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Abstract: Connectivity and cloud computing are key elements in the future of electric mobility. They
allow manufacturers to provide advanced fleet management and predictive diagnostic services. In
particular, cloud computing dramatically enhances data availability and enables the use of more
complex and accurate state estimation algorithms for electric vehicle lithium-ion batteries. A tuning
procedure for a moving window least squares algorithm to estimate the parameters of a 2-RC
equivalent circuit battery model is presented in this paper. The tuning procedure uses real data
collected from a test vehicle and uploaded to the Stellantis-CRF cloud. The tuned algorithm was
applied to eight months of road tests and showed very small estimation errors. The errors are
comparable to other literature data, even when the literature results were obtained in laboratory tests.
The estimated model parameters are tracked through time and seem accurate enough to show the
first signs of battery aging.

Keywords: lithium-ion batteries; ECM parameter identification; state-of-health; electric vehicles;
cloud-based algorithm

1. Introduction

Connectivity together with autonomy and electrification are the three pillars of the
automotive revolution that is paving the way to the future of mobility. A connected
vehicle is a vehicle able to communicate with other devices (vehicles, smartphones, cloud
infrastructure, etc.) over a wireless network. The connection with the vehicle and the
possibility of exchanging different types of data allow the carmaker to improve fleet
management and provide advanced predictive diagnostic services. Electric vehicles (EVs)
represent the natural target for the implementation of innovative connected services [1–3].
In fact, the potentials of cloud computing, in terms of computational power and vehicle
fleet data availability, promise to enable a significant improvement in state-of-charge (SOC),
state-of-health (SOH), and remaining useful life estimation of the EV traction battery.

Aging and performance degradation mechanisms of lithium-ion batteries (LIBs) are
still a large subject of debate in the scientific community, and a deeper knowledge of
them could significantly enhance vehicle battery lifetime, performance, and usability.
Degradation is strongly influenced by charging profiles [4,5]. The optimized charging
profile (OCP) that achieves the best trade-off between charging time and battery aging
rate can be identified starting from a battery model [6–10]. A commonly used battery
model is the electric equivalent model (ECM), which offers a very good trade-off between
complexity and accuracy. ECMs use electrical components such as voltage sources, resistors,
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and capacitors to model the dynamic behavior of the battery. Moreover, its components
can be related to the electrochemical parameters of the battery [11].

Unfortunately, the parameters of the battery model evolve with the aging of the battery,
and they should be continuously identified during the battery life to maintain good model
accuracy. Several algorithms can be used for tracking the evolution of the parameters and
the state variables of the battery model. State variables and parameters estimation algo-
rithms are usually classified in model-based and data-driven methods [12,13]. Several types
of Kalman filters (e.g., extended Kalman filter, unscented Kalman filter, and sigma-point
Kalman filter), together with particle filter, slide mode observer, and least squares-based
techniques, belong to the model-based methods. Conversely, data-driven methods include
artificial neural networks, support vector regression, and fuzzy logic. The application of
Kalman and particle filters for SOC estimation is discussed and compared in [14]. These
algorithms generally need high computational power that is not often compatible with their
implementation in a battery management system (BMS). In fact, real-time implementation
of ECM parameter identification algorithms in BMSs requires the use of specific hardware
accelerators that increase the BMS cost [15].

A very promising scenario for model parameter identification is the use of the high
computational power provided by the cloud computing concept. The vehicle uploads
the current, voltage, and temperature profiles to the cloud, where the ECM parameter
identification algorithm can be executed without computational limitations. The obtained
parameters can then be downloaded to the BMS to improve model-based SOC estimation
and used by the cloud services to execute advanced battery control algorithms, such as the
OCP evaluation. Pioneering works have already started investigating the potential of the
cloud computing approach for state variable and model parameter estimation. For example,
machine learning and artificial intelligence are used in [16,17] to estimate SOC and SOH.
The recursive least squares combined with a Kalman filter is used to estimate SOC and
the parameters of a 2-RC ECM in [18]. A cloud-based digital twin of the real battery is
presented in [19].

The aim of this paper is the optimization of a moving window least squares (MWLS)
algorithm used to identify the parameter of a 2-RC ECM that benefits from the cloud
computing concept. To the best of our knowledge, this is the first application of the MWLS
algorithm to the battery data acquired from an electric vehicle fleet and uploaded to the
cloud. The MWLS algorithm was initially developed in [20] for ECM with just 1 RC group.
Therefore, the MWLS algorithm equations are changed to include the second RC group
contribution, as shown in detail in Section 2. Moreover, the upgraded algorithm is tuned
with real automotive data uploaded to the Stellantis–CRF cloud by test cars, in order to
identify the best algorithm parameters for this application. The tuning procedure and its
results are reported in Section 3, while Section 4 shows the algorithm identification results
in a wide experimental test campaign. Finally, a comparison of the obtained results with the
literature is described in Section 5, and the main conclusions are summarized in Section 6.

2. Battery Model Parameter Identification

Each cell of the battery pack is modeled using the 2-RC ECM shown in Figure 1.
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Figure 1. Electric equivalent model with 2-RC groups.

The model consists of two parts: the left-hand side tracks the cell SOC, while the right-
hand one estimates the cell voltage. The cell SOC is obtained as a voltage difference across



Batteries 2023, 9, 486 3 of 12

a capacitor, the value of which is equal to the cell capacity Qn expressed in Coulomb and
divided by 1 V. The evaluated SOC is the input signal of the controlled voltage generator
VOC that implements the relationship between the open circuit voltage (OCV) and the
SOC. VOC is series-connected with a resistance R0 that models the internal ohmic resistance
and two RC groups. The voltage drops generated by R1 and C1 and by R2 and C2 mimic
the fast and the slow cell voltage relaxations, respectively. The state space equations of the
model are reported in (1), where τ1 = R1C1 and τ2 = R2C2.

dSOC
dt

= − iL
Qn

dv1

dt
= −v1

τ1
+

iL
C1

dv2

dt
= −v2

τ2
+

iL
C2

VM = VOC − R0iL − v1 − v2

(1)

In general, the cell model parameters vary with the operating conditions (namely
SOC and temperature) and aging of the battery. The aim is to identify the parameters
inside a time window, the optimal length of which will be discussed later. Here, we just
point out that the OCV–SOC relationship is linearized, while the model parameters are
assumed constant inside the identification window. The latter is moved over time to track
the parameter variations when the operating conditions and aging of the battery change.

The first step in deriving the identification algorithm is to transform the cell voltage
VM in the Laplace domain as:

VM(s) = α0 − α1
IL(s)
sQn

− R0 IL(s)−
R1 IL(s)

1 + R1C1s
− R2 IL(s)

1 + R2C2s
, (2)

in which the OCV–SOC relationship is linearized by:

VOC = α0 + α1SOC(s), (3)

where α0 and α1 are additional linearization parameters that change with the identification
window. Equation (2) can be rewritten in the discrete-time domain using the bilinear
transform (4), thus obtaining Equation (5), where T is the sampling time, Y is the cell
voltage, and U is the cell current.

s→ 2
T

1− z−1

1 + z−1 (4)

Y(z−1)− α0

U(z−1)
= − b3z−3 + b2z−2 + b1z−1 + b0

a3z−3 + a2z−2 + a1z−1 + 1
(5)

The detailed equations of b0, b1, b2, b3, a1, a2, and a3 are reported in Appendix A. It can
be seen that the coefficients a1, a2, and a3 only depend on τ1 and τ2 and that 1+ a1 + a2 + a3
is equal to zero. Therefore, the coefficient a3 can be substituted with −(1 + a1 + a2) in
Equation (5), yielding the third-order autoregressive exogenous (ARX) model shown below.

y(k)− y(k− 3) = a2(y(k− 3)− y(k− 2)) + a1(y(k− 3)− y(k− 1))

+b0u(k) + b1u(k− 1) + b2u(k− 2) + b3u(k− 3)
(6)

The ARX model in Equation (6) is evaluated at M sampling points (k ∈ [k0, k0 + M− 1],
which correspond to the identification window starting at the sampling time k0. The M
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equations obtained form a linear system b = Ax, where b ∈ RM holds the M values of
y(k)− y(k− 3), x is the vector of the variables [a1, a2, b0, b1, b2, b3]

T, and A ∈ RMx6 is the
coefficient matrix filled with the voltage and current values sampled at discrete times from
k0 − 3 to k0 + M− 1. As M is chosen to be greater than 6, the system is overdetermined
and is solved using the least squares method (LS). The variables a1, a2, b0, b1, b2, and b3
thus obtained are used to retrieve the ECM parameters by inverting the equations in
Appendix A. The identification window is shifted at each estimation step, i.e., k0. This
approach is usually known as MWLS, and its block diagram is shown in Figure 2.

Low-pass
Filter
and

Decimation

Matrix 
construction

& 
LS solver

Back
substitution

vcell
ibat

[a2, a1,
 b3, b2, b1, b0]

R0

R1

R2

C1

C2

fc, Nf Lw

Figure 2. Block diagram of moving window least squares approach.

The MWLS accuracy depends on the time window length Lw = MT [21]. In fact, Lw
should be long enough to track the voltage dynamics of the RC groups so that R1, C1, R2,
and C2 are observable. A longer Lw can be obtained by increasing M. However, larger
values of M lead to bigger A matrices and consequently to higher computational costs of
the MWLS algorithm. A good trade trade-off between complexity and accuracy has been
found for M equal to 30, as shown in [15]. Therefore, a sufficiently long value of Lw can
be obtained by increasing the sampling time T in the moving window, which is usually
longer than the sampling time used in BMSs to acquire the cell voltage vcell and the battery
current ibat. Thus, the inputs of the MWLS are obtained by decimating the signals acquired
by the BMS. This process imposes a preventive low-pass filtering of the acquired voltage
and current signals to limit their bandwidth before decimation, according to the Shannon’s
sampling theorem.

Tuning Procedure of the MWLS Identification Algorithm

The MWLS algorithm requires the appropriate tuning of its parameters to obtain
an accurate estimation of the cell model parameters [21]. Lw, the low-pass filter cut-off
frequency fc, and order Nf are the MWLS parameters that are optimized with the tuning
procedure proposed in [21], which consists of the following steps:

1. Define a reasonable range for each MWLS parameter;
2. Choose, for each parameter, a reasonable number of possible values in the range

previously defined;
3. Run the MWLS algorithm on the measured voltage and current of a battery cell in

a test with a load current profile typical of the target application with each possible
parameter value combination;

4. Simulate the cell model with the ECM parameters identified in each MWLS execution
using the same load current profile;

5. Calculate the RMS error between the measured and simulated cell voltages for each
MWLS execution;

6. Select the best combination of Lw, fc, and Nf as the triplet of values that minimizes
the RMS error.

3. Tuning of the MWLS Algorithm for an Electric Vehicle Battery

Real data from an electric vehicle with a battery composed of 108 series-connected cells
with 60 Ah capacity are used to tune and validate the MWLS algorithm. The application
of the previously described tuning procedure is shown in Figure 3, where the tuning test
consists of the current and voltage profiles of cell #1 acquired during a test drive. As shown
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in Figure 4, the battery is discharged from the initial SOC value of around 90% to 13% in
about 4 h, with a rest time of about 30 min when the battery SOC reaches 50%. The average
discharge current, excluding the rest period, is around 13 A.

Lw = [60:60:1200]
fc = logspace( 4,0,25) % 25 points/dec from 10 4 to 1 Hz in log scale 
Nf = [1, 2]   

Tuning
test

vcell
ibat

R0, R1, R2,

 C1, C2

2RC - Model
MWLS

 

ibat

vcell Minimum
rms

error

vM

verr Lw
fc
Nf 

Figure 3. Block diagram of the tuning procedure of the MWLS algorithm.

Time (h)

C
ur

re
nt

 (
A

)

Time (h)

S
oC

 (
%

)

Time (h)

V
ol

ta
ge

 (
V

)

Figure 4. Current, state-of-charge, and voltage profiles of battery cell #1 used to tune the
MWLS algorithm.

The reasonable ranges of the MWLS parameters have been obtained from both theo-
retical and empirical considerations. In particular, Lw is upper-bounded by the assumption
that the ECM parameters are considered constant within the identification window. SOC
is the cause of the fastest ECM parameter variations. Limiting the SOC variation in the
identification window to below 10% allows this assumption to hold with good approxima-
tion [22]. Moreover, the linearization of the OCV–SOC relationship in each identification
window is also a good approximation if the SOC variation is limited to 10% [20]. Thus,
the maximum value of Lw is set to 20 min, which corresponds to a SOC variation of about
7% at the mean discharge current value. Moreover, the fc parameter should be chosen low
enough to satisfy the Shannon theorem ( fc ≤ 1/(2T)), thus fc ≤ M/(2Lw), but not too
low in order not to cancel out the battery voltage dynamics that are captured by the 2-RC
groups. However, the ranges chosen for Lw, fc, and Nf are kept larger than the minimum
ones because the tuning procedure is performed offline in the cloud and then its execution
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time is not a limiting factor. For this reason, the Lw range runs from 60 to 1200 s with steps
of 60 s, fc goes from 10−4 to 1 Hz following a logarithmic scale with 25 points per decade,
and the order of the low-pass Nf is set to either 1 or 2.

The MWLS algorithm is executed on the cell current and voltage profiles reported
in Figure 4 for each possible combination of the parameter values. The obtained ECM
parameters are then used to calculate the predicted cell voltage. The RMS error between
the measured and the predicted cell voltage is used to quantify the quality of the identified
ECM parameters.

Figure 5a,b show the RMS errors obtained with the explored combinations of Lw and
fc for Nf equal to 1 and 2, respectively. First, we observe that the minimum value of the
RMS error is very similar in the two cases, i.e., 4.9 mV (at f min

c = 4.6 mHz and Lmin
w = 240 s)

and 5 mV (at f min
c = 31.6 mHz and Lmin

w = 180 s) for the first- and second-order filter,
respectively. However, as shown in Figure 5, the surface plot related to the first-order filter
shows a larger flat zone around the minimum point compared to what happens to the
second-order filter. In fact, considering an octave variation of the fc and Lw before and
after the minimum point coordinates (i.e., fc ∈ [0.5 f min

c , 2 f min
c ] and Lw ∈ [0.5Lmin

w , 2Lmin
w ]),

the mean value of the RMS error is 5.4 mV and 9.7 mV for the first- and second-order filter,
respectively. This aspect supports the choice of the first-order filter, as it is more robust
against variation in the MWLS operating conditions, and its implementation is inherently
simpler. Finally, we note that both the RMS error and the MWLS parameters obtained for
the first-order filter are in line with the ones reported in [21], where a minimum RMS error
of 15 mV is achieved with f min

c = 5 mHz and Lmin
w = 210 s.

(a) (b)

Figure 5. RMS error of the voltage predicted by the ECM, as a function of the identification window
length Lw, the cut-off frequency fc of the filter, and its order. (a) Low-pass filter order Nf = 1.
(b) Low-pass filter order Nf = 2.

The MWLS parameters obtained from the first cell are then used to identify the model
parameters of the other 107 battery cells by running the algorithm on the individual voltage
and current profiles. The RMS error found for each cell model varies in a range from 4.6 to
4.9 mV. Moreover, Figure 6 shows the mean value and the span between the minimum and
maximum of the model resistances as a function of the SOC for the 108 battery cells.
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Figure 6. Values of ECM resistances identified by applying the tuned MWLS to all the battery
cells. Mean value is depicted as a solid line, while minimum and maximum values are reported as
vertical bars.

Figure 7 shows the distribution of the identified model resistances R0 and
Rt = R0 + R1 + R2 for all the battery cells at 50% of SOC. The resistance distributions
are fitted with a normal function as suggested by the literature [23], obtaining the mean
µ and standard deviation σ values. A relative coefficient of variation, k = σ/µ, is usually
calculated to represent the spread of the resistance values around their mean value. The k
coefficients of R0 and Rt resistances at 50% of SOC are 1.83% and 1.79%, respectively. These
values are in accordance with the literature values for nickel manganese cobalt oxide (NMC)
cells [24].
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Figure 7. Distribution of the resistances R0 (a) and Rt = R0 + R1 + R2 (b) of all battery cells estimated
by the MWLS algorithm at 50% of SOC and their fitting with a normal distribution function.

4. Experimental Test Campaign

The MWLS algorithm tuned according to the procedure described in the previous
section is applied to 10 road test profiles, the characteristics of which are summarized in
Table 1. The investigated profiles were extracted from the experimental daily data collected
in the cloud during eight months of electric vehicle driving tests. The test profiles were
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selected to have large SOC ranges and different current profiles in order to obtain a broader
validation of the algorithm.

Table 1. Tests selected from about eight months of driving tests to characterize the MWLS algorithm.

Test # Day Length (h) Mean Current (A)
SOC (%)

Mean Speed (km h−1) Distance (km)Start End

1 28 April 2020 1.5 28.4 93.1 19.8 66.6 98.7
2 25 May 2020 2.2 21.8 92.8 8.46 4.9 140.8
3 8 June 2020 2.3 17.9 89.7 19.2 53.6 121.9
4 20 June 2020 3.8 12.3 92.6 13.1 43 163.6
5 29 June 2020 2.3 20.1 94.8 10.1 NA 1 NA 1

6 4 July 2020 4.3 11.8 93 10.2 36.1 154
7 17 August 2020 4.1 11.7 94.7 12.5 NA 1 NA 1

8 4 September 2020 3.4 12.8 93 16.5 35.8 120.7
9 27 September 2020 2.1 19 89.2 14.5 49.1 105.1
10 16 November 2020 2.1 19.3 95.7 14.7 47.2 98.7

1 Data not available (GPS error).

The model estimation error is calculated by comparing the real acquired voltage to
the simulated one with the battery model, whose parameters are identified and tracked by
the MWLS algorithm. This test procedure is summarized in Figure 8.

Test
campaign

vcell
ibat

R0, R1, R2,

 C1, C2

2RC - Model
MWLS

ibat

vcel   

vM

verr

Lw, fc, Nf 

Figure 8. Block diagram of the MWLS algorithm test procedure.

Figure 9a shows the minimum, mean, and maximum values of the RMS and MAE
errors of the 108 battery cells for each test. The MAE error is calculated as the average value
of the absolute difference between the model and the measured cell voltages. The mean
RMS errors obtained by these tests are obviously higher than those found during the tuning
procedure. Nevertheless, they are still rather low, being around 0.3% of the nominal cell
voltage of 3.6 V, i.e., 11 mV. In addition, the voltage errors seem not to depend on either
the driving profile or the season, nor do they increase with time, showing the ability of
the MWLS algorithm to accurately track the cell model parameters. The last statement is
supported by the evolution of the total cell resistance reported in Figure 9b, as tracked by
the MWLS algorithm. Even if the time of operation of the test vehicle is too short to show
appreciable aging of the battery, the slightly increasing trend of the total resistance visible
in the figure has been caught by the parameter tracking algorithm. In particular, the total
resistance goes from about 1.3 to 1.8 mΩ in about 140 cycles (1 cycle for working day in
28 weeks), showing a mean resistance increase of about 0.27% for each cycle. This value is
comparable with the literature, in which a cycle SOC ranges from about 90% down to 15%,
as shown in [25]. Furthermore, the cell model parameters tracked by the algorithm could
be loaded back to the battery, relieving the BMS of the heavy computational load due to
parameter identification and allowing a more accurate local estimation of the battery state.
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Figure 9. Maximum, mean, and minimum RMS and MAE errors (a) and Rt = R0 + R1 + R2 (b) of
the 108 battery cells for each test reported in Table 1.

5. Comparison with Literature Data

The results obtained in this work are compared with the literature data in Table 2.
The table reports literature studies that address the problem of model parameter identifica-
tion for different battery models applying different approaches.

Table 2. Comparison of the obtained results with the literature.

Work Battery Model Estimation Method RMS Error

This work ECM with 2-RC MWLS 11 mV (Road data)

[26] ECM with 1-RC ADUKF 10.3 mV (DST)
9.4 mV (FUDS)

[27] ECM with 1-RC FFRLS 12.2 mV (NEDC)

[28] Fractional Order ECM RLS 8.02 mV (DST)
6.37 mV (FUDS)

[29] ECM with 2-RC TD-DRLS 9.7 mV (FUDS)
9.1 mV (DST)

[30] ECM with 2-RC FMRLS-SPKF 12.7 mV (FUDS)
and Hysteresis 8.7 mV (DST)

For example, an adaptive dual unscented Kalman filter (ADUKF) is used to develop
an identification algorithm to estimate the parameters of a 1-RC ECM in [26]. The algorithm
is applied to the dynamic stress test (DST) and the Federal Urban Driving Schedule (FUDS),
obtaining an RMS error of 10.3 mV and 9.4 mV, respectively. The forgetting factor recursive
least squares (FFRLS) technique is instead adopted in [27] to design an estimation parameter
algorithm for 1-RC ECM. The authors use the New European Driving Cycle (NEDC) to test
the algorithm, obtaining an RMS error of 12.2 mV. Time domain parameter extraction is
combined with a decoupled recursive least squares (TD-DRLS) algorithm to estimate the
parameters of a 2-RC ECM model in [29]. The DST and FUDS driving cycles are used to
assess the TD-DRLS algorithm, achieving RMS errors of 9.1 mV and 9.7 mV, respectively.
The SOC and the parameters of a 2-RC ECM with hysteresis are estimated using fixed
memory recursive least squares combined with a sigma-point Kalman filter (FMRLS-SPKF)
in [30]. The FMRLS-SPKF algorithm is assessed using the DST and FUDS driving cycles,
obtaining RMS errors of 8.7 mV and 12.7 mV, respectively. The errors reported in [26–30]
are in line with those achieved by our algorithm. However, the load test profiles are applied
in controlled environments, and the cell current and voltage are measured with laboratory
instruments in the literature. Instead, the current and voltage quantities of our work are
directly acquired by the real BMS of the vehicle during road driving tests with lower
accuracy and higher noise.
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6. Conclusions

This work presents the procedure for the optimization of an algorithm used to identify
the parameters of the electrical circuit model of a battery cell with 2-RC relaxation groups.
The algorithm applies the MWLS technique and benefits of the cloud computing concept.
In fact, the real data coming from a test vehicle are uploaded to the Stellantis-CRF cloud,
and the algorithm is executed on them, offline from the BMS, to find the best set of algorithm
parameters. The tuning procedure consists of finding the minimum voltage estimation
error by exploring all possible combinations of the algorithm parameters, confined to given
and reasonable ranges. The parameters that lead to the minimum error are thus selected as
golden values for the algorithm. Then, the tuned MWLS algorithm is applied to data from
eight months of road tests as uploaded to the cloud by the BMS. The results show that the
tuned MWLS algorithm is able to identify the cell model parameters in such a way as to
obtain voltage estimation errors that are very small and comparable with literature data
obtained in laboratory experiments. Finally, the tracking of the total cell resistance shows
a slight increase through time, consistent with the first signs of battery aging.
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Appendix A

The appendix reports the detailed equations that describe the coefficients a1, a2, a3, b0,
b1, b2, and b3 of Equation (5). 

a1 = − 2 T τ1+2 T τ2+12 τ1 τ2−T2

(T+2 τ1) (T+2 τ2)

a2 = − 2 T τ1+2 T τ2−12 τ1 τ2+T2

(T+2 τ1) (T+2 τ2)

a3 = − (T−2 τ1) (T−2 τ2)
(T+2 τ1) (T+2 τ2)

(A1)
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b0 = − α1 T3−k2 T2+k1 T+8 Qn R0 τ1 τ2
k3

b1 = −3 α1 T3+k2 T2+k1 T+24 Qn R0 τ1 τ2
k3

b2 = − 3 α1 T3+k2 T2−k1 T+24 Qn R0 τ1 τ2
k3

b3 = − α1 T3+k2 T2+k1 T−8 Qn R0 τ1 τ2
k3

k1 = 4 Qn R0 τ1 + 4 Qn R0 τ2 + 4 Qn R1 τ2 + 4 Qn R2 τ1 + 4 α1 τ1 τ2

k2 = −2 Qn R0 − 2 Qn R1 − 2 Qn R2 − 2 α1 τ1 − 2 α1 τ2

k3 = 2 Qn (T + 2 τ1) (T + 2 τ2)

(A2)
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