures lower than 148 ◦C.
However, the initial decomposition starting point may vary between CuHCF samples
synthesized through different synthesis routes and reactant concentrations [42,44]. Based
on the peak location on the DSC curve, it appears that our pristine CuHCF powder was
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stable up to nearly 120 ◦C, after which it slowly started to partially degrade until completely
losing its stability at temperatures ≥150 ◦C.
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Figure 2. Thermogravimetric curve (black) and differential-scanning-calorimetry curve (red) of the
synthesized CuHCF powder.

Successively, the synthesized CuHCF powders were annealed at different tempera-
tures, namely 60◦, 80◦, 100◦, 120◦, and 150 ◦C. A structural analysis was performed on
all the thermally treated CuHCF powders and the untreated powder. The X-ray powder
diffractograms of all the analyzed powders (Figure 3) showed a pattern corresponding
to an F-centered cubic unit cell (fm3m space group), which was in agreement with the
primary reflections corresponding to K2x/3Cu[Fe(CN)6]2/3•nH2O [38].

Despite the similarities in the XRPD patterns of all the analyzed CuHCF powders,
a slight 2θ shift and a change in the peak intensity ratio of the 220/200 planes (I220/I200)
were observed when increasing the annealing temperature. The shift of the 220 and
200 reflections towards higher 2θ values appeared more prominent when the CuHCF
powder was annealed at 120 ◦C and 150 ◦C compared to the other thermally treated samples.
The changes in the crystal parameters are shown more clearly in Figure 4, which represents
the variations in the I220/I200 peak-intensity ratio and the lattice constant in the dependency
on the temperature employed during the annealing of the CuHCF powders. These results
are in agreement with those of previous works [6,38,42,45]; accordingly, the increased
I220/I200 ratio and the shift of the peaks to higher 2θ values indicate a rearrangement of the
elements in the structure towards a smaller crystal unit [6,35,38,40].

The SEM analysis showed that there were no significant variations in the average
particle sizes or the morphologies of all the thermally treated CuHCF powders (Figure S1),
which resembled those of the untreated CuHCF shown in Figure 5.

The ATR-FTIR spectra of all the investigated CuHCF samples are shown in Figure 6.
The cyanide complex can be easily identified as sharp bands stretching between 2000 cm−1

and 2200 cm−1 [38]. Interestingly, with the Prussian blue analogues, it is possible to
differentiate between the ferrocyanide (FeII-CN) and ferricyanide (FeIII-CN) groups in the
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IR spectrum because of the C-N band position. Due to the higher oxidation number of the
Fe and the stronger σ-bond, the positions of FeIII-CN bond peaks are expected to appear at
higher wavenumbers than the peaks of FeII-CN bonds [38]. The two peaks at 2100 cm−1

and 2170 cm−1 in Figure 6 indeed correspond to the FeII-CN-CuII and the FeIII-CN-CuII

groups of the CuHCF lattice, respectively. Upon increasing the temperature employed
during the thermal treatment of the material, a significant change in the relative peak
intensities of the FeIII-CN and the FeII-CN peaks was clearly observed. In particular, as
the temperature increased, the intensity of the 2170 cm−1 band (FeIII-CN-CuII) diminished,
while the intensity of the 2100 cm−1 band (FeII-CN-CuII) increased. When a temperature of
150 ◦C was chosen for the annealing, the FeIII-CN-CuII band almost disappeared and, at the
same time, the FeII-CN-CuII band displayed a broad shoulder extending to wavenumbers as
low as 2020 cm−1. According to other studies [38,42], this shoulder can be attributed to CuII-
CN-FeII, and it is expected to be observed at slightly lower wavenumbers than FeII-CN-CuII

due to the higher electronegativity of CuII compared to FeII and the lower σ-donation.
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From the analysis of the ATR-FTIR spectra, it is possible to extract the relative amount
of FeIII with respect to the total iron content of the lattice based on the ratio between the
2100 cm−1 and the 2170 cm−1 bands’ intensities. As shown in Figure 7, in the case of the
untreated CuHCF powder, the oxidation state of the Fe was primarily (+3). By contrast,
when the CuHCF powders were treated with increasing temperatures, the relative amount
of FeIII decreased, and the amount of FeII increased. This trend followed a similar pattern
as the lattice constant (Figure 4a), in which increasing the treatment temperature caused
the unit cell to shrink. Therefore, it appears that the thermal treatment might have caused
a rearrangement of the CuHCF crystal structure, which may have led to a change in the
amount and/or type of defects present in the lattice, ultimately resulting in the reduction
of a portion of the FeIII present in the crystal structure. However, further investigations
are needed to clarify the role of annealing in this change in the oxidation state of the iron
atoms in CuHCF lattices.
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Figure 4. (a) Average lattice constant of the CuHCF powder as a function of the temperature employed
during the thermal treatment, (b) average variation in X-ray-diffraction-intensity ratio between 220
and 200 planes (I220/I200) of the CuHCF powder as a function of the temperature employed during
the thermal treatment. The mean values and standard deviations were estimated by comparing at
least two different samples resulting from two different thermally treated CuHCF powders.
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Figure 7. Fraction of FeIII with respect to the total iron content of the lattice as a function of the
temperature employed during the treatment of the CuHCF powder.

It is worth noting that within the FTIR spectra, a broad peak was observed for all the
investigated samples at around 1600 cm−1, which was attributed to the interstitial water
content within the material’s lattice [44,46]. In agreement with the literature [39,42], the
FTIR spectra demonstrated that the annealing of the CuHCF up to 140 ◦C had little effect
on the amount of interstitial water, but it primarily eliminated the water adsorbed on the
material surface. The intensity of the peak at 1600 cm−1 displayed negligible fluctuations
with increasing temperatures up to 100 ◦C, particularly in comparison with the variations
observed in the intensity of the peaks at 2100 and 2170 cm−1. This suggests that the thermal
treatment had a more significant effect on the relative FeIII-to-FeII content than on the
interstitial water.

The electrochemical performance of the annealed CuHCF electrodes was assessed
through galvanostatic cycling in the 100 mM ZnSO4 aqueous solutions at a current rate (C-
rate) of 1C. This C-rate was chosen considering that the usual operational currents required
by a storage device for the power grid range from 0.5C to 2C [5,47]. According to Table 1,
the initial specific discharge capacity (Q0,discharge) decreased slightly when increasing the
annealing temperature. In particular, the CuHCF electrode annealed at 150 ◦C showed an
extremely low initial discharge capacity, of 15.2 mAh g−1. This was a direct consequence
of the irreversible degradation of the material’s crystal structure at this temperature, as
previously shown through the thermogravimetric analysis (Figure 2).

Interestingly, the open-circuit potential (OCP) of the annealed CuHCF electrodes
decreased when increasing the annealing temperature. Indeed, before cycling, as the
annealing temperature increased, the amount of FeII became predominant within the lattice,
while the amount of FeIII decreased. Consequently, the OCP value shifted towards lower
potentials due to the lower electronegativity of the FeII

.
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Table 1. Open-circuit potential, average amount of charge exchanged at full state of charge in the
first cycle, average initial discharge capacity, average initial discharge energy, and average cycle life
based on discharge capacity and discharge energy of all the synthesized CuHCF-based electrodes.
The errors in OCP measurements are within ±5 mV. All the values reported within this table were
averaged by comparing at least two different samples resulting from two different thermally treated
CuHCF powders.

Treatment
Temperature (◦C)

OCP
(V)

Q0,charge
(mAh g−1)

Q0,discharge
(mAh g−1)

E0,discharge
(mWh g−1)

Cycle Life Based
on Qdischarge

Cycle Life Based
on Edischarge

Untreated 1.69 13.6 ± 1.3 58.1 ± 1.3 92.5 ± 2.1 170 190
60 1.67 19.6 ± 0.2 56.4 ± 0.2 89.6 ± 0.2 210 320
80 1.65 21.8 ± 0.2 54.6 ± 0.2 87.0 ± 0.4 280 350

100 1.62 29.4 ± 0.2 54.5 ± 0.2 87.4 ± 0.4 340 400
120 1.48 46.6 ± 1.9 49.8 ± 1.9 83.3 ± 0.8 290 340
150 1.32 - 15.2 ± 1.2 26.3 ± 2.1 - -

Figure S2 shows further proof of the increase in the FeII content in the CuHCF lattice
upon increasing the annealing temperature. Indeed, the initial oxidation charge in the
annealed CuHCF electrodes that was needed to reach the fully charged state during the first
cycle (Q0,charge) increased upon increasing the annealing temperatures, due to the higher
initial amount of FeII that could be oxidized to FeIII. Both the decrease in the OCP and
the increase in the initial Q0,charge represent electrochemical proofs ascribed to the increase
in the initial FeII content in the CuHCF lattice, which is in agreement with the ATR-FTIR
analysis (Figure 7).

The long-term galvanostatic cycling of the CuHCF electrodes also changed depending
on the annealing temperature (Figure 8). In particular, the cycle life of the CuHCF increased
with the increase in the annealing temperature up to 100 ◦C. However, it gradually de-
creased when annealed at temperatures higher than 100 ◦C. As shown in Figure 8a, the
100 ◦C sample retained 80% of its initial discharge capacity after 340 cycles, whereas the
untreated electrode achieved the same capacity retention only after 170 cycles.

The CuHCF electrode annealed at 120 ◦C exhibited a shorter lifespan, of around
290 cycles. Interestingly, the standard deviation in the capacity retention along the cycles
was more significant for the 120 ◦C sample than that the other annealed electrodes. This
evident variation in the electrochemical behavior of the CuHCF annealed at 120 ◦C can
be explained by taking into consideration the TG curve (Figure 2): at this temperature, it
appears that an initial partial degradation of the CuHCF lattice started to occur, and this may
have caused a lower stability in the CuHCF crystal structure when cycled electrochemically.
Thus, we believe that both the shorter lifespan and the larger standard deviation were
probably due to the start of this partial degradation of the material lattice at 120 ◦C.

The initial specific discharge energy (E0,discharge) of all the CuHCF electrodes ranged
around 80–90 mWh g−1 (Table 1), except the electrode annealed at 150 ◦C. In the case of
the initial discharge capacity, the initial specific energy also slightly decreased with the
increasing annealing temperature. In the case of the electrode annealed at 150 ◦C, the low
initial specific energy was due to the degradation of the material lattice that occurred at
this temperature, as discussed above.

As with the discharge-capacity retention, the specific energy retention was strongly
influenced by the annealing temperature of the CuHCF-based electrodes (Figure 8b). Simi-
larly, the CuHCF electrode annealed at 100 ◦C reached 80% energy retention after 400 cycles,
compared to the 190 cycles retained by the untreated CuHCF.
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Figure 8. Mean value and standard deviation of (a) specific discharge-capacity retention and (b) spe-
cific discharge-energy retention of the synthesized CuHCF-based electrodes galvanostatically cycled
at 1C annealed at different temperatures. The mean value and the standard deviations were calcu-
lated according to at least two different measurements of two different synthesis batches for each
annealing temperature.
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It is generally known that the cycle life of CuHCF in terms of delivered energy
density is longer than that estimated in terms of the electrode’s specific capacity. This
behavior can be explained by examining the potential profiles derived from galvanostatic
measurements. Figure 9 and Figure S3 illustrate the potential profiles of a selection of
cycles for both the untreated CuHCF-based electrode and the annealed electrodes. In all
cases, a plateau appeared at 1.6 V vs. Zn2+/Zn at the beginning of the charge curve, which
was due to the FeIII/FeII redox associated with the (de-)insertion of the Zn2+. However, the
(de-)insertion potential was partially shifted towards higher values, at approximately 1.7 V
vs. Zn2+/Zn, with the material cycling. This higher insertion plateau enabled a two-phase
Zn2+ insertion in the CuHCF lattice. This can be more clearly visualized with the aid of
the differential charge plots (Figure 10 and Figure S4). Here, two pairs of peaks can be
observed at 1.6 V vs. Zn2+/Zn and 1.7 V vs. Zn2+/Zn. Notably, the first pair of peaks,
at 1.6 V vs. Zn2+/Zn, was present from the beginning of the cycling of both electrodes,
whereas the second pair of peaks, at 1.7 V vs. Zn2+/Zn, appeared after approximately
200 cycles. These peaks were correlated with the developing plateau at around the same
potential in the galvanostatic profiles. The first pair of peaks at around 1.6 V vs. Zn2+/Zn,
corresponded to the FeIII/FeII redox associated with the (de-)insertion of the Zn2+, and
the development of the second pair of peaks around 1.7 V vs. Zn2+/Zn was correlated
with the development of a two-phase insertion. In the case of the annealed electrodes, the
second peaks at 1.7 V vs. Zn2+/Zn were considerably sharper than that of the untreated
electrode, particularly after approximately 300 cycles. We previously argued that the
occurrence of such a two-phase insertion mechanism at higher potential compensates, at
least partially, for the faded capacity of the material. This is the reason for the increased
cycle life when the state of health is defined with respect to the specific energy (E) rather
than the specific capacity (Q; refer to Table 1) [6,19].

There has been speculation that such phase transitions may affect the aging of CuHCF.
In our previous work [6], we suggested that such phase transitions and changes in the
potential profile may also be related to the formation of a different insertion site, with Zn2+

occupying vacancies in the CuHCF’s host structure, followed by the nucleation of ZnHCF
after long-term cycling.

All the annealed CuHCF electrodes showed very high coulombic efficiency (≥99.5%),
regardless of the temperature employed during the thermal treatment, as reported in
Figure 11.

It is worth noting that the electrode with the longest cycle life, namely the 100 ◦C-
annealed CuHCF, had an initial iron content of about 45% FeIII and 55% FeII in its lattice
(according to the ATR-FTIR analysis), while maintaining its structural stability (as demon-
strated by the TGA). The better electrochemical performance (i.e., longer cycle life) of the
material could have been due to the stabilizing effect on the crystal structure caused by the
thermal treatment at 100 ◦C, which is likely to have provoked a rearrangement of the lattice.
This lattice rearrangement might have been a consequence of a change in the amount/type
of the defects present in the CuHCF’s crystal structure, ultimately resulting in a change in
the initial FeIII/FeII content ratio.

Since the tuning of CuHCF’s properties through thermal treatment is limited by the
possibility of the decomposition and structural deterioration of the lattice, other strategies
should be developed in order to utilize an optimal FeIII/FeII content ratio in CuHCF crystal
structures to achieve the best possible electrochemical performance.
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Figure 9. Galvanostatic cycles of (a) untreated and (b) 100 ◦C-annealed CuHCF electrodes, recorded
at a C-rate of 1C.
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Figure 10. Differential charge plots for (a) untreated and (b) 100 ◦C-annealed CuHCF electrodes.
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Figure 11. The mean value and standard deviation of coulombic efficiency of the synthesized CuHCF-
based electrodes, annealed at different temperatures and galvanostatically cycled at 1C. The mean
value and the standard deviations were calculated according to at least two different measurements
of two different synthesis batches for each annealing temperature.

4. Conclusions

Here, structural changes in a CuHCF lattice were induced by thermally treating the
material, with an apparent effect on its cycle life. In particular, it was found that our
synthesized CuHCF is thermally stable up to nearly 120 ◦C. A structural analysis showed
that the CuHCF’s crystal lattice shrank upon increasing the annealing temperature. This
change in crystal dimensions was attributed to a decrease in the lattice’s FeIII/FeII content
ratio, as suggested by our ATR-FTIR analyses, which was also in agreement with the values
of the open-circuit potential of the annealed samples and with the initial oxidation charge
during the first galvanostatic cycle of the samples. The galvanostatic cycling showed that
the CuHCF-based electrode annealed at 100 ◦C, with a FeIII/(FeIII + FeII) content ratio in
the range of 45%, exhibited a longer cycle life of ca. 400 cycles at 1C, compared to the
190 cycles reached by the untreated CuHCF.

Based on our experiments, it appears that the arrangement of elements in the crystal
structure, particularly the FeIII/FeII content ratio in the crystal structure, may affect the
stability of CuHCF lattices and, therefore, the electrochemical performance of CuHCF, when
cycled in mild acidic aqueous electrolytes containing Zn2+. Considering the challenges that
are yet to be addressed to increase the stability of CuHCF when cycled in the presence of
Zn ions, it is clear that thermal treatment is a suitable strategy to increase its cycle life and,
therefore, accelerate the commercialization of aqueous Zn-ion batteries.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/batteries9030170/s1, Figure S1: SEM images of untreated and
treated CuHCF powder; Figure S2: The first galvanostatic cycle of CuHCF-based electrodes; Figure S3:
Galvanostatic cycles of all CuHCF-based electrodes; Figure S4: Differential charge plots of all CuHCF-
based electrodes.
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