
Citation: Vakharia, V.; Shah, M.; Nair,

P.; Borade, H.; Sahlot, P.; Wankhede,

V. Estimation of Lithium-ion Battery

Discharge Capacity by Integrating

Optimized Explainable-AI and

Stacked LSTM Model. Batteries 2023,

9, 125. https://doi.org/10.3390/

batteries9020125

Academic Editor: Carlos Ziebert

Received: 21 December 2022

Revised: 1 February 2023

Accepted: 6 February 2023

Published: 9 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

batteries

Article

Estimation of Lithium-ion Battery Discharge Capacity by
Integrating Optimized Explainable-AI and Stacked
LSTM Model
Vinay Vakharia 1,* , Milind Shah 1 , Pranav Nair 1, Himanshu Borade 2, Pankaj Sahlot 3 and
Vishal Wankhede 1,*

1 Department of Mechanical Engineering, School of Technology, PDEU Gandhinagar,
Gandhinagar 382426, Gujarat, India

2 Mechanical Engineering Department, Medi-Caps University, Indore 453331, Madhya Pradesh, India
3 Mechanical Engineering Department, National Institute of Technology, Kurukshetra 136119, Haryana, India
* Correspondence: vinay.vakharia@sot.pdpu.ac.in (V.V.); vishal.wankhede@sot.pdpu.ac.in (V.W.)

Abstract: Accurate lithium-ion battery state of health evaluation is crucial for correctly operating
and managing battery-based energy storage systems. Experimental determination is problematic
in these applications since standard functioning is necessary. Machine learning techniques enable
accurate and effective data-driven predictions in such situations. In the present paper, an optimized
explainable artificial intelligence (Ex-AI) model is proposed to predict the discharge capacity of
the battery. In the initial stage, three deep learning (DL) models, stacked long short-term memory
networks (stacked LSTMs), gated recurrent unit (GRU) networks, and stacked recurrent neural
networks (SRNNs) were developed based on the training of six input features. Ex-AI was applied
to identify the relevant features and further optimize Ex-AI operating parameters, and the jellyfish
metaheuristic optimization technique was considered. The results reveal that discharge capacity was
better predicted when the jellyfish-Ex-AI model was applied. A very low RMSE of 0.04, MAE of
0.60, and MAPE of 0.03 were observed with the Stacked-LSTM model, demonstrating our proposed
methodology’s utility.

Keywords: Li-ion battery; explainable AI; jellyfish optimization; stacked-LSTM; GRU

1. Introduction

Batteries are an integral and crucial element in electric vehicles (EV). The develop-
ment of EVs is crucial for reducing our reliance on fossil fuels and minimizing vehicle
emissions [1–3]. Lead-acid, nickel-metal hydride, and lithium-ion (Li-ion) batteries are the
three primary types of power batteries. Li-ion batteries have been employed in electric cars
or hybrid electric vehicles (HEVs), as well as in other fields. They serve a crucial role by
providing the requisite energy storage for various applications. This application involves
microgrids and renewable energy [4,5], electric vehicles [6], and consumer electronics. This
is attributable primarily to its propitious properties, such as high energy density, high
efficiency, and extended life cycles. Despite having several benefits over other battery types,
the performance of batteries diminishes with frequent charging and draining. Therefore,
engineering research focuses on identifying their degradation, estimating and forecasting
their states, and optimizing their maintenance [7]. A battery’s deterioration process must
be closely monitored in order to maximize energy output, avoid early failure, and increase
reliability and longevity. In a battery management system (BMS), the process entails as-
sessing the state of health (SOH) [8], forecasting the state of charge (SOC), and estimating
the amount of useful life left (RUL) [9]. To maintain the safe operation and optimum
utilization of lithium-ion batteries, this can also be utilized to schedule maintenance tasks
in an automated and efficient manner. The end of life (EOL) is defined as the capacity
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approaching 70–80% of its nominal value [10] with the same SOC and operating conditions.
Capacity is a direct indicator of SOH in batteries. SOH is a quantitative evaluation showing
a battery’s overall health and ability to deliver the specified performance compared to a
brand-new battery [11]. A lithium battery generally fails when its capacity drops by 20% of
its rated value [12]. With usage, changes in the lithium-ion battery’s internal micro-chemical
structure have a similar impact on its external characteristics, most notably a reduction in
capacity and an increase in impedance [13]. The most accurate battery SOH indicator, or
the capacity to store energy, has long been a research focus.

Battery modeling is required to establish relationships between the operating param-
eters of batteries, such as charging and discharging voltage, cycle life, temperature, and
so on. Machine learning has emerged as a promising technique for developing reliable
and successful prediction models in the last two decades. It has been successfully applied
in various core engineering applications such as predicting bearing degradation [14], sur-
face morphology analysis in machined components [15], fracture prediction in welded
joints [16], etc. ML has also been extended for battery modelling with various approaches,
and its utility still needs to be explored. Model-based techniques and data-driven methods
are two broad categories that may be used to categorize current methods for determining
charging–discharging capacity, RUL prediction, etc. [17]. The two most popular model-
based strategies are the electrochemical model (EM) [18–20] and the equivalent circuit
model (ECM) [21]. An EM is utilized to calculate the SOH by examining the electrochemical
reactions inside the battery. Because it is difficult to model, this strategy is challenging to
put into practice. Yu et al. [22] proposed a particle filter (PF) method based on quantum
particle swarm optimization for ECM-based SOH estimation. Their solution has fewer vari-
ables that can be controlled, lessens computer complexity, and makes application easier. In
order to balance model accuracy and computational complexity, Torai et al. [23] introduced
an EM based SOH estimation model that takes advantage of the LiFePO4 (LFP)/graphite
battery’s differential capacity. The parameters of their model were shown to be related to
the phase transition behavior of both active LFP and graphite materials. Data-driven tech-
niques have become popular since they depend on historical data from experiments rather
than sophisticated physical or mathematical models. Data-driven technique predictions
are purely based on battery operating parameters (such as current, voltage, temperature,
and so on) or on characteristics derived from charging and discharging processes.

These techniques disregard the battery’s failure mechanism and electrochemical re-
actions [24]. A mapping between predicted data and battery SOH must be created using
specific methodologies. Several machine learning algorithms are reported for SOH estima-
tion. Data from Li-ion battery discharge cycles were acquired, and features were extracted
and assessed by Patil et al. [25]. The regression and classification versions of SVM were
then used to predict the SOH and RUL. In order to estimate SOH, Nuhic et al. [26] collected
several variables in various aging scenarios. Furthermore, Zheng and Deng [27] extracted
health indicators from the charging procedures and analyzed the relationship between the
selected features from mutual information and SOH. The authors concluded that multiple
Gaussian process regression demonstrates higher prediction accuracy as compared to the
conventional GPR model. In another study, Sun et al. [28] demonstrated the utility of the
LSTM neural network model, which shows high prognosis accuracy with varying charging
and discharging conditions of Li-ion batteries.

The non-linear relationship between the input parameters and their mapping with
SOH brings complexity to the development of accurate DL models. Further, the prediction
results pertaining to RUL or charging–discharging capacity could be biased due to random
splitting of input data in training and testing. Therefore, the present work attempts to
construct a robust model that blends the meta-heuristic jellyfish optimization techniques,
the Ex-AI models, and the deep learning (DL) models to overcome the issues outlined
above. According to the literature survey conducted by the authors, only a few studies were
published in which the potential of feature identification using Ex-AI coupled with optimal
DL models for Li-ion batteries discharge capacity prediction is examined. In the present
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paper, the authors formulate an integrated model for accurately predicting the discharge
capacity of Li-ion batteries, and the results are analyzed in detail. The remaining portion of
the paper is arranged as follows: The methodology used in this investigation is explained
briefly in Section 2. In Section 3, findings are explained with supporting information.
Finally, the findings are summarized in Section 4, study outcomes are highlighted in
Figure 1 shows the optimized Explainable AI methodology flowchart applied to predict
the discharge capacity of Li-ion battery dataset.
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2. Materials and Methods
2.1. Deep Learning Algorithms

Deep learning (DL) is a subset of ML algorithms that has been successfully applied
to a variety of applications such as determination of surface roughness [29], analysis
of machined images [30], bearing degradation analysis using TGAN [31], etc. DL is an
advanced form of neural network architecture that tries to simulate the functioning of the
human brain. The availability of additional hidden layers can help optimize and refine
the prediction capability specifically needed for large datasets [31]. In the present study,
the authors utilized long short-term memory (LSTM), gated recurrent units (GRUs), and
stacked recurrent neural networks (SRNNs) to predict the discharge capacity of a Li-ion
battery. The description of the algorithms is as follows:

2.1.1. Stacked Long Short-Term Memory Network

This is a recurrent neural network known as long short-term memory (LSTM), capable
of learning and predicting order dependence in sequence prediction tasks. Due to the
presence of feedback connections, the entire sequence of data can be processed efficiently.
LSTM, which consists of cells and gates through which the flow of information is regulated,
is utilized to circumvent the loss of short-term memory [32]. A collection of recurrently
connected memory blocks makes up an LSTM layer. These units can be compared to
differentiable memory chips found in digital computers. Input, output, and forget gates,
as well as one or more memory cells coupled in a loop, are present in each of them. These
three multiplicative units constantly mimic the actions of writing, reading, and resetting
for the memory cells.

The input, output, and forget gates are calculated as follows:

Gi = σ
(
ytWyi + St−1Wsi + βi

)
(1)

G f = σ
(

ytWy f + St−1Ws f + β f

)
(2)

Go = σ
(
ytWyo + St−1Wso + βo

)
(3)

The input node memory cell is computed as:

θ̃t = tan h
(
ytwyc + St−1 wsc + βc

)
(4)

The memory cell internal state is calculated as:

θt = G f � θt−1 + Gi � θ̃t (5)

The hidden state is calculated with the help of the activation function as [30]:

St = Go � tan h(θt) (6)

Here, t is the time step, and yt is input
In the stacked LSTM model, several hidden layers are included as compared to a

single layer in the conventional LSTM model. The advantage lies in the fact that the model
parameters are distributed over the whole space of the model without increasing memory
capacity, which enables the model to accelerate convergence and refine nonlinear operations
of raw data. Figure 2 shows the architecture of the stacked LSTM model.

2.1.2. Gated Recurrent Unit

Gated recurrent units (GRUs) is a potential deep-learning model for sequence predic-
tion. It was introduced by Cho et al. [33] in 2014 and, as the name implies, uses gates to
utilize the information flow of the data. GRUs are very similar to long short-term mem-
ory (LSTM) and are reported to give better prediction and less computational complexity.
GRUs consist of a hidden unit that integrates with the input and forget gates, forming a
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single update gate. Three gates in LSTM are replaced by the reset gate and update gate, as
shown in Figure 3. The reset gate assists in recording short-term dependencies in sequence,
whereas the update gate assists in recording long-term dependencies in sequence.
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The reset gate (Rt) and update gate (Zt) are mathematically calculated as follows:

Gr = σ
(
ytwyr + St−1whr + βr

)
(7)

Gu = σ
(
ytwyu + St−1whu + βu

)
(8)

Here yt represents input variables. wyr, wxu, whr and whu are weight parameters,
whereas βr and βu are bias parameters. St−1 represents the hidden state from the previous
time step.



Batteries 2023, 9, 125 6 of 20

The candidate hidden state is calculated as

S̃t = tanh(ytwuh + (Gr � St−1)whh + βh) (9)

where tanh represents the activation function and symbol� is the Hadamard product operator.
Finally, the effect of update gate Gu is computed from Equation (10) as

St = Gu � St−1 + (1− Gu)� S̃t (10)

2.1.3. Stacked Recurrent Neural Network

The stacked recurrent neural network (SRNN) is a type of deep learning algorithm
consisting of multiple stacked recurrent layers. An input layer, a hidden layer, and an
output layer are the three layers of a conventional RNN structure. Each neuron in the
hidden layer has a state feedback mechanism that allows RNNs to remember historical
knowledge translated from incoming data [34]. As a result, RNNs are more suited to
dealing with sequential data. Another significant property of the RNN is that it can handle
sequences of varying lengths due to its recurring structure.

Let the input sequence at time step t be denoted as xt and the target sequence be
denoted by yt. Therefore, a single layer RNN with a single cell shown in Figure 4 is
modeled as

Vt = f (Axt + BVt−1 + u) (11)

yt = g(CVt + w) (12)
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Here Vt and Vt−1 represent the state vector of the corresponding cell layers at time
steps t and t − 1. A, B, and C denote the weighting matrix in between the adjacent input
vectors, the adjacent state vectors, and output weighting matrix, respectively [35]. The bias
vectors of the cell layer and output are denoted by u and w.
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The stacked RNN considering all the total layers at different time steps t − 1, t, t + 1,
and t + 2 as shown in Figure 4 is modeled as

V(l)
t = f

(
A(l)V(l−1)

t + B(l)V(l−1)
t−1 + u(l)

)
(13)

yt = g
(

CV(L)
t + w

)
(14)

Here V(l)
t , A(l), and yt denote the hidden state of the lth layer, weighting matrix

between adjacent layers, and predicted output vector of S-RNN, respectively.

2.2. Jellyfish Optimization

Both in the world of commercial applications and scientific research, meta-heuristic
optimization algorithms are crucial for tackling complex issues. Different meta-heuristic
algorithms have been created over the past ten years to deal with optimization issues. The
jellyfish search optimizer (JSO) was recently developed as a swarm intelligence algorithm
for global optimization [36]. JSO is designed to mimic how marine jellyfish act in the ocean,
including how they move in swarms, follow ocean currents, and switch between these
motions using a temporal control system. A large collection of jellyfish known as a swarm
will either migrate passively (Type A) about their own position or actively (Type B) toward
any other position. Type A motion with updated location is formulated as:

Yi(t− 1) = Yi(t) + γ ∗ rand(0, 1) ∗ (BU − BL) (15)

BU and BL represent the upper and lower bounds, γ represents the motion coefficient.
To implement Type B movement, another jellyfish is chosen randomly, and to de-

termine the direction of movement, a vector is drawn from the jellyfish of interest (i) to
the selected jellyfish (j). Finally, the updated position of the jellyfish is calculated from
Equation (18)

→
Step =rand (0, 1)

→
Drt (16)

→
Drt =

{
Yj(t)−Yi(t) i f f (Yi) ≥ f

(
Xj
)

Yi(t)−Yj(t) i f f (Yi) < f
(
Xj
)} (17)

Yi(t− 1) = −Yi(t) +
→

Step (18)

2.3. Experimentation and Data Acquisition

The battery aging dataset utilized by the authors belongs to the National Aeronautics
and Space Administration (NASA) lithium-ion battery aging experimental data set [37].
The experiments for the dataset were performed on various commercially available Li-ion
18650-sized rechargeable batteries using a custom experimental setup at NASA’s Prognostic
Centre of Excellence (PCoE). This dataset contains information about the charge, discharge,
and electrochemical impedance spectroscopy cycles performed at various temperatures.
Experiments were performed at a room temperature of 24 degrees Celsius on the batteries
B0005, B0006, B0007, and B0018, which were chosen to demonstrate the work that is being
presented here. The capacity of the LiNi0.8Co0.15Al0.05O2 batteries used by NASA was
2 Ah. Additionally, the CCCV charging-CC discharging profile was used to evaluate the
batteries’ aging performances. Specifically, a 0.75C charging rate and a 1C discharging rate
were chosen. The maximum permissible charging voltage was 4.2 volts, and the maximum
permissible charging current rate was 0.01 amperes. The batteries were put through the
charging stage of a cycle at a constant 1.5 A current until the voltage reached 4.2 V, after
which the batteries were put through the discharge stage at a constant 2 A current. The cycle
was stopped once the voltage dropped from 4.2 V to the corresponding cut-off voltages, as
shown in Table 1.
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Table 1. Batteries selected for current work indicating the number of cycles, temperature, and
cut-off voltages.

Battery No. Ambient Temperature No. of Cycles Discharge Cut-Off Voltage

B0005 24 ◦C 168 2.7 V
B0006 24 ◦C 168 2.5 V
B0007 24 ◦C 168 2.2 V
B0018 24 ◦C 132 2.5 V

Voltage and current were measured at both the battery and the load during the
discharge cycle (charger). Temperature was recorded at the battery during discharge cycles,
and the number of cycles and the measured capacity were additional elements in the dataset
that relate to discharge capacity. Finally, the battery capacity was recorded at the end of
each discharge cycle, which needed to be predicted with DL models. Figure 5 indicates
the capacity recorded through the first discharge cycle until the end of the final cycle of
the selected batteries. It has been stated explicitly that these batteries’ discharge capacity
significantly decreases with time. The electrolyte and electrode of the battery have a side
reaction that contributes to its capacity deteriorating as it experiences more discharge cycles.
The experiments were terminated when the observed capacity for these batteries fell below
70% of their rated capacity, as shown by the dotted horizontal line in Figure 5. Table 2 lists
the features that were extracted throughout the discharge cycles. Here, current measured
is the amount of electricity flowing into and out of the Li-ion battery at a given time, as
recorded using a measuring device, usually in Amperes (A), whereas current discharge is
the rate at which a Li-ion battery is discharging, or releasing its stored energy, at any given
time, and is also stated in Amperes (A). The difference between these two terminologies is
critical for understanding the performance and behavior of Li-ion batteries, particularly in
applications such as electric cars, mobile devices, and renewable energy systems. Current
measurements may provide details about the system’s real energy flow, while discharge
current readings can reveal details about the battery’s charge and power delivery capacity.
Similarly, voltage measured refers to the precise voltage, commonly measured in Volts,
between the terminals of a Li-ion battery at any particular time (V). Voltage discharge refers
to the voltage between the battery terminals at a specific time during discharge or energy
release. It measures the energy stored in the battery and its capacity to transfer energy to
the load. Volts are also used to represent voltage discharge (V).
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Table 2. Features corresponding to discharge profile in the Li-ion battery dataset.

Feature Name Description

Voltage measured Battery terminal voltage during discharge (Volts)
Current measured Battery output during discharge (Amp)

Temperature measured Battery temperature measured during discharge (◦C)
Current charge Current measured at the load during discharge (Amp)
Voltage charge Voltage measured at the load during discharge (Volts)

Time Time vector from start to end of a discharge cycle (secs)
Cycle Number of discharge cycles for battery

Battery ID To identify the battery number among four batteries

Figure 6 represents the variations in discharge voltage measured through discharge
cycles C28, C56, C84, C112, C140, and C168, respectively, for battery B0005. It was observed
that the voltage measured decreased with respect to time until it reached a cut-off voltage
of 2.75 V. Moreover, the discharge voltage dropped significantly faster as the battery went
further through the discharge cycles. Similarly, Figure 7 represents the variations in current
measured for the same battery B0005, indicating the battery reached the end of cycle sooner
as the number of cycles increased.
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3. Results and Discussion

Several DL algorithms were applied to the Li-ion battery dataset to estimate the
discharge capacity in order to show the usefulness of the suggested methodology. At the
initial stage, the performance of the Stacked-LSTM, GRU, and STAR models are evaluated
with three standard metrics: root mean square error (RMSE), mean absolute error (MAE),
and mean absolute percentage error (MAPE). The formulas to calculate these metrics are
as follows:

RMSE =

√√√√ 1
m

m

∑
j=1

(Av − Pv)
2 (19)

MAE =
1
m

m

∑
j=1
|Av − Pv| (20)

MAPE =
1
m

m

∑
j=1

∣∣∣∣Av − Pv

Av

∣∣∣∣ (21)

where Av, Pv, and m denote the actual experimental value, predicted value, and the total
number of observations.

In the current study, the Li-ion battery dataset was split in a 70:30 ratio, meaning that
70% of the data was used for training the model while 30% was used for testing the model.
Training is needed in machine learning because it allows the model to learn the underlying
patterns and relationships in the training data. This enables the model to generalize to new,
unseen data and make accurate predictions. The authors also evaluated the performance of
DL models based on ten-fold cross-validation results, as this is a promising and reliable
methodology to evaluate the model’s performance to remove bias in the result arising from
the random splitting of the dataset. The dataset was divided into ten equal sections in
the beginning; nine were used to train the model, and the remaining one was utilized for
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testing. The remaining eight parts were used to train the model in the second step, and two
parts were applied for testing. This process was repeated until all ten sections were used
for both training and testing. The overall prediction results were the average results of the
prediction of all the parts utilized for training and testing. Figure 8 shows the procedure
for 10-fold cross-validation applied to any DL model.
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After applying ML/DL models to the Li-ion battery dataset, it is challenging for
researchers to understand and reconstruct how an algorithm arrived at a result. In the
conventional approach, the entire computation is referred to as a “black box,” which makes
it difficult to understand and interpret results. These “black box” models are created
by starting with the raw data. Clearly, the researchers or data scientists who created
the algorithm need help understanding or cannot define what is happening inside or
how the AI algorithm came to a particular conclusion. Explainable artificial intelligence,
sometimes referred to as Ex-AI, is a group of techniques and methodologies that, when
applied to machine learning algorithms, enable researchers to comprehend the outcomes
produced by the algorithms. Ex-AI is a promising technique to describe an AI model
and its anticipated impact and investigate any biases in predicted results. It helps to
describe the model’s accuracy, fairness, transparency, and results in decision-making that
AI supports. When bringing AI models into production, an organization must ensure that
their AI is explainable, which assists in systematically developing AI-based methodology.
The authors created a model based on Stacked-LSTM, GRU, and STAR DL models where
training, testing, and a ten-fold technique were performed on all input parameters in order
to thoroughly evaluate the prediction outcomes of the proposed methodology on the Li-ion
battery dataset. Ex-AI was used in the subsequent stages to choose the pertinent input
parameters that could significantly enhance the prediction of battery discharge capacity.
In our study, the XGBoost algorithm was chosen to select the input parameters through
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the Ex-AI model. It is always challenging to optimally select the hyperparameters in any
ML/DL algorithms. Therefore, in the present study, jellyfish search optimization was
implemented to optimally select the hyper parameter values of the Ex-AI model. Details
about the XGBoost algorithm parameters, range, and optimized values are reflected in
Tables 3 and 4.

Table 3. XGBoost parameters.

XGBoost Parameters Function Range

P1 Learning rate (0,1]
P2 Max depth [0,inf)
P3 Min child weight [0,inf)
P4 N estimators [50,500]
P5 N jobs [1,inf)
P6 Subsamples (0,1]

Table 4. Selected parameters.

XGBoost P1 P2 P3 P4 P5 P6

Default 0.3 6 1 100 1 1
Jellyfish 0.10 2 2.79 307 1 0.98

Features or variables are essential to predict the output when using machine learning
models correctly. Not all features are needed for prediction, and removing unnecessary
features may significantly improve the model’s performance. Feature selection identifies
the essential features with specific statistical formulations. In the case of a high-dimensional
dataset, irrelevant features increase computational complexity, training time, and out-of-
sample performance, and therefore feature selection is highly desired. Further, it is observed
that feature explainability is needed to validate the prediction accuracy of an AI model.
SHAP (Shapley additive explanations) is an open-source Python package for formulating
an Ex-AI model. SHAP is extremely useful in explaining the influence of individual input
parameters on predictions. The Shapley value is calculated by taking the average marginal
contribution of a feature value and dividing it by the total number of feasible coalitions.
The SHAP scores for Li-ion battery dataset features are shown in Figures 9 and 10. The
horizontal axis of a bar graph represents the mean absolute SHAP values, and the vertical
axis represents the features. The features with mean absolute SHAP value higher than
zero were considered, and features with zero or negative values were not considered. With
the Ex-AI model, the selected features were cycle, current charge, battery id, and current
measured, as seen in Figure 9. Moreover, when the hyperparameter of the Ex-AI model
was optimized with jellyfish optimization, the selected features were cycle, current charge,
and battery id, as can be observed from Figure 10. The influence of the selected features on
prediction capability is shown in Figures 11–13.

After identifying the relevant features, the prediction capability of the models was
evaluated through three performance metrics: RMSE, MAE, and MAPE. Training, testing,
and ten-fold were applied on three DL models for discharge capacity prediction. Due
to unbiased results and high reliability, it is suggested to consider the ten-fold results.
Figure 11a–c show the RMSE values obtained after applying three DL models with three
feature conditions: (a) all features, (b) Ex-AI features, (c) jellyfish-optimized Ex-AI features.
Here, all features refers to the input values listed in Table 2, whereas Ex-AI features refers
to four features obtained after applying the mean SHAP score (Figure 9). Similarly, jellyfish
Ex-AI refers to the three features obtained after applying the mean SHAP score (Figure 10).
Since the mean SHAP score of current measured and voltage measured is near zero,
therefore, these features were discarded. It is observed from Figure 11a–c that the lowest
RMSE with ten-fold was 0.04 from the Stacked-LSTM model considering three optimized
Ex-AI features, whereas the highest RMSE of 0.11 was observed from the GRU model when
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four Ex-AI features were considered. The prediction results of jellyfish-optimized Ex-AI
features provide lower estimation errors (RMSEs), Figure 11c. In contrast, the prediction
results considering all features exhibited higher RMSE prediction errors from all three
DL models, as observed from Figure 11a,b. As can be observed from Figure 12a–c, the
discharge capacity of Li-ion batteries was accurately predicted by all three models that were
taken into consideration for this investigation. However, the least MAE of 0.60 considering
the ten-fold procedure was observed from the stacked LSTM model, Figure 12c, whereas
the maximum MAE observed was 0.90 from the GRU model, Figure 12a,b. In Figure 13a–c,
results obtained from MAPE are shown. The Stacked-LSTM model gives the least error
with all the feature conditions and considering ten-fold prediction results. The least MAPE
of 0.03 is observed from the Stacked-LSTM model, whereas the maximum MAPE of 0.07
is observed from the GRU model. Additionally, very little RMSE, MAE, and MAPE were
seen compared to ten-fold prediction results from the Li-ion battery aging dataset when
training and testing prediction results are considered to forecast discharge capacity in
all situations, as shown in Figures 11–13. However, as was already noted, data from the
10- fold procedure should be considered due to unbiasedness and reliability. Ten-fold
cross-validation (CV) can give a higher prediction error than training and testing on a
single data split because it is a more rigorous evaluation of the model’s performance. In
a ten-fold CV, the data is divided into ten subsets, and the model is trained and tested
ten times, each time using a different subset as the test set. This gives a better estimate
of the model’s performance on new, unseen data. However, it also means that the model
is being tested on a wider variety of data, which can lead to a higher prediction error.
Additionally, using a ten-fold CV can increase the variance in the estimated performance,
contributing to a higher error. The prediction findings show that, independent of the model,
prediction accuracy increases when Ex-AI is used for feature selection. These errors are
further decreased when Ex-AI is tuned using the jellyfish optimization model. It should
also be noted that the prediction error range is significantly less when observing RMSE
and MAPE values (Figures 11 and 13), while the maximum MAE observed is less than 1
(ten-fold), which shows the robustness of our proposed methodology. Figure 14a–c shows
the prediction errors reported from optimized Ex-AI features and with all three models.
Optimized Ex-AI features were chosen since RSME, MAE, and MAPE are significantly less,
which signifies the least error in prediction. Further, it is evident from the figure that when
ten-fold is applied, the predicted experimental data match accurately with the experimental
data. Our outcomes show the utility of jellyfish-optimized Ex-AI features for accurately
predicting the discharge capacity of the Li-ion battery dataset considered in our study.
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Figure 11. (a–c) RMSE values from three models. (a) All features. (b) Ex-AI features. (c) Jellyfish-
optimized EX-AI features.
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Figure 12. MAE values from three models. (a) All features. (b) Ex-AI features. (c) Jellyfish-optimized
Ex-AI features.

Table 5 shows the Li-ion discharge prediction accuracy when individual features are
considered. It is observed that when individual features are considered along with ten-fold
prediction results, then minimum RMSE observed is 0.10 with SRNN model and cycle
features, which is much higher when Ex-AI features and jellyfish-optimized Ex-AI features
are considered (Figure 11b,c). Similarly, when MAE is considered with individual features,
the minimum MAE observed is 1.02 (ten-fold) with stacked LSTM model and cycle as
features, which is much higher when Ex-AI features and jellyfish-optimized Ex-AI features
are considered (Figure 12b,c). Moreover, the minimum MAPE (ten-fold) with GRU model
and current charge as features is 0.10, which is much higher when Ex-AI features and
jellyfish-optimized Ex-AI features are considered (Figure 13b,c). The results, as observed
from Table 5 and Figures 11–13, confirm that the Ex-AI and jellyfish-optimized features
predict discharge capacity of Li-ion battery much better when individual battery features
are considered. Table 6 shows the computational time required to develop ML models.
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Figure 13. (a–c) MAPE values from three models. (a) All features. (b) Ex-AI features. (c) Jellyfish-
optimized Ex-AI features.

It is reflected that the stacked LSTM model predicts the discharged capacity better than
GRU and SRNN models. The possible reasons are that LSTM is more accurate on a larger
dataset. Further, GRU models exhibit a slow convergence rate and low learning efficiency
compared to the other two models. Furthermore, the computation time of SRNN is very
high due to the use of the ReLU activation function. For large datasets, vanishing gradient
issues were observed from SRNN; however, LSTM was explicitly invented to avoid the
vanishing gradient problem. Though the prediction results are good, there are several
ways to enhance the prediction capability of stacked LSTM, GRU, and SRNN models, such
as experimenting with different layer sizes, number of layers, and activation functions,
combining multiple models to form a single prediction by averaging or weighted averaging
of their outputs, and implementing attention mechanisms to help the model focus on the
most relevant parts of the input sequence.
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Figure 14. (a–c) Actual vs. predicted results with Jellyfish optimized Ex-AI features.

Table 5. Prediction results with individual features.

Feature
Model Stacked LSTM GRU SRNN

Metrics Train Test Ten-Fold Train Test Ten-Fold Train Test Ten-Fold

Voltage measured
RMSE 0.187 0.187 0.194 0.186 0.187 0.209 0.229 0.229 0.227
MAE 0.360 0.362 1.336 0.358 0.358 1.424 0.412 0.414 1.512

MAPE 0.104 0.104 0.118 0.103 0.103 0.111 0.110 0.110 0.115

Current measured
RMSE 0.190 0.191 0.196 0.206 0.207 0.212 0.190 0.190 0.208
MAE 0.365 0.367 1.360 0.396 0.396 1.480 0.365 0.367 1.416

MAPE 0.103 0.104 0.119 0.118 0.118 0.122 0.104 0.104 0.112

Temperature measured
RMSE 0.190 0.190 0.194 0.259 0.260 0.242 0.195 0.196 0.208
MAE 0.367 0.369 1.344 0.479 0.482 1.664 0.369 0.371 1.472

MAPE 0.106 0.106 0.120 0.147 0.148 0.132 0.103 0.103 0.128

Current charge
RMSE 0.164 0.165 0.173 0.180 0.181 0.176 0.179 0.180 0.186
MAE 0.308 0.311 1.168 0.324 0.329 1.192 0.335 0.338 1.272

MAPE 0.102 0.101 0.115 0.100 0.100 0.107 0.101 0.101 0.159

Voltage charged
RMSE 0.183 0.184 0.192 0.186 0.187 0.205 0.191 0.191 0.223
MAE 0.351 0.353 1.320 0.356 0.356 1.384 0.358 0.360 1.488

MAPE 0.156 0.157 0.165 0.158 0.158 0.173 0.159 0.160 0.186

Time
RMSE 0.189 0.190 0.196 0.378 0.378 0.228 0.222 0.223 0.208
MAE 0.365 0.367 1.360 0.743 0.743 1.560 0.405 0.407 1.480

MAPE 0.104 0.104 0.119 0.197 0.198 0.123 0.109 0.109 0.118

Cycle
RMSE 0.100 0.102 0.195 0.117 0.117 0.133 0.103 0.104 0.105
MAE 0.285 0.290 1.027 0.475 0.475 1.521 0.430 0.435 1.092

MAPE 0.107 0.107 0.151 0.104 0.104 0.176 0.103 0.104 0.155
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Table 6. Computational time required.

LSTM GRU SRNN

Features Validation Time (s) Time (s) Time (s)

All features
Train 330 270 550
Test 30 11 13

10 CV 4200 3500 6500

Ex-AI features
Train 308 230 510
Test 30 10 10

10 CV 3900 3300 6200

Optimized Ex-AI
Features

Train 300 220 490
Test 27 10 10

10 CV 3500 3200 6000

4. Conclusions

In the present work, an efficient optimized Ex-AI model to predict discharge capacity
of Li-ion battery is investigated in detail. The methodology was developed from an openly
accessible Li-ion battery aging dataset [37]. Three deep learning models, Stacked-LSTM,
GRU, and SRNN are considered and prediction capability is evaluated from the features
selected through Ex-AI and optimized Ex-AI models. RMSE, MAE, and MAPE results
obtained after performing training, testing and ten-fold procedure are discussed in detail.
When ten-fold CV prediction results are considered, observations are as follows:

• The lowest RMSE value of 0.04 is observed from the stacked LSTM model when
jellyfish-optimized Ex-AI features were considered.

• Very low MAE and MAPE of 0.01 were obtained from the stacked LSTM model when
jellyfish-optimized Ex-AI features were considered.

• Stacked LSTM better predicts the discharge capacity of Li-ion batteries as compared to
GRU and SRNN deep learning models.

• Features selected after applying jellyfish-optimized Ex-AI models were found to
exhibit better prediction capability compared to both Ex-AI features and all features.

The prediction results obtained after incorporating our proposed methodology are
accurate and reliable. In future, more comparative analyses can be performed so that a
more generalized model to predict health estimation of different types of batteries can
be formulated.
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