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Abstract: The heat generation rate (HGR) of lithium-ion batteries is crucial for the design of a battery
thermal management system. Machine learning algorithms can effectively solve nonlinear problems
and have been implemented in the state estimation and life prediction of batteries; however, limited
research has been conducted on determining the battery HGR through machine learning. In this
study, we employ three common machine learning algorithms, i.e., artificial neural network (ANN),
support vector machine (SVM), and Gaussian process regression (GPR), to predict the battery HGR
based on our experimental data, along with cases of interpolation and extrapolation. The results
indicated the following: (1) the prediction accuracies for the interpolation cases were better than those
of extrapolation, and the R2 values of interpolation were greater than 0.96; (2) after the discharge
voltage was added as an input parameter, the prediction of the ANN was barely affected, whereas the
performance of the SVM and GPR were improved; and (3) the ANN exhibited the best performance
among the three algorithms. Accurate results can be obtained by using a single hidden layer and
no more than 15 neurons without the additional input, where the R2 values were in the range of
0.89–1.00. Therefore, the ANN is preferable for predicting the HGR of lithium-ion batteries.

Keywords: lithium-ion battery; heat generation rate; machine learning; artificial neural network;
support vector machine; Gaussian process regression

1. Introduction

Extensive research has been conducted on clean energy and energy storage systems
due to the limited reserves of fossil fuels and owing to the environmental problems, such as
global warming, that are caused by these resources. Over the past few decades, lithium-ion
batteries have been widely implemented in various applications such as portable electronic
devices, electric vehicles, aerospace vehicles, and so on due to their high energy density, low
self-discharge rate, stable performance, and long cycle life [1,2]. However, these batteries
generate a large amount of heat during operation, which can trigger thermal runaways and
cause fire accidents if the heat is not appropriately controlled [3–7]. Determining the heat
generation rate (HGR) is crucial for the thermal management of batteries and can help in
the development of operation strategies of a thermal management system (TMS).

The existing research models developed for the HGR of lithium-ion batteries primarily
include electrochemical-thermal, electric-thermal, and thermal models. The electrochemical-
thermal models simulate the thermal behavior of a battery by modeling mesoscopic-scale
electrochemical processes. However, various parameters, such as the composition, con-
centration of ions, diffusion coefficient, reaction rate, and porosity, are required [8–11],
which complicates the modeling; furthermore, the modeling is affected by the accuracy of
these parameters. Electric-thermal models are mainly used to determine irreversible and re-
versible heat by measuring the internal resistance and entropy changes of a battery [12–15].
Thermal models directly measure the HGR of a battery based on the three types of heat
transfer: conduction, convection, and radiation [16–19]. Electric-thermal models and ther-
mal models are relatively simple but require extensive experimental analysis. The heat
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generation characteristics of a battery are significantly affected by factors such as the state
of charge (SOC), ambient temperature, current, and aging [20–22]. Therefore, it takes a long
time to measure the HGRs in various environments or under different operating condi-
tions. For example, it takes 4–20 days to perform a single entropy change measurement
when applying the electric-thermal model [23]. In recent years, the rapid development
of machine learning has provided a simpler and faster alternative to building a model to
measure the HGR. The variation in the HGR of the battery affected by various factors is
typically nonlinear. Machine learning methods can effectively solve nonlinear problems
with multiple inputs and large sample sizes, and do not require insight into the mechanical
characteristics of the battery. They train historical data to identify patterns and make deci-
sions or predictions [24] and are applicable to various fields. Additionally, compared with
traditional regression analysis, machine learning enormously reduces the risk of model
misspecification [25].

The previous studies conducted on lithium-ion batteries using machine learning pri-
marily focused on the SOC and state of health (SOH) estimation and the remaining useful
life (RUL) prediction. Chandran et al. [26] estimated the battery SOC by using six machine
learning algorithms: artificial neural network (ANN), support vector machine (SVM),
Gaussian process regression (GPR), linear regression, ensemble bagging, and ensemble
boosting. The results demonstrated that ANN and GPR presented the best performance.
Zhang et al. [27] proposed a hybrid parallel residual convolutional neural network model
for online RUL prediction. The model achieved reliable and accurate results based on sparse
data that correspond to only 20% of the charging capacity. Wang et al. [28] proposed a SOH
prediction method based on a multi-kernel relevance vector machine and a whale optimiza-
tion algorithm and verified its performance for long-term and short-term predictions using
two different data sets. Wang et al. [29] established an accurate SOH prediction model
based on multi-output GPR by using the cycle data of a single cell and the initial cycle data
of a battery pack. Wang et al. [30] integrated a long short-term memory (LSTM) network
with differential thermal voltammetry to predict the battery’s SOH and RUL, which can
be also used for offline battery degradation tracking in the cloud. The aforementioned
studies conducted on state estimation typically considered voltage, temperature, internal
resistance, and other parameters as the inputs. However, the environment in practical
applications may vary from that of the historical data used for training. These parameters
are significantly affected by the operating conditions, which affects the accuracy and ap-
plicability of machine learning in online estimation. Therefore, it is crucial to estimate the
battery characteristics beforehand under various operating conditions.

Some studies have employed machine learning algorithms to estimate the battery
temperature and TMS parameters. Afzal et al. [31] implemented four activation functions
to train optimized neural network (NN) models and predicted the average Nusselt number
of batteries in the TMS from six operating parameters of the TMS. They reported that the
performance of the deep NN model was better than that of the single-layered NN model
for all activation functions. Liu et al. [32] proposed a data-driven method that combines the
optimized radial basis function neural network with an extended Kalman filter to estimate
the internal temperature of lithium-ion batteries from the battery current, terminal voltage,
and surface temperature. This method outperformed the linear neural network model
under four conditions. Hasan et al. [33] proposed an ANN-based nonlinear autoregressive
exogenous (NARX) approach to estimate the battery temperature in a battery energy storage
system with inputs of the charge/discharge current and ambient temperature. Furthermore,
they derived a more accurate seasonal NARX model than the universal model, based on the
different temperatures and weather characteristics in each season. Zhu et al. [34] employed
the LSTM model to predict the change in battery temperature during a long cycle-aging
process. The temperature data of the first 80 cycles were trained to predict the temperature
data of 81–100 cycles. This model requires a larger proportion of training data to obtain a
better prediction. The research on battery temperature estimation has strong practicability.
However, the increase in the battery temperature is only a manifestation of the battery
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heat generation, and it changes based on variations in the heat transfer environment.
Additionally, the HGR also changes based on various factors; therefore, the historical data
used for training may not be effective for other environments, which increases the difficulty
of applying these algorithms. The battery temperature under different conditions can be
more accurately estimated by predicting the HGR rather than the battery temperature
under a specific condition directly.

However, very few studies have been conducted on the application of machine learn-
ing for the prediction of the battery HGR. Arora et al. [35] optimized a one-hidden-layered
feedforward ANN with six neurons and estimated the battery HGR by using the nominal
capacity, ambient temperature, discharge rate, and depth of discharge (DOD) as inputs.
Their data set of the 8 Ah, 15 Ah, and 20 Ah LiFePO4 pouch cells covered the operating
range of the discharge rate and ambient temperature specified by the cell manufacturer.
The data of the 15 Ah battery cell were used for the independent assessment of the trained
model. The results concurred with the measured data, presenting a correlation coefficient
of 0.98627. However, some details of the HGR curve have not been predicted accurately,
and only one ANN model with a specific architecture was used in this study.

Based on the above literature review, we can observe that machine learning in the
lithium-ion battery field was mainly used to predict battery characteristics during the long
cycle-aging process. However, limited research has been conducted on the prediction of
battery characteristics under different conditions. Additionally, few studies have com-
pared the effectiveness of different machine learning algorithms in the prediction of the
battery HGR.

Therefore, this study presents a detailed analysis and comparison of the performance
of three common machine learning algorithms—ANN, SVM, and GPR—in the prediction of
the HGR of lithium-ion batteries based on the experimental data measured by our research
group. Furthermore, we analyze the impact of different input parameters on prediction
accuracy. The predicted operating conditions include three discharge currents and three
ambient temperatures, which can be divided into two types: interpolation and extrapolation.
We evaluated the advantages and disadvantages of the three machine learning algorithms
in predicting the battery HGR and provided specific operational suggestions. The findings
of this study can help in reducing the time required for the research and development of
the battery and TMS.

2. Data and Methods
2.1. Data Collection and Preprocessing

The training and testing data were measured by our research group and published
in [36]. We used Panasonic NCR18650 batteries with a rated capacity of 2900 mAh. The
active materials of NCR18650A are lithium nickel cobalt aluminum oxide (NCA) and
graphite. The calorimetry tests were conducted for discharging with 0.5 C, 0.75 C, 1 C,
1.25 C, and 1.5 C at the ambient temperature of 25 ◦C and with 1 C at ambient temperatures
of 20, 25, 30, 35, 40, and 45 ◦C. The ambient temperatures for the tests were selected within
the normal operating ambient temperature range of the battery. The battery was charged in
constant current–constant voltage mode by 0.5 C with the cut-off voltage and current set to
4.2 V and 59 mA. During the tests, a battery testing system was used to control and monitor
basic parameters such as voltage, current, and capacity. A thermostatic chamber was used
to provide the calorimetric environment and maintain the specific ambient temperature
required for testing. The experimental data and the modeling in this paper were limited to
new battery cells, with negligible capacity fade.

The Figure. 5b in [36] demonstrates that the HGR increased with an increase in the
discharge current. The correlation between the HGR and discharge current is observed to
be nonlinear based on the most commonly used thermal model [37] in Equation (1). The
temperature and internal resistance are also related to the discharge current. The Figure. 7b
in [36] demonstrates that the HGR decreased with an increase in the ambient temperature,
and its variation rate was also nonlinear.
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q = I2R − IT
∂UOCV

∂T
(1)

where q is the HGR, I is the current, R is the internal resistance, T is the cell temperature,
UOCV is the open-circuit voltage, and ∂UOCV

∂T denotes the entropic coefficient.
To standardize the training and testing data, the HGR curves and discharge voltage

curves were fitted and extracted as samples with an interval of 0.001 DOD. The DOD
used in this study is defined as follows: The HGR curves were fitted with nine-degree
polynomials, and the voltage curves were fitted by the smoothing splines. All the data were
normalized before training to avoid focusing more on features with larger values during
the training phase.

DOD =
Cd

Crated
(2)

where Cd is the discharged capacity by a certain moment (Ah), and Crated is the rated
capacity of the battery (Ah).

2.2. Machine Learning Modeling

The DOD and discharge current I were selected as the inputs for the HGR prediction
of different discharge currents. The DOD and ambient temperature Ta were the inputs
for the HGR prediction of different ambient temperatures. Additionally, the discharge
voltage U was added to the inputs and the results were compared with those obtained
without considering discharge voltage as an input. Therefore, four types of modeling
were conducted, as expressed by Equations (3)–(6). Table 1 lists the operating conditions
to be predicted and the data used; 12 cases were predicted. The cases equivalent to
interpolation and extrapolation were analyzed for different discharge currents and different
ambient temperatures, respectively. The interpolation in Table 1 indicates that the operating
conditions to be predicted were within the range of those of the training data, whereas the
opposite was true for extrapolation.

q = f1(DOD, I; Ta) (3)

q = f2(DOD, I, U; Ta) (4)

q = f3(DOD, Ta; I) (5)

q = f4(DOD, Ta, U; I) (6)

Table 1. Operating conditions to be predicted and the data used.

No. Operation
Conditions

Do the Inputs Contain
Discharge Voltage? Training Data

Number of
Training
Samples

Number of
Testing

Samples
Interpolation/Extrapolation

1
0.5 C

No 0.75 C, 1 C,
1.25 C, and 1.5 C 3820 978 extrapolation

2 Yes

3
1 C

No 0.5 C, 0.75 C,
1.25 C, and 1.5 C 3836 962 interpolation

4 Yes

5
1.5 C

No 0.5 C, 0.75 C, 1 C,
and 1.25 C

3856 942 extrapolation
6 Yes

7
20 ◦C

No 25, 30, 35, 40,
and 45 ◦C

4930 933 extrapolation
8 Yes

9
30 ◦C

No 20, 25, 35, 40,
and 45 ◦C

4887 976 interpolation
10 Yes

11
40 ◦C

No 20, 25, 30, 35,
and 40 ◦C

4856 1007 extrapolation
12 Yes
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The previous studies demonstrated that the ANN, SVM, and GPR algorithms perform
well for small-sample problems [24,38]. Therefore, we selected these three algorithms for
training and prediction due to the small number of samples in this study and compared
their performance. For each case in Table 1, one ANN model, one SVM model, and one
GPR model were trained, respectively.

An ANN model is a multi-layered network comprising multiple neurons with one
input layer, one or more hidden layers, and one output layer, as shown in Figure 1. The
BP neural network exhibits a strong nonlinear mapping ability as a feedforward ANN.
Therefore, we used the BP neural network for training and testing and selected the sigmoid
as the activation function. The Levenberg–Marquardt algorithm was used as the learning
algorithm due to its fast convergence. The learning rate was set to 0.01. There are no
universal rules for selecting the number of hidden layers and neurons [39]. We employed
the trial-and-error method to determine the architecture of the ANN model by creating and
training networks with different architectures and implementing independent tests. The
first choice for the number of hidden layers was one, and that for the number of neurons
was in the range of 1–20. Lastly, we selected the architecture with a smaller test root mean
square error (RMSE) and fewer hidden layers and neurons for each case.
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The SVM is a generalized classification algorithm. Its core concept involves finding
the widest separation band for separating the different types of data and solving the
hyperplane, which is the classification plane in the middle of the band. When the SVM
is implemented for regression analysis, an insensitive loss function is added to find an
optimal hyperplane that minimizes the distance between the sample and the plane. The
kernel function is defined as the function that transforms a low-dimensional space into a
high-dimensional space to attain linear separability. The Gaussian kernel or the radial basis
function (RBF) kernel exhibits a strong learning ability and can be effectively adapted for
low-dimensional and small-sample problems [40]. Therefore, we used the Gaussian kernel
function to train the SVM model. The box constraint was set to 1 and Bayesian optimization
was used to optimize the kernel scale parameter for each case.

The GPR model is a nonparametric kernel-based model which uses the Gaussian
process for regression. It solves the mean function followed by the mean vector elements
and the covariance function followed by the covariance matrix elements. The solution
is based on the Bayesian inference and follows the maximum likelihood estimation. We
selected the constant as the mean function when using the GPR. The sigma parameter and
kernel scale were kept to the default values first. The trial-and-error method was used to
create and train models with different covariance functions and independent tests were
conducted. After selecting the covariance function with the best test performance, the
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Bayesian optimization of the hyperparameters was performed to obtain the model with the
best test performance.

k-fold cross-validation was used for model training due to the small number of input
parameters and samples used in this study. According to [41], both k = 5 and k = 10 exhibit
good performance. We selected the five-fold cross-validation to further reduce the training
time. All the data preprocessing and machine learning operations in this study were
performed using the MATLAB platform.

2.3. Evaluation of the Methods

The RMSE, R-squared (R2), and relative error of the average HGR, δ, were used to
evaluate the prediction performance of these models. The RMSE is generally used to
measure the deviation between the estimated and actual values, as defined in Equation (7).
In this study, the actual value was the experimentally measured value. The closer the value
of RMSE is to 0, the higher the prediction accuracy of the model.

RMSE =

√
∑n

i=1(qest − qact)
2

n
(7)

where qest and qact are the estimated and actual values of the battery HGR for sample i,
respectively, and n is the number of samples.

R2, or the coefficient of determination, was used to evaluate the goodness of fit of a
regression model, which is defined in Equation (8). The closer the value is to 1, the better
the regression performance.

R2 = 1 − ∑n
i=1(qest − qact)

2

∑n
i=1(qest − qact)

2 (8)

where qact denotes the average of all the samples of the actual HGR.
Additionally, we calculated the relative error of the average HGR, which is defined in

Equation (9).

δ =
qest − qact

qact
× 100% (9)

where qest denotes the average of all the samples of the estimated HGR.

3. Results
3.1. HGR Prediction at Different Discharge Currents

When the inputs were selected as the DOD and discharge current, the predicted
HGRs discharged at 0.5 C, 1 C, and 1.5 C at 25 ◦C obtained by the ANN, SVM, and GPR
were compared with the actual values, as shown in Figure 2a,c,e. Figure 2b,d,f depict the
estimated and actual HGRs at 0.5 C, 1 C, and 1.5 C, respectively, after the discharge voltage
was added to the inputs. Table 2 lists the ANN architectures and covariance functions of
the GPR that were used and the R2 values of the regressions. Figure 3 presents the training
and testing RMSE values and the relative error of the average HGR, δ.

3.2. HGR Prediction at Different Ambient Temperatures

When the inputs were the DOD and ambient temperature, the predicted HGRs dis-
charged at 20, 30, and 45 ◦C that we obtained by the ANN, SVM, and GPR were compared
with the actual values, as shown in Figure 4a,c,e. After the discharge voltage was added to
the inputs, the estimated and actual HGRs at 20, 30, and 45 ◦C are shown in Figure 4b,d,f,
respectively. Table 3 lists the ANN architectures and covariance functions of the GPR that
were used and the R2 values of the regressions. Figure 5 depicts the training and testing
RMSE values and the relative error of the average HGR, δ.
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without discharge voltage as an input; (f) 1.5 C discharge with discharge voltage as an input.
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Table 2. ANN architectures and covariance functions of GPR that were used, and R2 of the regressions.

No. Operation
Conditions

Do the Inputs Contain
Discharge Voltage? ANN Architecture Covariance

Function of GPR

R2

ANN SVM GPR

1
0.5 C

No 1 hidden layer–5 neurons Matern 3/2 0.95 0.53 0.67
2 Yes 1 hidden layer–8 neurons Matern 3/2 0.95 0.82 0.88

3
1 C

No 1 hidden layer–3 neurons Matern 5/2 0.99 0.96 0.97
4 Yes 1 hidden layer–5 neurons Exponential 0.98 0.98 0.98

5
1.5 C

No 1 hidden layer–10 neurons Matern 3/2 0.89 0.94 0.72
6 Yes 1 hidden layer–4 neurons Matern 3/2 0.94 0.93 0.82
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Figure 3. RMSE of training and testing, and the relative error of the average HGR, δ: (a) RMSE values
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Figure 4. Comparison of the estimated and actual HGRs during discharge: (a) at 20 ◦C without
discharge voltage as an input; (b) at 20 ◦C with discharge voltage as an input; (c) at 30 ◦C without
discharge voltage as an input; (d) at 30 ◦C with discharge voltage as an input; (e) at 45 ◦C without
discharge voltage as an input; (f) at 45 ◦C with discharge voltage as an input.



Batteries 2023, 9, 165 10 of 15

Table 3. ANN architectures and covariance functions of GPR that were used, and R2 of the regressions.

No. Operation
Conditions

Do the Inputs Contain
Discharge Voltage? ANN Architecture Covariance

Function of GPR

R2

ANN SVM GPR

7
20 ◦C

No 1 hidden layer–15 neurons Matern 3/2 0.99 0.90 0.98
8 Yes 1 hidden layer–5 neurons Matern 3/2 0.99 0.96 0.97

9
30 ◦C

No 1 hidden layer–9 neurons Matern 3/2 1.00 0.98 1.00
10 Yes 1 hidden layer–5 neurons Rational quadratic 1.00 0.99 1.00

11
45 ◦C

No 1 hidden layer–6 neurons Matern 3/2 0.99 0.92 0.96
12 Yes 1 hidden layer–7 neurons Matern 3/2 0.99 0.98 0.98

Batteries 2023, 9, x FOR PEER REVIEW 11 of 16 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. RMSE of training and testing, and the relative error of the average HGR, δ: (a) RMSE values 
of discharge at 20 °C; (b) δ of discharge at 20 °C; (c) RMSE values of discharge at 30 °C; (d) δ of 
discharge at 30 °C; (e) RMSE values of discharge at 45 °C; (f) δ of discharge at 45 °C. 

4. Discussion 
Figure 2 and the R2 values in Table 2 demonstrate that all three methods achieved 

good predictions for 1 C discharge (cases No. three and four) that are equivalent to the 
interpolation, where R2 is greater than 0.96, regardless of whether the inputs contained 
the discharge voltage. However, the predictions of the extrapolated conditions of 0.5 C 
(cases No. one and two) and 1.5 C (cases No. five and six) are not as good as those of 1 C. 
The R2 of the GPR on the 1.5 C discharge prediction was only 0.82 after the discharge 
voltage was added to the input parameters (Table 2). Figure 3 also demonstrates that the 

0.
01

13
 

0.
00

35
 

0.
00

01
 

0.
01

23
 

0.
05

40
 

0.
02

50
 

0.
01

19
 

0.
01

43
 

0.
00

02
 0.
01

56
 0.

03
32

 

0.
02

66
 

0.0000

0.0200

0.0400

0.0600

ANN -
train

SVM -
train

GPR -
train

ANN -
test

SVM -
test

GPR -
test

RM
SE

 (W
)

input: DOD and current input: DOD, current, and voltage

−0
.7

2

2.
87

 

0.
83

 

−0
.3

0

−1
.9

3

0.
74

 

-4.00

-2.00

0.00

2.00

4.00

ANN SVM GPR

δ 
(%

)
input: DOD and current

input: DOD, current, and voltage

0.
01

17
 

0.
02

06
 

0.
00

01
 

0.
00

81
 

0.
02

03
 

0.
01

00
 

0.
01

27
 

0.
01

52
 

0.
00

01
 

0.
00

97
 

0.
01

33
 

0.
01

02
 

0.0000

0.0200

0.0400

0.0600

ANN -
train

SVM -
train

GPR -
train

ANN -
test

SVM -
test

GPR -
test

RM
SE

 (W
)

input: DOD and current input: DOD, current, and voltage

0.
30

 

0.
14

 

0.
63

 

0.
40

 

0.
47

 

0.
58

 

-4.00

-2.00

0.00

2.00

4.00

ANN SVM GPR

δ 
(%

)

input: DOD and current

input: DOD, current, and voltage

0.
01

02
 0.

03
01

 

0.
00

01
 

0.
01

03
 0.

03
34

 

0.
02

53
 

0.
01

14
 

0.
01

43
 

0.
00

02
 

0.
01

41
 

0.
01

80
 

0.
01

70
 

0.0000

0.0200

0.0400

0.0600

ANN -
train

SVM -
train

GPR -
train

ANN -
test

SVM -
test

GPR -
test

RM
SE

 (W
)

input: DOD and current input: DOD, current, and voltage

−0
.5

4

3.
19

 

−0
.6

2

−0
.2

5

2.
00

 

−0
.5

8

-4.00

-2.00

0.00

2.00

4.00

ANN SVM GPR

δ 
(%

)

input: DOD and current

input: DOD, current, and voltage

Figure 5. RMSE of training and testing, and the relative error of the average HGR, δ: (a) RMSE values
of discharge at 20 ◦C; (b) δ of discharge at 20 ◦C; (c) RMSE values of discharge at 30 ◦C; (d) δ of
discharge at 30 ◦C; (e) RMSE values of discharge at 45 ◦C; (f) δ of discharge at 45 ◦C.
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4. Discussion

Figure 2 and the R2 values in Table 2 demonstrate that all three methods achieved
good predictions for 1 C discharge (cases No. three and four) that are equivalent to the
interpolation, where R2 is greater than 0.96, regardless of whether the inputs contained the
discharge voltage. However, the predictions of the extrapolated conditions of 0.5 C (cases
No. one and two) and 1.5 C (cases No. five and six) are not as good as those of 1 C. The
R2 of the GPR on the 1.5 C discharge prediction was only 0.82 after the discharge voltage
was added to the input parameters (Table 2). Figure 3 also demonstrates that the predicted
RMSE values of the 1 C discharge were typically the lowest, and the δ values were also low,
especially when the discharge voltage was selected as one of the input parameters. Similar
results were observed in the predictions at different ambient temperatures. Figures 4 and 5,
and the R2 values in Table 3 demonstrate that the three methods achieved good results in
the 30 ◦C predictions (cases No. 9 and 10) that are equivalent to the interpolation, where
the R2 values were greater than 0.98. The prediction performances of the extrapolated
conditions at 20 ◦C (cases No. seven and eight) and 45 ◦C (cases No. 11 and 12) were good,
but not as good as those at 30 ◦C. The three algorithms performed well in the interpolation
cases of the HGR prediction, whereas extrapolation may require more input parameters
and may not achieve ideal results. Therefore, the boundary of the test conditions must be
broadened as much as possible and extrapolation should be avoided in the regression.

The RMSE of the ANN for the 1.5 C discharge prediction decreased (Figure 3e) and R2

increased (Table 2) after adding the discharge voltage to the input parameters, indicating
that the prediction performance improved, whereas the performance of the ANN for
0.5 C and 1 C discharge decreased slightly. The performance of the SVM in predicting
the discharge at 0.5 C and 1 C was improved after adding the discharge voltage to the
input parameters (Figure 3a,c), wherein the minimum R2 values increased from 0.53 to
0.82 (Table 2), and the maximum value reached 0.98 (Table 2). The RMSE of the SVM
for 1.5 C discharge prediction slightly increased (Figure 3e) and R2 slightly decreased
(Table 2). However, the comparison between Figure 2e,f demonstrated that the accuracy
of the prediction in 0.2–0.8 DOD increased after adding the input. The GPR performance
significantly improved for all cases of discharge currents (Figure 3), wherein the minimum
R2 increased from 0.67 to 0.82 (Table 2) and the maximum value reached 0.98 (Table 2). In the
prediction of the cases of different ambient temperatures, the RMSE of the ANN increased
slightly after adding the discharge voltage to the inputs (Figure 5), and R2 changed slightly
(Table 3), demonstrating slight decreases in the prediction performance. The performance
of the SVM and GPR both improved (Figure 5a), wherein the minimum R2 values increased
from 0.90 to 0.96 (Table 3) and the maximum value reached 0.99 (Table 3). In summary, the
accuracy of the ANN was less affected by the added input parameters, and the number of
neurons used exhibited no evident change pattern (Tables 2 and 3). The SVM and GPR have
a high probability of obtaining better predictions with more input parameters. Adding
the discharge voltage to the inputs can slightly increase the accuracy of the prediction.
However, additional tests must be conducted to obtain the discharge voltage data of the
predicted conditions, which increases the test time. Therefore, the prediction accuracy and
time consumption must be weighed when selecting the input parameters.

Notably, the average HGR may not accurately reflect the prediction precision. For
example, Figure 2e,f, RMSE (Figure 3e), and R2 values (Table 2) all demonstrate that the
performance of the GPR for the 1.5 C discharge was improved after adding the discharge
voltage as an input, whereas the absolute value of δ in Figure 3f did not decrease. However,
δ can still supplement the RMSE, reflecting the relative error magnitude of the prediction.
For the predictions of different discharge rates, the maximum absolute value of δ was 7.17%
(Figure 3b), except for the prediction of the 0.5 C discharge by the SVM and GPR without
discharge voltage being used as an input (Figure 3b). The maximum absolute value of δ
was 3.19% (Figure 5f) for the predictions of different ambient temperatures. These results
demonstrate that the three algorithms can be effectively applied to predict the battery HGR.
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From the comparison of the three algorithms, the ANN performed well in the pre-
diction of interpolation and extrapolation, especially when there was no added input; the
minimum R2 was 0.89 and the maximum was 1.00 (Tables 2 and 3). Additionally, in the
predictions for different discharge rates by the ANN, the peaks of the HGR at the initial
stages of 1 C and 1.5 C discharge were simulated after adding the discharge voltage as
an input, as shown in Figure 2d,f. This detail was also effectively simulated in the pre-
diction for different ambient temperatures by the ANN (Figure 4). Conversely, the SVM
and GPR could effectively predict the HGR of 0.5 C and 1.5 C discharge only after the
discharge voltage was added to the inputs (Table 2). The performances of the SVM and
GPR in the predictions for different ambient temperatures were also inferior to those of
the ANN (Table 3). The GPR performed better than the SVM in the predictions except for
the 1.5 C discharge (Table 2). Moreover, it better simulated the peak at the initial stage of
discharge in the predictions for different ambient temperatures. The SVM exhibited the
worst detail-simulation performance among the three algorithms. Figures 3 and 5 also
demonstrate that the training RMSE values of the SVM were typically higher than those of
the ANN and GPR, and both the training and testing performance were not ideal, which
indicates that the SVM models may be underfitting. Conversely, the training RMSE values
of the GPR were far lower than those of the ANN and SVM, and also far lower than their
testing RMSE (Figures 3 and 5), indicating that the generalization ability of the GPR models
was poor and that there was overfitting. The training and testing RMSE values of the
ANN were relatively close and small (Figures 3 and 5), indicating that both the learning
and generalization abilities of the ANN models were satisfactory. The total training time
cannot be directly compared since the search for the optimal architecture or kernel function
and optimization of the hyperparameters were all performed when applying the three
algorithms; however, a single training time can be considered as a reference. In this study,
the single training times of the ANN, SVM, and GPR were within the ranges of 8–25 s,
1–13 s, and 69–383 s, respectively. Essentially, among the three algorithms, the computation
cost of the GPR was the highest, whereas that of the SVM was the lowest, and that of the
ANN was relatively low.

Overall, the ANN exhibited the best performance. It accurately predicted the in-
terpolation and extrapolation cases using simple architectures (single hidden layer with
the number of neurons limited to 15) and only two input parameters. Consequently, the
computational cost was low and no additional tests were required. Therefore, the ANN
was confirmed to be the most suitable algorithm for predicting the HGR. The prediction
accuracies of the GPR were typically better than those of the SVM, but the computational
cost was the highest. The prediction performance of the SVM was the worst, but it achieved
fast computation.

5. Conclusions

In this study, we used three machine learning algorithms—ANN, SVM, and GPR—to
predict the HGR of a lithium-ion battery that was discharged by 0.5 C, 1 C, and 1.5 C at
25 ◦C and by 1 C at 20, 30, and 45 ◦C, respectively; this included the cases of interpolation
and extrapolation. The prediction performances of the cases where the discharge voltage
was included in the input parameters were compared with the cases where the discharge
voltage was excluded. The main conclusions of this study are as follows:

1 The prediction performances of the three algorithms for the extrapolation cases were
not as good as those for the interpolation cases. Particularly, ideal results may not be
obtained for the predictions of the 0.5 C and 1.5 C discharge even after the discharge
voltage was added to the inputs. For example, the R2 values of the interpolation
cases were greater than 0.96, whereas that of the GPR for the 1.5 C discharge after
adding the discharge voltage as an input was only 0.82 (Table 2). Therefore, in practical
applications, the boundary of the test conditions must be broadened and extrapolation
regression must be avoided as much as possible.
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2 The prediction accuracy of the SVM and GPR can be improved by adding the discharge
voltage to the input parameters of the DOD and discharge current/ambient tempera-
ture. For example, in the prediction of different discharge currents, the minimum R2

value increased from 0.53 to 0.82, and the maximum reached 0.98 (Table 2). The effect
of adding the input parameter on the accuracy of the ANN was minimal. However,
more tests are required to obtain the discharge voltage data under the conditions to be
predicted when the input is added, which increases the time consumption.

3 The absolute values of the relative error of the average HGRs predicted by the three
algorithms were mostly within 5%, indicating that all three algorithms can be applied
to predict the battery HGR. The ANN exhibited the best performance among the
three algorithms and accurately predicted the interpolation and extrapolation cases
without additional input parameters. The R2 values were within the range of 0.89–1.00
(Tables 2 and 3), the architectures used were simple, and the computation cost was
relatively small. Therefore, the ANN is the most preferred among the three machine
learning algorithms for similar battery HGR prediction problems.

This study verified the feasibility of ANN, SVM, and GPR for predicting the HGR of
lithium-ion batteries and compared their performances. The drawback faced by this study
is that the predicted operating conditions are a single factor of the discharge current or am-
bient temperature. In the future, the HGRs of the combined factors of the discharge current,
ambient temperature, and aging can be predicted by collecting more experimental data.
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The following abbreviations are used in this manuscript:
ANN Artificial neural network;
DOD Depth of discharge;
GPR Gaussian process regression;
HGR Heat generation rate;
LSTM Long short-term memory;
NARX Non-linear autoregressive exogenous;
NN Neural network;
R2 R-squared, or the coefficient of determination;
RBF Radial basis function;
RMSE Root mean square error;
RUL Remaining useful life;
SOC State of charge;
SOH State of health;
SVM Support vector machine;
TMS Thermal management system.
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