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Abstract: The capacity and voltage rating of battery packs for electric vehicles or stationary energy
storages are increasing, which challenge battery management and monitoring. Breaking the larger
pack into smaller modules and using power electronics to achieve dynamic reconfiguration can be
a solution. Reconfigurable batteries come with their own set of problems, including many sensors
and complex monitoring systems, high-bandwidth communication interfaces, and additional costs.
Online parameter estimation methods can simplify or omit many of these problems and reduce the
cost and footprint of the system. However, most methods require many sensors or can only estimate
a subset of the elements in the module’s equivalent circuit model (ECM). This paper proposes a
simple decoupling technique to derive individual modules’ voltage and current profiles from the
output measurements without direct measurement at the modules. The determined profiles can
achieve a high sampling rate with minimum communication between the battery management system
(BMS) and the modules. With accurate profiles, an estimation technique can easily determine the
parameters of the modules. Provided simulations and experiments confirm this claim by estimating
the parameters of a first-order ECM with a parallel capacitor. The proposed technique reduces the
number of sensors from 2N + 2 to only two at the pack’s output terminals.

Keywords: parameter estimation; equivalent circuit model (ECM); battery management system
(BMS); sensor reduction; battery monitoring; reconfigurable battery; smart battery; modular battery;
modular multilevel converters (MMC)

1. Introduction

Battery electric vehicles are the preferred choice in comparison to combustion-engine
vehicles to reduce greenhouse gas emissions of passenger cars and the transportation
sector [1,2]. Concurrently, with the increased penetration of renewable energy sources and
application of power electronics, interest in stationary storages for the purpose of grid
stabilization is growing [3–5]. Moreover, most applications, particularly within the electro-
mobility and stationary energy storages, observe an exponential growth in energy capacity
and voltage rating of the battery system [6–8]. The high-energy and high-power battery
packs in these applications typically consist of a large number (up to several thousand) of
individual battery cells which are connected in series and parallel arrangements by solder-
ing or welding joints [9–11]. However, large battery packs are less fault-tolerant and prone
to parameter variations [12–14]. Furthermore, these require a more complex monitoring
system which can make a cost-efficient design of the battery management system and
balancing circuitry challenging [15–17]. In addition, the battery pack’s lifetime and usable
capacity are constrained by the weakest battery cell [18,19]; when one cell in the string is
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empty, the whole battery pack has to be considered empty; if one cell is hot, the power has
to be limited for the whole string; and if a cell is dead, the string becomes unusable.

Alternatively, bulky battery packs can be divided into a collection of smaller modules
where fully-controllable power electronics replace the fixed connections to offer dynamic
reconfiguration capabilities [20–22]. Due to the modular and fully controllable architecture,
such batteries are often referred to as (modular) reconfigurable or smart batteries [23–26].
The integration of the power electronics allows for rearranging the connection of each
module within the battery cell string/array to balance the individual state of charges (SOC)
or temperatures of the modules [27–29], perform fault prevention or mitigation [30,31],
increase the system efficiency [32,33], and regulate the load flow of the individual modules
to improve the reliability or lifetime of the system [34]. Therefore, reconfigurable batteries
inherently combine many conventional functions of generic battery management and
energy conversion systems [35,36]. Furthermore, dynamically reconfiguring the battery
modules can create a multilevel-output waveform which improves the output current
quality (total harmonic distortion) [37–39] which, in turn, increases the current control
bandwidth [40], while reducing the common mode voltage [41,42]. In [41,43,44], a wide
selection of modular battery topologies is described for both AC and DC applications. A
higher modularity in the design of the pack can also be helpful with respect to the module
arrangement and design of the physical shape of the pack. For example, it can allow more
freedom to optimize the weight distribution for electromobility application. The added cost
of wiring and complexity can also be improved with better integration of the electronics
with the modular design of the system, to keep the complexity to a minimum.

Although modular reconfigurable batteries offer clear advantages in comparison with
hard-wired packs, they still suffer some drawbacks, such as increased ohmic battery losses
and intricate control requirements [45,46]. With many degrees of freedom and the need for
monitoring many modules, a modular battery architecture can substantially increase the
complexity and system costs due to the many sensors, gate drivers, and related electron-
ics [47–49]. A monitoring system based on a conventional battery management systemm
(BMS) requires voltage and current sensors for each module and a dedicated communica-
tion interface between the central controller and the modules [50,51]. Aside from costly
measurement and isolation circuits, the high number of signals can overload the communi-
cation bus or decrease the update rate, diminishing the appeal of such methods [52–54].

As a simple solution, this work demonstrates that simple measurements at the output
of a reconfigurable battery system combined with the knowledge of the modules’ con-
nections within the string contain the necessary information to determine each module’s
voltage and current profile without directly measuring them. The derived voltage and cur-
rent profiles can help to estimate the parameters of each individual battery module [47,52].
In other words, since the arrangement of the modules within a battery string is constantly
changing but known, this paper presents a decoupling method to derive the voltage and
current profile of the individual modules from the voltage and current sensors at the out-
put terminals of the battery system (requiring only two system-level-sensors). These two
sensors already exist for controlling the output and the string current; hence, the method is
even compatible in existing designs.

This idea is inspired by the capacitor voltage estimation in modular multilevel con-
verters (MMCs) [55]. For example, as demonstrated in [56], a simple sliding-mode observer
to track the module voltages in the discrete-time domain minimizes the communication
requirements. Similar other approaches exist in the literature [57–61] which focus on the
capacitor voltage estimation in MMCs, with different levels of accuracy and complexity.
Although these approaches are advantageous in reducing the system cost and complexity,
they are only applicable for tracking the average terminal voltage of capacitor-based mod-
ules and mostly disregard other types of energy storages with more complex equivalent
circuit models (ECM) [61–64]. Therefore, these methods do not scale well for batteries since
these have a nonlinear voltage–current behavior, which can only be represented by intricate
ECMs [47,52,65].
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From the BMS perspective, the ECM parameters are crucial as most monitoring
functionalities, including charge or health monitoring and power capability estimation,
depend heavily on an accurate battery model [41,66–69]. Studies have shown that these
parameters vary heavily with the operating condition, SOC, and state of health (SOH),
making developing accurate models even more challenging [70,71]. In a conventional BMS,
an accurate battery model for specific SOC and currents is developed as a look-up table
which is gradually updated as the battery ages [72,73]. However, methods that accurately
update these parameters require constant monitoring of the voltage and current of the
battery [74,75]. In recent years, there have been some attempts to improve the accuracy of
the battery models for modular reconfigurable batteries that consider the peculiar behavior
of batteries in response to a pulsating current [76,77]. Concurrently, attempts to improve
some of the reduced sensor estimation methods considering the ECM of the batteries are
made [47,52,78]. One of the simplest approaches is modeling the battery behavior with a
variable voltage source in series with an equivalent circuit resistor. With the help of current
variations, the equivalent series resistance of the module and the open-circuit voltages
(OCVs) can be determined by tracking the voltage drop for different operating points [78,79].
While the method can appeal to some applications, the zero-order ECM needs to offer
more information [80,81]. However, determining the parameters of higher-order ECMs for
the batteries requires having the module’s accurate voltage and current profile during the
current variations, which goes beyond the capabilities of existing methods.

This paper proposes a decoupling technique that accurately determines every mod-
ule’s voltage and current profile without any direct measurement at the module level.
The decoupling technique can achieve synchronized sampling frequencies as high as the
module’s switching rate, which is sufficiently large to estimate all the required parame-
ters of the battery. The fixed and synchronized sampling rate simplifies the parameter
estimation. Moreover, this paper develops a simplified second-order ECM for batteries
with an optional parallel capacitor. The proposed model, combined with an estimator,
demonstrates the applicability and accuracy of the developed decoupling technique. Com-
pared to conventional BMSs, as shown in [78,82], the proposed technique can reduce the
number of sensors from 2N + 2 (sensors for module current and module voltage) in a
battery string with N modules to only two at the output terminals (output voltage and
current of the pack). Additionally, the decoupling technique contains only simple scalar
mathematics, does not require any computationally demanding calculations, and can be
easily integrated into the switching function of the modules. As it is possible to track the
exact voltage and current profile during the current variations, it is possible to estimate the
ECM parameters of individual modules which capture the dynamics of the battery system
more accurately [53,62,83]. Proposing a new estimation technique is not the main inno-
vation of this paper. Consequently, a state-of-the-art estimator provides proof of concept
and shows how the developed decoupling technique can be integrated with an estimation
method. Similarly, other estimation methods with different levels of computation and
complexity can also be combined with the proposed decoupling technique [84–89]. In
addition to reducing the number of sensors and the size of the overall monitoring system,
the necessary data communication can be significantly reduced. The effectiveness of the
proposed technique is verified through simulations and experiments.

The remainder of this paper is organized as follows: Section 2 introduces the modular-
reconfigurable battery system and its working principles. Section 3 proposes an algorithm
for estimating the electrical equivalent circuit parameters of the battery module. Section 4
discusses the simulations and the obtained experimental results. Finally, the last section
concludes the paper with final remarks.

2. System Description

Figure 1 depicts the modular reconfigurable battery where vbj
and ibj

are the battery

voltage and current of the jth module, respectively [90]. The output voltage of the jth

module is denoted by vtj . They form the vectors vb, ib, and vt where j ∈ {1, 2, . . . , N}. The



Batteries 2023, 9, 99 4 of 20

modules have been connected in series and supply the load through a low-pass filter formed
by L and C. vp and ip as the terminal voltage and current of the whole reconfigurable
battery are independently measured for controlling the output voltage and current of the
system. The battery management system or the central controller can also use these signals
for monitoring purposes.

Figure 1. The modular reconfigurable battery.

Two switches and their anti-parallel diodes (in half-bridge topology) in parallel with
the battery form one module which can offer bypass and series connections, as illustrated
in Figure 2 for the jth module [47]. The upper switch in the jth modules is S1j , and the
lower switch is S2j . The vector S denotes the state of all the modules. The jth element
of S equals one if the jth module operates in the series mode and zero if it is bypassed.
Therefore, considering switches and diode resistances, the general equation of the string
voltage follows

vp = ST × vb − N. ron. ip − R. ip (1)

where “×”, “.”, and “T” denote the matrix product, the normal product, and the trans-
position operator, respectively. ron is the on-state resistance of the switches or diodes in
each module, R is the parasitic series resistance of the inductor L, S = [S1S2 . . . SN ]

T , and
vb = [vb1 vb2 . . . vbN ]

T .
Considering a single battery with an optional parallel capacitor (Cpj ) to reduce the

ripple as Figure 3a illustrates, the equivalent circuit based on the first-order ECM for the
battery is shown in Figure 3b. Other parameters shown in Figure 3b are the open-circuit
voltage (voc), and the ohmic resistance (Rint). The left RC network (Rpa, Cpa) models the
chemical reactions (e.g., polarization process) inside the battery that typically has a time
constant of few-hundred milliseconds up to several seconds [91]. Recent research on the
negative effect of high-frequency current ripples is inconclusive [92–97]. Still, in most cases,
there is a parallel capacitor to reduce the high-frequency content of the pulsating load of
the battery. The exact value of Cpj depends on the switching frequency and operating
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conditions, but it is typically within the millifarad range for a few kilohertz switching
rates [98].

Figure 2. Modes of the jth module.

Figure 3. Derivation of the electrical model for the modules: (a) actual depiction of a battery with a
parallel capacitor, (b) circuit based on the first-order ECM of the battery, (c) first approximation of the
ECM, (d) final ECM.

As the size of Cpj in comparison to Cpaj
is considerably smaller, the RC network

modeling the chemical reactions acts as a constant voltage for Cpj . Therefore, the ECM
shown in Figure 3b can be approximated with Figure 3b. Similarly, the battery’s open-
circuit voltage can vary due to SOC or temperature, but within a few hundred milliseconds,
it can be assumed constant. Hence, the ECM is simplified to Figure 3c which describes a
second-order RC network. In the following, we consider this derived second-order RC
network to present the decoupling technique. If there is no parallel capacitor with the
batteries, Cpj −→ 0 in all the derived equations.
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Based on the the circuit depicted in Figure 3, the vector of the battery output voltage,
[vb1 vb2 . . . vbN ]

T , can be expressed as

vb = voc − v1 − v2 (2)

where voc is the vector of the open-circuit voltage, [voc1 voc2 . . . vocN ]
T . It generally changes

according to the SOC, SOH, and some other predictable and unpredictable factors. v1 is
the vector of the voltages across the RC network formed by Rint and Cp. Similarly, v2 is
the vector of the voltage drops across both the Rpa and Cpa in Figure 3d. Replacing the
differential equations for the RC networks of the jth module,

ibj
=
(

Cpj

d
dt

+
1

Rintj

)
v1j =

(
Cpaj

d
dt

+
1

Rpaj

)
v2j . (3)

The differential equations in (3) can be discretized using the backward Euler method
for the vectors v1(k) and v2(k) as{

v1(k) = Q11
T × ib(k) + Q12

T × v1(k− 1)
v2(k) = Q21

T × ib(k) + Q22
T × v2(k− 1)

(4)

where k denotes the kth sample. Q11, Q12, Q21, and Q22 are four vectors whose elements
are 

Q11j =
(Cpj

Ts
+

1
Rintj

)−1
,

Q12j =
(Cpj

Ts
+

1
Rintj

)−1
.
(Cpj

Ts

)
,

Q21j =
(Cpaj

Ts
+

1
Rpaj

)−1
,

Q22j =
(Cpaj

Ts
+

1
Rpaj

)−1
.
(Cpaj

Ts

)
.

(5)

Substituting (4) in (2) results in

vb(k) = voc(k)−
(

Q11
T + Q21

T
)
× ib(k)−Q12

T × v1(k− 1)−Q22
T × v2(k− 1). (6)

When the module is in series mode, the battery current is equal to the string current,
and when in bypass mode, the current is zero. Therefore, the vector of the battery current
([ib1 ib2 . . . ibN ]

T) can be expressed based on the vector of modules’ connections (S) and the
string current following

ib = ip. S. (7)

Substituting (7) and (6) in (1) with some mathematical manipulations, the output
terminal voltage for the kth sample is given by

vp = ST ×
(

voc(k)− ip(k).
(

Q11
T + Q21

T
)
× S−Q12

T × v1(k− 1)−Q22
T × v2(k− 1)

)
−N. ron. ip(k)− R. ip(k).

(8)

Equation (8) describes vp as a function of the modules’ current and previous states (S,
vb) in addition to the string current. This relation can be leveraged to develop the method
for decoupling the voltages of the modules from the string voltage.

Besides (8) as the key equation for the decoupling algorithm and the estimation algo-
rithm, the average model of the half-bridge converter can provide a better understanding
of the modules and the effect of the pulse-width modulation (PWM) on their behavior. The
average of the output voltages of the modules vt is denoted by v̂t and follows
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v̂t = mT × vb (9)

where m is the vector of the modulation indices, that is, m = [m1m2 . . . mN ]
T with

amplitudes between one and zero [99]. The phase-shifted PWM is used for the modular
configurable battery [100]. The average of the output voltage of the pack can be stated as

v̂p = mT × vb − N. ron. ip − R. ip . (10)

îb denotes the average of the battery currents (ib) during each switching cycle (Tsw).
As long as the duration of the switching cycle is negligible compared to the time constants
of the RC networks in the ECM shown in Figure 3, the effective current passing through
the two RC networks equals the average module current per

îb =
1

Tsw

∫ t+Tsw

t
ib(t) dt ≈ ip.m. (11)

This approximation holds as long as the switching cycle follows

Tswj � Rintj Cpj . (12)

3. Framework of the Reduced-Sensor Parameter Estimation
3.1. Decoupling Algorithm

Using (8), we can write the output voltage of the reconfigurable battery for the kth

sample (vp(k)) as a function of ip(k), voc(k), v1(k− 1), v2(k− 1), and Q matrices.
The decoupling algorithm relies on the vector of the modules’ states (S). If the jth

module operates in the series mode, the jth battery will affect the output voltage as it can
clearly be deduced from (8). However, the voltage of the jth module would not contribute
to the overall pack voltage if it is in the bypass mode, i.e., Sj = 0. Considering (8), if only
the jth module changes its connection from the series to bypass (Sj = 1 −→ 0) within the
(k− 1)th and kth interval, the voltage variation observed between vp(k) and vp(k− 1) is due
to the jth battery. In other words, the step in the output voltage of the pack exactly before
and after the jth module changes its connection from series to bypass can be attributed to
the terminal voltage of the jth module. Concurrently, using (11) and (7), the instantaneous
and average current profile of the modules can be also determined.

Mathematically, this voltage difference can be stated as

∆vj = vp(k)− vp(k− 1) =

−vocj (k)+
(

QT
11j

+ QT
21j

)
× ip(k) + QT

12j
× v1j (k− 1) + QT

22j
× v2j (k− 1).

(13)

As long as multiple modules do not change states concurrently, which is the case for
almost all available PWM-based modulations, the profiles of all modules can be updated
using the corresponding negative edges of the voltage steps at the output. After each
negative voltage step, the new data point is added to the corresponding vectors of the
module per 

vbj
(k− 1) = vpj(k− 1)− vpj(k) + ip(k− 1).ron

ibj
(k− 1) = ip(k− 1)

îbj
= mj(k− 1).ip(k− 1)

(14)

Performing the decoupling, particularly during load variations, can provide the neces-
sary current and voltage profiles to estimate the parameters of the modules. Therefore, an
online decoupling of voltage and current profiles during load variations can be beneficial,
but the estimations can run slower during the idling intervals of the controller.

This simple yet effective sampling method forms the main principle of the decoupling
technique. It enables the BMS or the central controller to determine the batteries’ voltage
and current profiles without using excessive sensors for each module. As the switching
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rate of the modules is relatively fixed in most modulation strategies (such as phase-shifted
PWM) and the sampling rate of the voltage and current would be also synchronized to the
switching actions and can be as high as the switching rate of the said module. This is a
rather unique advantage of the proposed technique over the existing methods. Whereas in
conventional methods, the sampling rate is usually restricted to tens of milliseconds due
to the limited data bandwidth of the communication interface between the controller and
the modules.

The decoupling process can be performed independent of the modulation process, or
it can be integrated with it. If the estimator has only access to the measured output signals
and the module states through a memory buffer, the sampling and decoupling process can
be performed offline. This is usually the case if the monitoring and modulation routines are
independently designed. However, it is possible to integrate both processes and perform
an online synchronized sampling.

Figure 4 shows the flowchart of the algorithm for an independent monitoring unit.
First, the number of available samples, here, n, is determined depending on the buffer size.
Then, the vector ∆S is calculated for each sample. It is the difference between S(k − 1) and
S(k). Afterward, if only one of the elements inside ∆S (e.g., the jth element) equals one
and the other elements equal zero, the voltage and current profile of the jth module will be
updated per (14). The process is repeated for all of the n samples. Therefore, this process
can even be added later on to a working system or even be performed in parallel.

Figure 4. Flowchart of the decoupling algorithm.

The sampling process can be integrated with the modulation using the interrupt
routine to achieve synchronized sampling with minimum memory and computational
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requirement. This is achieved by two consecutive sampling before and after the negative
edge of the lower switch (S2j control signal. The first sampling should be sufficiently before
the start of the switching that the sampling is completed, and the second sampling should
provide sufficient time for the completion of the switching interval and be short enough
that the other modules’ states can be assumed constant. For example, MOSFETs have a
switching duration below a microsecond and IGBTs may need several microseconds, which
both are much shorter than the time constants of the battery [101–103].

3.2. The Estimation Algorithm

The estimation process can be defined as the following optimization problem:

minimize f
(
[Rint, Cp, Rpa, Cpa, voc]

)
subject to lb ≤

(
[Rint, Cp, Rpa, Cpa, voc]

)
≤ ub,

(15)

where lb and ub are the lower and upper boundaries of the parameters which are supposed
to be estimated. The function f is defined as

f =
n′

∑
k=1

(
∆vmea

j (k)− ∆vest
j (k)

)2
(16)

where n′ is the number of times the falling edge has been detected for the jth module.
∆vmea

j (k) is the determined voltage of the battery using the proposed decoupling technique,
whereas ∆vest

j (k) is the estimated voltage of the battery according to the estimated parame-
ters.

As this is a simple optimization problem, many techniques can be used [104–106]. In
this research study, the interior-point method is applied to solve it. As proposing a new
optimization method is not the intent of this work, we refer to the literature for further
detail [107].

4. Results

The simulation and experimental validation of the proposed method are shown in
Figures 5–13. Matlab/Simulink serves to simulate a modular reconfigurable battery with
seven modules. In practice, the sbRIO-9726 rapid-control prototyping board from National
Instrument carries out the voltage modulation, records the modules’ switch states (S) and
measures the output current, ip, as well as the output voltage, vp. The switching rate of
each module is set to 10 kHz, providing a maximum sampling rate of 10 kHz per module.
The number of the modules (N), L, R, C are equal to 7, 1 mH, 50 mΩ, and 5 mF, respectively.
To determine the true values in the experimental setup, battery modules are discharged
with 0.025 C and the terminal voltage dynamics are constantly recorded. At extremely
low-discharge rates, the terminal voltage of the battery is a good approximation of the
open-circuit voltage after relaxation. Moreover, the terminal voltage is measured before
and after the experiment when the batteries have reached equilibrium to determine the
exact SOC of the modules. In this manner, the parameter sets of the internal resistance and
the RC network parameters of the batteries, according to Figure 3, are separately derived
through pulsed current at different SOCs and current amplitudes.

Figure 5 shows an example of the output voltages of the modules for one complete
switching cycle. It intuitively shows how they are combined to form the output voltage
of the pack. Using the phase-shifted PWM, the output voltage of the pack is N-times the
switching rate of each module. The negative and positive edges of the modules’ voltages is
clear on the profile of the pack’s voltage. The voltages of the modules are approximately
8 V to 8.2 V, which are normalized for simplicity. The output voltage of the pack at each
instant is the sum of all the modules’ voltages. The time division in Figure 5 is 10 µs.
The normalized voltage of the modules can approximate their corresponding state at each
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instance. As the module toggles from Sj = 1 to Sj = 0, the decoupling algorithm detects
the falling edges in the vector S and records a new sample for the jth module. The sampling
instances are marked with red arrows in Figure 5.

Figure 5. Output voltages of the seven modules and their summation during the decoupling algo-
rithm.

The complete implemented process, from measuring the output voltage of the system
to creating individual voltage profiles of each module, is shown in Figure 6. The estimation
of the ECM conventionally is performed using pulse charging approaches, here, the load is
changed to create an external disturbance for the system. After the decoupling procedure,
as the voltage and current of the whole system (ip and vp) contain a high level of noise, it is
possible to reduce the noise level using a digital low-pass filter as long as the added delay
due to the denoising procedure is negligible in comparison to the ECM time constants.
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The following equation offers a typical example used to reduce the switching noises of the
measured current ip at instant k

ip(k) =
1

2q + 1

q

∑
a=−q

(
ip(k + a)

)
,

vp(k) =
1

2q + 1

q

∑
a=−q

(
vp(k + a)

)
.

(17)

For example, a q value of two means the output of the denoising function at the kth

sample is the average value of the same sample along with the two samples before and after
the main sample. In Figure 6, the actual and denoised profiles of the modules’ voltages are
depicted in the bottom left corner, respectively, in gray and blue, which clearly show the
improved waveforms.

To study the accuracy of the estimations using the determined profiles, two systems
with balanced and imbalanced modules are considered. Table 1 depicts the main parameters
of the systems. In the case of imbalanced modules, each module has completely different
parameters (±50%) to test the convergence of the system.

Figure 6. The decoupling algorithm and the estimation algorithm.

Figure 7 shows the estimation results for the ECM parameters of balanced modules
(Rint, Cp, Rpa, Cpa, voc) using the resulted profiles through the decoupling method. Similarly,
Figure 8 shows the results for the imbalanced scenario. The chart shown for each parameter
contains the estimated value, the real value, and the absolute error for every module.

The absolute estimation error is calculated as:

E = |Xmea − Xest|. (18)
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Figure 7. Estimation of the five parameters for the seven modules under the balanced condition.

Figure 8. Estimation of the five parameters for the seven modules under the unbalanced condition.

The estimation error for all the parameters are shown in Figures 7 and 8 are below 4%
which authenticate the usability of the derived voltage and current profiles for parameter
estimation.

In both cases, the errors for estimation of the capacitors are well below 3%. Addition-
ally, the absolute errors for the estimated resistances are less than 6 mΩ. Additionally, there
is no change in the accuracy of estimations for the imbalanced system compared to the
balanced one.

The estimation results for each iteration of the optimization process for the five pa-
rameters are presented in Figures 9 and 10. The initial estimations of the parameters are
selected randomly with a ±50% uncertainty boundary. The estimated open-circuit voltage
rapidly converges to the true value after a few iterations, but as the other two RC networks
are relatively co-dependent, more iterations are required for the parameters to converge. As
the depicted values are normalized in Figures 9 and 10, a result of one means the estimation
is correctly converged. The optimization stops when there is no visible improvement in the
cost value. It should be mentioned that the optimization process does not need to be online
and can be completed during the idle intervals of the controller or even be off-loaded to the
cloud services, but that falls outside the real focus of this paper [108].

Three scenarios help in evaluating the ability of the proposed estimator under different
conditions:

1. The first scenario investigates the behavior of a balanced system where all the modules
have relatively similar states (their SOC and SOH as a case in point) and parameters.
There are only small inevitable inherent tolerances among their parameters due to
manufacturing tolerances.

2. In the second scenario, the uniform parameters of the modules are disturbed to
simulate a possible imbalance in the system. The ohmic resistance of the sixth battery
module (Rint6) is intentionally increased by externally connecting an extra 0.43 Ω
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resistance in series to the battery. The added ohmic resistance can emulate an aged or
possibly faulty battery. Additionally, fsw is changed from 10 kHz to 1 kHz to study the
effect of sampling frequency. Changing the battery resistance challenges the ability
of the proposed technique to track the asymmetric voltage profiles and evaluate the
estimation accuracy for parameters which are beyond normal ranges.

3. The third scenario focuses on existence of imbalance in the modules’ voltages. There-
fore, battery modules 2 to 7 are charged to 8 V, whereas the first module is manually
discharged to a lower open-circuit voltage (approximately 7.7 V). As a result of a
higher charge depletion, other ECM parameters of Module One also change slightly.
This scenario can emulate a SOC imbalance in the system, which can challenge the
ability of the proposed decoupling technique to distinguish the profiles of different
modules. Moreover, in the last two scenarios, estimation results of the other mod-
ules remain similar, showing that an existing imbalance in one module does not
significantly impact the accuracy of the decoupling method for other modules.

The relevant experimental results for each scenario are shown in Figures 11–13, re-
spectively. For each of them, the voltage profile of one of the modules (one, six, and one,
respectively) is measured, denoised, and then plotted on the left side. Concurrently, the
voltage profile of each module is derived and the parameters are estimated according to
the derived profile. Afterwards, the corresponding output battery voltage are calculated
based on the estimated ECM parameters. On the right side of each figure, the measured
waveform is compared with the calculated one based on the estimated parameters. The
matching results confirm the feasibility of the proposed decoupling technique.

The tables of Figures 11–13 show the measured parameters of the corresponding
battery modules using the proposed decoupling technique. As seen, the estimated ohmic
resistance in the second scenario is clearly increased. This confirms the authenticity of the
results using the proposed method. Similarly, the open circuit voltage of the module in the
third scenario is correctly estimated.

Figure 9. Estimation process of the five battery parameters for the seven modules under the balanced
condition.
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Figure 10. Estimation process of the five battery parameters for the seven modules under the
unbalanced condition.

Figure 11. Scenario one: measured, denoised, and estimated output voltage of the first module (vb1 ).

Table 1. Some important parameters in the simulation and practice.

Parameter Value

N 7
m 200

Tsw = Tsampling 10 kHz
C 2 mF
L 0.2 mH
R 0.05 Ω

RLoad 5∼40 Ω
voc1−7 2.1∼14.28 V
Cpa1−7

0.3∼3.4 F
Rint1−7 0.033∼0.374 Ω
Rpa1−7

0.027∼0.306 Ω
Cp1−7

0.001∼0.034 F
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Figure 12. Scenario two: measured, denoised, and estimated output voltage of the sixth module (vb6 ).

Figure 13. Scenario three: measured, filtered, and estimated output voltage of the first module (vb1 ).

5. Conclusions

Proposing a feasible solution to determine the voltage and current profiles of modules
for parameter estimation purposes in a reconfigurable battery is the main purpose of this
paper. After detailed modeling and analysis of the reconfigurable batteries’ operations,
this paper proposes a decoupling technique that can easily be integrated into the moni-
toring routine. The resulting profiles for each module can be used to estimate the ECM
parameters of the batteries with any state-of-the-art estimation technique. Conventionally,
the estimation is accomplished based on the direct measurement at the module terminals,
which requires a high number of sensors and a high-bandwidth communication interface,
increasing the cost and complexity of the system. The proposed decoupling algorithm does
not need any measurement at the module terminals and only uses the already available
sensors (system-level measurements) at the output of the system. Therefore, the num-
ber of sensors compared to the conventional technique is decreased from 2N + 2 to only
two. Additionally, no further communication between the controller and the modules is
necessary, which reduces the constraints on the communication interface. The proposed
concept can easily be implemented, reducing the system cost and improving the system’s
robustness. In addition to the advantages, the method can only estimate the time-constants
that are relatively larger than the switching cycle of the modules. Therefore, it cannot be
applied to estimate the sub-millisecond time constants of the battery. However, these time
constants are rarely utilized in a BMS for estimating the module parameters. Increasing the
band-width of the decoupling technique is an interesting goal that warrants further study
as a future work. Additionally, switching noise can have a minor effect on the accuracy
of the voltage and current profiles, but it can be mitigated through appropriate digital
filters, e.g., Kalman filters. The practical results as well as the simulations confirm that the
decoupling algorithm works properly. Combined with a suitable estimation technique,
the decoupled voltage, and current profiles achieve very good accuracy; the estimation
algorithm can accurately calculate the parameters and converge to the desired values.
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OCVs Open-Circuit Voltages
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