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Abstract: Typically, in accelerated life testing analysis, only probability distributions possessing shape
parameters are used to fit the experimental data, and many distributions with no shape parameters
have been excluded, including the fundamental ones like the normal distribution, even when they
are good fitters to the data. This work shows that the coefficient of variation is a replacement for
the shape parameter and allows using normal distributions in this context. The work focuses on the
Arrhenius-normal model as a life-stress relationship for lithium-ion (Li-ion) batteries and precisely
derives the estimating equations of its accelerating parameters. Real and simulated lives of Li-ion
batteries are used to validate our results.
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1. Introduction

Due to their high energy density, high power density, and declining costs, lithium-ion
batteries are a promising technology for energy storage [1–3]. Lithium-ion battery life
distribution predictions are necessary for the commercialization of batteries for a variety of
uses [4,5]. A product’s lifetime, warranty period, and many other essential measurements
could be misjudged if a proper life distribution is not predicted or if its characteristics are
incorrectly estimated [6,7].

In spite of its importance in statistics, as it describes many natural variables well, the
normal distribution is less commonly used in life data analysis than other distributions
because its left tail extends to negative infinity and because it lacks a shape parameter,
making it hard to utilize in accelerated life analysis [8,9]. In accelerated life tests (ALT),
products of interest are exposed to a number of harsher conditions than the use conditions
in order to obtain immediate information regarding their life distribution [10,11]. These
conditions are extrapolated to estimate the life distribution under use conditions using
an appropriate life-stress relationship, such as the Arrhenius [12,13], Eyring [14,15], and
inverse power law relationships [16,17]. The Arrhenius model has been frequently used
when the accelerating stress is thermal, where it is integrated with an appropriate statistical
life model. In ALT, the life model for Li-ion batteries is usually assumed to be Weibull or
lognormal [18,19], where these distributions possess shape parameters, and the assumption
that allows us to extrapolate the accelerated lives to the working life is that the shape
parameter remains constant for several stress levels, ensuring that the failure mechanism
remains the same.

While the theory of the Arrhenius-Weibull [20–22] and lognormal [23–25] models
is well-established and has been addressed in numerous prior works, the theory of the
Arrhenius-normal distribution has not been discussed even in the main references of accel-
erated testing. This prevents us from achieving precise estimates when the experimental
data is, actually, normally distributed like the Li-ion batteries and forces us to adopt more
complicated models like the three-parameter Weibull distribution [26–28] or the gener-
alized gamma distribution [29,30]. Engineering data are frequently described using the
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normal distribution [31]. It is an excellent life model for fatigue [32,33], software reliability
growth models [34], and general degradation models [35]. It is a symmetrical and easily
understood distribution that is also known as the Gaussian distribution. Particularly for
recently manufactured batteries, it has been discovered that several Li-ion batteries follow
the normal distribution [36].

The primary goal of this work is to extend the Arrhenius presumptions to a variety
of distributions, with a particular emphasis on the Arrhenius-normal model. The general
assumptions of Arrhenius are reset in Section 2. Section 3 proposes the theory of the
Arrhenius-normal model and the estimating equations of its accelerating parameters. The
theory of the Arrhenius-normal model is applied to the life distribution of Li-ion batteries
in Section 4. Section 5 serves as the paper’s conclusion.

2. Generalizing the Arrhenius Model

Suppose that X ∼ F(ξX) and Y ∼ F(ξY) are two random variables following the
same statistical distribution F, and describing the life distribution of a product under two
different stresses SX and SY such that ξX and ξY are the parameter spaces of X and Y,
respectively. If it is further assumed that the stress SY is more severe than SX, then there
exists a scalar A > 1 such that:

X = A ∗Y. (1)

The acceleration factor [37,38], or scalar A in (1), is a quantity that connects a product’s
life at stress SX to its life at stress SY.

By applying (1) to the expected value (E) and standard deviation (SD), we obtain

E(X) = A ∗ E(Y), (2)

SD(X) = A ∗ SD(Y). (3)

Now, dividing (3) by (2), we arrive at an equation without an acceleration factor.

SD(X)

E(X)
=

SD(Y)
E(Y)

, (4)

in which the left and right sides, respectively, are the coefficients of variation (c) [39,40] of
X and Y.

c(X) = c(Y). (5)

When a life model possesses a shape parameter, the primary assumption that validates
using the Arrhenius or any other life stress relationship with the life model is that its shape
parameter is free of the stress and assumed to be constant, as illustrated in many previous
works. Among all we mention the solar cells [41] and light-emitting diodes [42], which are
assumed to follow Weibull distribution, that were later shown to better follow lognormal
distribution as in [43], respectively. See also [44] and along similar lines [45], in which the
life of the lithium-ion battery is shown to be acceptably Weibull, and Ref. [46] compares
the Weibull with lognormal and inverse normal models. Recently, Ref. [47] proves using
standard statistical goodness of fit tests [48,49] that the normal and lognormal distributions
achieve much higher p-values [50,51] than the Weibull distribution based on real lifetime
data generated from a well-designed experiment.

This assumption is the key point that makes Arrhenius a legitimate life-stress relation-
ship in addition to the usual assumption of Arrhenius model, which assumes that the life
must be an Arrhenius function of a positive stress S, where, in this work, S denotes the
thermal stress expressed by temperature, that is:

l(S) = ea+b/S or logl(S) = a + b/S (6)

where l is any life measure, such as their mean life, typical life, median life, etc. The model
acceleration parameters a, b are to be determined.
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This work argues that the constancy of the shape parameter assumption can be re-
placed with a more general assumption, which assumes that the coefficient of variation (c)
must remain constant and independent of the stress. That is, under normal work stress S0
and various accelerated stresses S1, S2, · · · , Sm then:

c0 = c1 = c2 = · · · = cm, (7)

where cj is the coefficient of variation at stress Sj.
Table 1 depicts some examples of the coefficient of variation for several commonly

used life distributions in accelerated life testing analysis.

Table 1. The coefficient of variation for common life distributions that have shape parameters.

Distribution Coef. of Var. (c)

Weibull (α : shape, β : scale) c(α)=
√

Γ(1 + 2/α)/Γ2(1 + 1/α)− 1

Lognormal (ρ : shape, γ : scale) c(ρ) =
√

exp(ρ2)− 1

Gamma (k : shape, θ : scale) c(k) = 1/
√

k

Log-logistic (η : shape, υ : scale) c(η) =
√

ηtan(π/η)/π− 1

It can be seen from Table 1 that the coefficients of variation are pure functions of
the shape parameters and free of the other parameters. That is, the shape parameter is
constant if and only if the coefficient of variation is constant. This means that assumption (7)
completely agrees with the primary assumption of the Arrhenius model, but it is more
general and can be extended to distributions that do not have shape parameters like the
normal distribution.

3. The Arrhenius-Normal Model

In this section, the new assumption (7) is utilized to develop the Arrhenius-Normal
model by providing the estimating equation of the accelerating parameters a and b, and
derives the maximum likelihood estimator (MLE) of the general coefficient of variation of
the model under this assumption.

If the life model is assumed to be normal with mean µ and standard deviation σ, where
the mean µ is chosen as the life characteristic, then (6) will take the form

logµ = a + b/S, (8)

and under the assumption (7), the standard deviation will be:

σ = cea+b/S, (9)

where c = σ/µ is the coefficient of variation.
Now, the target is to estimate the accelerating parameters a and b, and the coefficient

of variation c from experimental data of an accelerated life test.
Mathematically speaking, suppose that an accelerated test is conducted at m constant

stresses, S1, S2, · · · , Sm on m groups of items until the failure of all of them. This would
produce m samples of failure times, of sizes, say n1, n2, · · · , nm, respectively. If we denote
by t(j)

1 , t(j)
1 , · · · , t(j)

nj the failure times at the jth stress Sj, the likelihood function of the sample
at this stress can be written as:

f j

(
t(j)
1 , t(j)

1 , · · · , t(j)
nj

)
=

nj

∏
i=1

f
(

t(j)
i

)
, (10)
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where f
(

t(j)
i

)
is the probability density function (PDF) of the normal distribution with

mean µj and standard deviation σj associated with stress Sj. This PDF is given by:

f
(

t(j)
i

)
=

1√
2πσj

exp

{
−1
2σj

2

(
t(j)
i − µj

)2
}

. (11)

Consequently, the likelihood of the jth sample has the form

Lj = ∏
nj
i=1 f

(
t(j)
i

)
=

(
1√

2πσj

)nj

exp

{
−1
2σj

2 ∑
nj
i=1

(
t(j)
i − µj

)2
}

. (12)

Therefore, the likelihood of the whole experiment under all stresses S1, S2, · · · , Sm, is
given by:

= ∏m
j=1 Lj =

(
1√
2π

)∑m
j=1 nj

∏m
j=1

(
σj
)−nj exp

{
∑m

j=1
−1
2σj

2 ∑
nj
i=1

(
t(j)
i − µj

)2
}

. (13)

By assumption (7), since the general coefficient of variation c is constant and indepen-
dent of stress, then for all j, we have:

c = σj/µj. (14)

In view of (14), when σj is replaced in (13) by cµj, the general log-likelihood becomes:

ψ = log(L) = constant−∑m
j=1 njlog

(
cµj
)
− c−2

2 ∑m
j=1

1
µj

2 ∑
nj
i=1

(
t(j)
i − µj

)2
. (15)

Setting the partial derivative of ψ in (15), with respect to c, yields the maximum
likelihood estimate of the square of the coefficient of variation:

c2 =
∑m

j=1
1

µj
2 ∑

nj
i=1

(
t(j)
i − µj

)2

∑m
j=1 nj

. (16)

It is a very well-known fact that the best estimates of the mean
(
µ̂j
)

and standard
deviation

(
σ̂j
)

of the normal distribution are the sample mean and standard deviations.
That is, for the jth stress:

µ̂j =
∑

nj
i=1 t(j)

i
nj

, (17)

σ̂2
j =

∑
nj
i=1

(
t(j)
i − µ̂j

)2

nj
, (18)

Accordingly, the estimating equation of c is immediately obtained by replacing the
parameters µj and σj in (16) with their estimates in (17) and (18), that is:

ĉ =

√√√√∑m
j=1 nj ĉ2

j

∑m
j=1 nj

, (19)

where, ĉj = σ̂j/µ̂j is the jth sample coefficient of variation.
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Once Equation (17) estimates the mean µj at each stress Sj, we can apply the usual least
squares method (LSM) to estimate the two accelerating parameters a and b from Equation
(8), for the paired data

(
1
Sj

, logµ̂j

)
for j = 1, 2, · · · , m. The LSM estimating equations are:

b̂ =
m ∑m

j=1 logµ̂j/Sj −∑m
j=1 logµ̂j ∑m

j=1 1/Sj

m ∑m
j=1
(
1/Sj

)2 −
(

∑m
j=1 1/Sj

)2 , (20)

â =
∑m

j=1 logµ̂j − b̂ ∑m
j=1 1/Sj

m
. (21)

On the other hand, after estimating σj from Equation (18), σ̂j and µ̂j together yield an
estimate for the coefficient of variation at each stress Sj through the relationships

ĉj = σ̂j/µ̂j, for j = 1, 2, · · · , m, (22)

which, in turn, estimate the general coefficient of variation c by ĉ. Where ĉ is obtained after
plugging the ĉj for j = 1, 2, · · · , m in Equation (19).

4. The Life Distribution of Li-Ion Batteries

This section revisits the experimental life test data set of Li-ion batteries discussed
in [47], which was originally introduced in [45]. This censored data [52] was proved in [47]
to follow the normal distribution using the Lilliefors [53], Chi-Square [54], Cramer-von
Mises [55], and Jarque-Bera [56] goodness of fit tests, taking the censoring effect into
consideration [57]. On the other hand, the efficiency of the censored sample of the normal
distribution is proven to be high when tested using the efficiency function [58]. Each cell
cycled in the experiment at a temperature of 25 ◦C with an Arbin BT2000. The cells were
charged in a constant current, constant voltage mode at 1 C (4.4 A) constant current up to
4.35 V. This was followed by a constant voltage charge until the current dropped below
C/40. Each cell was then discharged at a constant current of 10 C (44 A) until the terminal
voltage fell to 3 V. The descriptions of the tested batteries are shown in Table 2, and their
failure cycles are shown in Table 3.

Table 2. The description of the commercial Li-ion batteries tested.

Type of Battery Li-Ion

Nominal capacity 4.4 Ah

Active material of the anodes synthetic graphite

Active material of the cathode LCO (Li Cobalt Oxide)

Number of cells tested 24 cells

Temperature 25 ◦C

Discharge rate 10 C

Table 3. Failure Cycles for the 20 observed batteries.

255 379 497 541
301 408 509 560
326 409 515
338 430 518
340 449 537
341 475 541

These 24 batteries were placed in an ALT. Only four batteries were still operating
after the test’s 593 consecutive cycles of charge and discharge; as a result, 20 lives out of
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24 batteries were recorded. This scenario is usually called in statistics censoring [59], and
the 20 observed failures form a censored sample.

The estimates of the mean and standard deviation of this sample of Li-ion batteries’
lives at a use condition of 25 ◦C are obtained from [52] as:

µ25 = 470.4 cycles, (23)

σ25 = 119.3 cycles. (24)

Accordingly, the probability distribution function of this type of battery at use condi-
tions of 25 ◦C is:

f25(t) =
1

119.3
√

2π
e−

1
2 ( t−470.4

119.3 )
2
, (25)

where t is the number of cycles.
What is going to happen to the life if the thermal working conditions are higher than

25 ◦C. Recent studies show that an increase of 10 ◦C to the working temperature would
roughly decrease the life to half, see, for example, [60,61]. Hence, according to the proposed
theory in this work, both the mean life and standard deviation would decrease by half. This
allows us to simulate some data under different stresses in order to validate the theory and
provide a heuristic example to readers and practitioners. Here, we use the three thermal
stresses of S35, S45 and S55 where the index denotes the temperature in degrees Celsius. To
be consistent with the experimental data, we generate n35 = n45 = n55 = 20 lives in cycles
for each stress, as shown in Table 4.

Table 4. Simulated failure cycles for batteries at several stress levels.

S35

123 151 167 180 191
200 208 216 224 232
239 246 254 262 270
280 290 303 319 346

S45

62 76 84 90 95
100 104 108 112 116
120 123 127 131 135
140 145 151 159 174

S55

31 38 42 45 48
50 52 54 56 58
60 61 63 65 67
70 72 75 80 86

For the three datasets of Table 4, the estimated values of means, standard deviations,
and coefficients of variation are obtained using (17), (18), and (22), respectively, and the
results are listed in Table 5.

Table 5. The estimated means, standard deviations, and coefficients of variation of failure cycles for
batteries at several stress levels.

Stress nj
^
µj

^
σj

^
cj

S25 20 470.4 119.3 0.2536

S35 20 235.4 57.7 0.2451

S45 20 118.0 28.7 0.2432

S55 20 58.7 14.2 0.2419

In Table 5, the estimates from the experimental data that appear in Equations (23) and (24)
are also added, so we have estimates at 4 stress levels in total.
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Substituting the values shown in Table 5 into (20) and (21), one can obtain â = 2.62
and b̂ = 91.55. Hence, the accelerated Equation (8) becomes:

logµ = 2.62 + 91.55/S or µ = e2.62+91.55/S (26)

An accelerated life curve that might be called a battery’s life characteristics curve is
depicted in Figure 1, which has been developed using the Mathematica 12.3 package. The
correlation coefficient is 0.9735 and is very nearly 1, demonstrating excellent curve-fitting.
The outcome also demonstrates that the accelerated model is completely consistent with
the Arrhenius model.
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It can be seen from Table 5 that the mean and standard deviation decrease with the
stress, whereas the estimated coefficients of variation ĉj are almost the same for the different
stresses, in agreement with the theory. The general coefficient of variation c can be estimated
through (19), which provides the MLE of this quantity:

ĉ = 0.2460. (27)

Note that this value is equal to the usual average of the four values of ĉj mentioned in
Table 5 because the four sample sizes are equal.

The second acceleration Equation (9) follows from (27) and becomes:

σ = 0.2460 µ. (28)

The estimates appearing in Table 5 for the mean and standard deviation allow us to
pictorially present the battery life distributions for several thermal stresses, as shown in
Figure 2. The four curves correspond from left to right to S55, S45, S35, and S25, respectively.

It can be clearly seen that the life distribution is shifted to the right and gets more
dispersed when the thermal stress decreases, and vice versa. On the other hand, the
acceleration Equations (26) and (28) can predict the battery distribution at stresses that have
not been tested experimentally. For example, to predict the life distribution at stress S40,
we substitute S = 40 in the two equations to obtain the estimates for µ40 = 135.5 cycles and
σ40 = 33.3 cycles. These estimates are consistent with the trend in Table 5, as 40 lies in the
stress range 25–55 used in the table. However, the estimates may significantly vary when it
is conducted outside the experimental range.
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Finally, it must be mentioned that the range of possible outcomes T = t of the normal
distribution is from −∞ to ∞. Life must, of course, be positive. Thus, the fraction of the
distribution below zero must be sufficiently small. This means that the mean µ must be at
least three times as great as the standard deviation σ. It can be checked that, for any stress
S, the fraction of the distribution with negative life solely depends on the coefficient of
variation c and equal to:

P(T < 0) = P
(

Z <
−1
c

)
≈ 2.4× 10−5. (29)

which is negligible, where Z is the standard normal random variable.

5. Conclusions and Recommendations

To recap, this paper introduced the Arrhenius-normal model, which was not addressed
in previous works to the best of the author’s knowledge. The model can be used to
extrapolate the life distribution at use conditions from accelerated experimental data. It
predicts how time-to-fail varies with temperature and describes the failure mechanisms
when the failure-accelerated data is actually normally distributed. In addition to the
normality of the experimental data, the key assumption of the Arrhenius-normal model is
that, under a use stress and various accelerated stresses, the coefficient of variation keeps
unchanged. The model does not invoke any further arbitrary assumptions. The maximum
likelihood estimate of the general coefficient of variation is precisely derived and shown
to be an explicit function of the estimates of the coefficients of variation at each stress.
Although the focus of this work was on the normal distribution, the theory proposed in
this work is applicable to any statistical distribution with a defined coefficient of variation
even if the desired distribution does not have a shape parameter, as in classical accelerating
test analysis practices.

We recommend that researchers apply the proposed theory to many products and
materials that are normally distributed, such as light-emitting diodes and solar cells. In
addition, study other life-stress relationships like inverse power laws and the Eyring model
with normal distribution. Finally, replace the normal distribution with other distributions
that do not have shape parameters, such as Gumbel and logistic distributions. The ap-
proach presented in this work can also be used to predict the life distribution of other
types of batteries, such as all-solid-state sodium [62] and rechargeable aqueous zinc (Zn)
batteries [63].
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