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Abstract: The performance of a battery system is critical to the development of electric vehicles (EVs).
Battery capacity decays with the use of EVs and an advanced onboard battery management system is
required to estimate battery capacity accurately. However, the acquired capacity suffers from poor
accuracy caused by the inadequate utilization of battery information and the limitation of a single
estimation method. This paper investigates an innovative fusion method based on the information
fusion technique for battery capacity estimation, considering the actual working conditions of
EVs. Firstly, a general framework for battery capacity estimation and fusion is proposed and two
conventional capacity estimation methods running in different EV operating conditions are revisited.
The error covariance of different estimations is deduced to evaluate the estimation uncertainties.
Then, a fusion state–space function is constructed and realized through the Kalman filter to achieve
the adaptive fusion of multi-dimensional capacity estimation. Several experiments simulating the
actual battery operations in EVs are designed and performed to validate the proposed method.
Experimental results show that the proposed method performs better than conventional methods,
obtaining more accurate and stable capacity estimation under different aging statuses. Finally, a
practical judgment criterion for the current deviation fault is proposed based on fusion capacity.

Keywords: lithium-ion battery; state estimation; battery capacity; adaptive fusion; estimation
uncertainty

1. Introduction

The rapid development of new energy vehicles benefits from the desire to reduce emis-
sions and pollution [1]. Among different new energy vehicles, electric vehicles (EVs) are
the most promising for mass commercialization, which gives credit to the excellent perfor-
mance of lithium-ion batteries (LIBs) [2]. LIBs have the superiority of high power/energy
density, light weight, and long life cycle [3]. However, their adaptability to the harsh
working environment, poor thermal safety, and inevitable degradation need scientific
improvements. The solution to the above challenges can be achieved through the battery
design, for example, improvements in battery electrodes [4,5] and efficient battery man-
agement technologies for battery systems [6,7]. High-performance battery management
technologies are an essential impetus for the development of EVs.

Among battery management technologies, LIB capacity is a vital parameter for charac-
terizing battery performance and is deemed a direct indicator of battery health level [8].
Battery capacity affects the uninterrupted driving range of EVs and is a prerequisite for
estimating some essential battery internal states. However, battery capacity is time varying
and decays as the battery ages [9], which will challenge the capability of state estimation;
hence, exact capacity information is essential for better management and utilization of LIBs.
The direct measurement method is the most accurate to obtain battery capacity; however,
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this method is time consuming and usually limited by the operating conditions, which is
unsuitable for real EV applications [10]. Therefore, accurate onboard estimation of battery
capacity is a research hotspot in battery management technologies in EVs.

1.1. Review of Existing Battery Capacity Estimation Approaches

Many studies have investigated indirect estimation methods of battery capacity for
EVs [11–13]. Generally, commonly used battery capacity estimation approaches categorize
into three classes: the method based on the state of charge (SOC), the method based on
incremental capacity analysis (ICA), and the data-driven method.

It can be found that SOC has a close relationship with battery capacity and the SOC-
based methods utilize the change in SOC and charge accumulation over a while to estimate
battery capacity [14]. Some researchers employed the measured or estimated open-circuit
voltage to obtain SOC and achieve battery capacity [15,16]. Considering that battery
capacity can be regarded as an unknown parameter, some joint estimation techniques for
battery SOC and capacity are springing up. A single state vector containing battery SOC,
capacity, and other parameters and corresponding state–space function was established to
estimate battery capacity [17,18]. Using two or more estimators is more flexible and has
been investigated by many researchers. Dual extended Kalman filter [19], dual sliding-
mode observer [20], dual nonlinear predictive filter [21], and Kalman filter together with
least squares [22] are common attempts to achieve the co-estimation. Battery SOC is
fundamental in battery management technology, so the SOC-based capacity estimation
method is accessible to implement. Some factors, including the SOC estimation error and
the different time-varying characteristics between states, shall be considered when using
this method [23].

The ICA method is another practical capacity estimation method, using the differ-
ential technology to transfer the battery charging capacity voltage (Q-V) curve into the
incremental capacity (IC) curve. The features of the IC curve indicate the battery’s internal
electrode behavior; therefore, this method can analyze the battery aging mechanism [24]. A
close relationship between IC curve features and battery health status can be established
and further used for online capacity estimation. A necessary procedure in ICA technology
is curve fitting/smoothing because the differential operation in ICA technology is sensitive
to measurement noise. He et al. [25] compared six commonly used voltage curve fitting
models in IC curve determination and the model in [26] was validated to be optimal for
different types of batteries. After numerical differentiation, Gaussian filtering has an ad-
vantage over conventional moving average filtering in terms of IC curve smoothing [24,27],
where low-frequency signals can be separated from high-frequency noise. An operating
condition with a monotonic voltage change is necessary for ICA technology, limiting the
application of this method.

The data-driven method has been widely employed in battery state estimation with
the development of artificial intelligence technology, allowing knowledge related to battery
aging to be learned from battery training datasets and further used for online capacity
estimation [28,29]. Feature engineering is the first step in a data-driven estimation method.
Compared with the discharging condition, the battery charging condition is more stable
and regular and is usually used to extract battery-capacity-related features. Five charging-
related features, including the initial and final charge voltage, the final charge current, the
constant current charge capacity, and the constant voltage charge capacity, were extracted
from charge curves [30]. After determining battery features, machine learning algorithms,
including kernel techniques [31,32] and neural-network techniques [28,33], are employed
to estimate capacity. The main concern during the online application of this method is the
high computational effort.

Except for the above typical capacity estimation methods, fusion technologies have
also been widely employed in battery state estimation. Zheng et al. [34] studied a novel
capacity estimation method with the help of fusion estimation of battery charging curves
and the Arrhenius aging model, which shows high estimation accuracy over the whole
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battery lifecycle. A multi-stage fusion method containing three battery models at different
aging levels was proposed by Xiong et al. [35] and then the residual error of each model
was employed to calculate the fusion weight. Moreover, Balasingam et al. [36] investigated
a robust capacity estimation fusion method, which can optimally utilize the estimates
from different approaches; however, only simulation data were used for validation in
this work. Owing to the effective utilization of more information from different sources,
the information fusion techniques can not only eliminate noise and outliers in the input
information but also achieve a complete description of the observed object through in-
formation complementarity [37]. The multi-source information represents the data from
different models [35], different approaches [34,36], and different operating scenes. Using
the multi-source information, the fusion techniques promise to improve the estimation
accuracy and enhance the estimation stability.

1.2. Existing Challenges and Original Contributions

The above overviews several typical capacity estimation methods and each approach
shows better performance under specific conditions. However, the following issues remain
to be addressed among current capacity estimation methods.

(1) The inadequate utilization of battery information. The attenuation of battery
capacity affects the dynamic trajectories of other battery states, including SOC, terminal
voltage, and open-circuit voltage. This inspires researchers to perform capacity estimation
using the variation in the above states combined with the battery current. However, one
primary shortage in the above approaches is that only a single battery information source
(except battery current) is utilized in capacity estimation. For example, the SOC-based
method only utilizes the battery SOC and current, while the ICA-based method only uses
the battery voltage and current. The inadequate utilization of battery information could
lead to difficulties in improving the estimation accuracy.

(2) The limitation of EVs’ operating conditions on estimation methods. As intro-
duced above, each method may only adapt to a specific operating condition. For the
ICA-based and data-driven methods, the EV charging condition is stable and suitable for
feature construction. In contrast, the EV discharging condition is random, not monotonous,
and not convenient for the online application of these two methods. The adaptive filters
offer advantages in SOC acquisition to the SOC-based method and battery model parameter
determination is an important step. In this situation, dynamic discharging will be helpful
because of adequate current excitation for parameter identification. Therefore, the battery
operating conditions may limit the above capacity estimation methods.

(3) The weak anti-interference ability to the system error. Another deficiency in
traditional capacity estimation is the weak anti-interference ability to system error because
only one estimation approach is employed. Battery current is the critical information in
capacity estimation and inaccurate current information affects the estimation accuracy. For
example, a micro-internal short circuit (ISC) is a severe battery failure and may cause a
thermal runaway of LIBs [38,39]. Supposing a battery has a micro-ISC fault (inaccurate
current information), the SOC-based method may obtain a smaller capacity estimate, while
the ICA-based method may get a larger capacity estimate. Hence, the weak anti-interference
ability to system error may lead to capacity estimation deviations.

Considering the above problems, this study proposes an adaptive fusion method for
battery capacity estimation under actual EV operation conditions, which takes advantage
of information fusion technologies. Concretely, the SOC-based and ICA-based capacity
estimation constitutes the fusion method, which can fully utilize battery information, in-
cluding the battery current, SOC, and voltage. Moreover, the two base estimators operate in
different working conditions, achieving the fusion framework during complete operating
conditions. Here, the complete operating condition means the combination of discharging
and charging conditions, which simulates the actual working conditions of EVs. The fusion
of different capacity estimations enhances the anti-interference ability against system error
because these two base estimators have different estimation characteristics under inaccu-



Batteries 2022, 8, 112 4 of 16

rate battery current information. In our previous work, presented in VPPC 2020, Gijon,
Spain [40], this framework was initially introduced and verified with a fresh battery cell.
Significant extensions are provided in this study. Specifically, an improved estimation and
fusion framework is investigated, in which the noise-compensating method is employed
for capacity estimation during discharging. Moreover, the constructed fusion framework
is validated by experimental data of aged battery cells and with inaccurate current infor-
mation. The main work in this paper can be generalized as follows. Firstly, a general
framework for battery capacity estimation and fusion is proposed, then the SOC-based and
ICA-based capacity estimation approaches are revisited in different operating conditions
and the corresponding error covariance of the two estimates is obtained separately. The
acquisition of the fusion capacity is realized through the Kalman filter. Laboratory exper-
iments simulating the EV operating conditions are designed and performed to validate
the effectiveness of the proposed fusion method under different dynamic conditions and
aging statuses. Furthermore, a practical judgment criterion for the current deviation fault
is proposed based on fusion capacity.

1.3. Outline of the Paper

The remainder of this paper is organized as follows. Section 2 proposes the general
estimation and fusion framework and derives the uncertainties of capacity estimation from
two estimation approaches; further, the adaptive fusion of two estimations is constructed.
The test bench and designed battery experiments are shown in Section 3. Section 4 shows
the experimental results and discusses the accuracy and robustness of the fusion method.
Finally, Section 5 concludes this paper.

2. Multi-Dimensional Capacity Estimation and Fusion
2.1. Development of the Adaptive Fusion Framework

Aiming to realize the adaptive fusion for capacity estimation, a general framework for
battery capacity estimation and fusion is shown in Figure 1a. Three main procedures are
included in the general framework: multi-dimensional capacity estimation, determination
of estimation uncertainty, and fusion center.
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capacity fusion. (b) The specific implementation in this study.

The multi-dimensional capacity estimation originates from the traditional methods
listed in the literature review. With the increment of onboard chips’ computing ability and
improvement in estimation algorithms, multiple estimation methods can run simultane-
ously and export estimated capacity from different dimensions. Multi-dimensional capacity
estimation brings opportunities for improving estimation accuracy because of the increase
in useful information. The second step is the determination of estimation uncertainty.
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Except for the estimated values, the estimated uncertainties are also essential knowledge
in capacity fusion. The estimated uncertainties reflect the estimation error characteristics
for estimated values and contribute to the adaptive filter-based fusion. The final is the
adaptive fusion center, which receives information from all the capacity estimators and
some adaptive fusion algorithms can be utilized for capacity fusion in the fusion center.
The framework shown in Figure 1a is a centralized fusion system and the weighted average
filter, least squares, and Kalman filter are common technologies in information fusion.

During the fusion process, a state–space function is established to describe the battery
capacity characteristics. Battery capacity is a slowly varying state and can be further
assumed to be disturbed by Gaussian white noise. The following equation is satisfied:

xl+1 = φxl + wl (1)

where xl represents the lth fusion state, φ is the system matrix, and wl is the system noise
during the fusion process and is considered a Gaussian white noise with covariance Ql .

Two structures are usually employed in the fusion center: parallel structure and
sequential structure. The parallel structure handles the independent estimated values from
the transmitting sub-system simultaneously, while the sequential structure successively
deals with the corresponding estimated values. The fusion measurement function can be
expressed as:

zl = Hxl + vl (2)

where zl estimated capacities and zi
l comes from the ith sub-system, H is the output matrix,

and vl is corresponding measurement noise with covariance Ri
l .

It has been approved that parallel structure-based and sequential structure-based
fusion have the same estimation accuracy [41]. Based on the constructed state–space
function, some adaptive filters can obtain the optimal fusion state. Finally, the capacity
fusion based on multi-dimensional estimation will be achieved.

According to the above general battery fusion methodology, together with the vision
of utilizing more battery information effectively and taking advantage of battery operating
conditions, a specific implementation is shown in Figure 1b. Inspired by Ref. [36], the
proposed method will utilize more battery information effectively by combining the char-
acteristics of battery operations. Generally, the implementation of capacity fusion is based
on the sequential structure. It contains three main parts: (1) the SOC-based estimation
during the dynamic discharging, (2) the ICA-based estimation under the stable charging
condition, and (3) the final adaptive fusion under complete operating conditions. The first
two parts have been preliminarily studied in our previous works [42,43]. This study will
further revisit these two methods and obtain the estimation uncertainties, which will be
used for adaptive fusion.

2.2. Revisiting Capacity Estimation at Different Working Conditions
2.2.1. SOC-Based Estimation during the Discharging Condition

The definition of battery SOC can be rewritten as

∑k=k2
k=k1

ik∆t = Cm × (SOCk1 − SOCk2) (3)

where k1 and k2 are different sampling points, ∆t is the sampling time, ik is the battery
current, and Cm is the battery capacity. Defining SOC change as X = SOCk1 − SOCk2 and
charge accumulation as Y = ∑k=k2

k=k1
ik∆t, Equation (3) can be transformed to Y = CmX. If

N observations are performed for X and Y, the following equation in vector form can be
obtained:

Y = CmX (4)

where X = [X1, X2, . . . , XN ]
T and Y = [Y1, Y2, . . . , YN ]

T.



Batteries 2022, 8, 112 6 of 16

The traditional least-squares method can be used for the solution of Equation (4), if
the system data are accurate enough. However, the system input X and output Y may be
noisy, for example, disturbed by the measurement and estimation noise. The noisy data
can be expressed as {

X = X̃ + εX
Y = Ỹ + εY

(5)

where X̃ and Ỹ are real values and εX and εY are supposed to be zero-mean Gaussian white
noises, respectively. The former noise mainly comes from the SOC estimation uncertainty,
while the current measurement noise and numerical computation error will lead to the
noise on Y. Under these circumstances, the conventional least-squares method is biased
and unsuitable for online capacity estimation.

The total least squares (TLS) is a useful technique for such a system with noisy
data [43–45]. In our previous study [43], co-estimation of battery SOC and capacity is real-
ized. The joint estimation consists of an adaptive extended Kalman filter (AEKF) and a
TLS estimator and uses a Thevenin model to describe the battery dynamic characteristic.
When the AEKF estimator outputs the battery SOC, the TLS algorithm can perform the
capacity estimation according to Equation (4). A Rayleigh-Quotient based TLS is employed
to realize the recursive running of capacity estimation. The minimum of the following
Rayleigh-Quotient function is the solution of the TLS estimator.

J(θn, Rn) =
θT

nRnθn

θT
nθn

(6)

where θn = [Cm − 1]T, Rn is the autocorrelation matrix of the augmented data matrix
H = [X Y]T. A gradient-based method is employed for recursively updating the Cm [45],
where Cm,n = Cm,n−1 + αnXn and αn is to minimize the gradient of Equation (6).

The above procedures realize the capacity estimation during EV discharging and will
be considered one of the essential inputs for capacity fusion.

2.2.2. ICA-Based Estimation during the Charging Condition

Employing differential technology, the ICA method can distinguish the voltage char-
acteristics influenced by battery degradation. The ICA technique is usually adopted to
investigate the battery aging mechanism [46]. For online capacity estimation, the ICA
equation can be rewritten in a discrete form as

IC =
dQ
dV
≈ ∆Q

∆V
=

Q2 −Q1

∆V
=

i∆T
V2 −V1

(7)

where ∆V and ∆T are the voltage interval and time interval to calculate the IC value,
separately. The problem is that the selection of ∆V and ∆T is not adaptive and the IC curve
will be susceptible to measurement noise. In our previous work [42], a filter-based method
was proposed to generate the IC curves and this method showed good effectiveness and
less computational cost.

Figure 2 shows the collected IC curves at different cycles under different aging con-
ditions. Therefore, “0.5C-0.5C aging condition” means the accelerated cyclic aging test
uses a 0.5C current for charging, followed by a 0.5C current for discharging. The IC curves
show similar shapes, even at different aging cycles with different aging conditions. During
battery charging, six noticeable features (noted as F1~F6, including peaks and valleys)
on the IC curves can be found. It should be noted that this is only one typical method
for extracting features from IC curves. Dubarry et al. [47,48] presented a comprehensive
summary of features of interest with battery SOH for different kinds of batteries, including
the area, position, and intensity of the IC curves. In this study, with the increase in aging
cycles, the battery IC curves shift significantly downwards and slightly towards higher
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voltage, which means that the IC curve features have a close relationship with battery aging
and can estimate battery capacity.
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aging condition.

In this study, the height of these features is used for relationship construction because
battery aging has less impact on the position of these features. Considering that when
the battery is seriously aged (aging cycle ≥ 600), F1 and F2 blend together, which is
difficult to identify and unsuitable for capacity, only F3 to F6 are taken into account in the
following discussion.

It has been confirmed that the height of the IC features is linearly correlated to battery
aging (Figure 3). The relationship between these features and battery capacity is constructed
based on linear regression (LR), as shown in the following equation

CICA
m = αi × HFi + βi + εi (8)

where HFi is the height of ith IC features; αi and βi are the regression coefficients; εi is the
error term with zero-mean and variance σ2

i .
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2.3. Adaptive Capacity Fusion during Complete Operating Conditions

The above content discusses two capacity estimation methods, which mainly use
different information and operate under different EV operating conditions. Inspired by
the multi-source information fusion theory, this study investigates capacity fusion under
complete operating conditions to acquire a more accurate and reliable capacity estimate.

Equations (1) and (2) show the state–space function of the sequential structure-based
fusion. Either the estimated value from the SOC-based method or the ICA-based method
can be regarded as an “observation” of the battery’s actual capacity. Hence, two estimates
(CSOC

m and CICA
m ) can be considered as the actual capacity disturbed by noise. As shown

in Figure 1b, during the discharging process, zl = CSOC
m and, during the charging pro-

cess, zl = CICA
m . Correspondingly, Rl is selected from the uncertainties according to the

operating conditions.
For SOC-based estimation, CSOC

m is realized through the TLS method. Crassidis
et al. [49] derived that the error covariance matrix P of estimated parameters in the TLS
problem is the inverse of the Fisher information matrix F (P = F−1) and gave the approxi-
mate error covariance. Hence, in this study, the uncertainty of the SOC-based estimation is
shown as follows

RSOC =

(
1

θT
nRnθn

n

∑
i=1

XiXT
i

)−1

(9)

where RSOC is the error covariance of estimated CSOC
m ; other variables have the same

meanings as in Equation (6).
For the ICA-based method, CICA

m is realized through the LR method. Equation (8) can
be rewritten in a general form as y = αx + β + ε, where x and y are the regression input
and output. As shown in [50], the estimation of error variance σ2 can be calculated as

σ̂2 =
1

NLR − 2
(Syy − α̂Sxy) (10)

where NLR represents the number of points used for regression, α̂ is the estimation of
α; Sxy = ∑ (xi − x)(yi − y) and Syy = ∑ (yi − y)2, where Sxy is the sum of the deviation
product of x and y and Syy is the sum of the deviation square of y.

The estimation error covariance of the LR method can be expressed as

RICA = [1 +
1

NLR
+

(x′ − x)2

Sxx
]σ̂2 (11)

where Sxx = ∑ (xi − x)2 is the sum of the deviation square of x. In the ICA-based method,
x = HF and x′ means the features obtained online.

Figure 3 shows the linear correlation between actual capacity and heights of IC features
and the 95% prediction band of the LR method is also shown. Here, the prediction band is
calculated based on Equation (11). It can be seen that the prediction band of F4 and F6 is
broader than that of F3 and F5, which means that the error covariance of F4 and F6 will be
larger than others.

The above obtains the estimation uncertainties of two methods and the complete
state–space function is constructed. Due to the simplicity of the state–space function, the
Kalman filter is utilized for state fusion, which has superior performance and is easy to
implement. For detailed procedures of the Kalman filter, refer to [8,22].

3. Experimental Setups and Design

The battery test bench includes a battery test system to implement charging and
discharging procedures, a thermal chamber to provide uniform environmental temperature
and humidity, and a host computer for data logging. A kind of commercial 18650-type
battery (the cathode is LiNi0.8Mn0.1Co0.1O2 and the anode is graphite) is used in this study.
The nominal capacity is 2.9 Ah and the charge/discharge cut-off voltages are 4.2 V and
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2.5 V, respectively. During the experiments, the battery temperature is maintained at 25 ◦C.
The battery experiment is designed to simulate the actual operation of the onboard battery
as much as possible and validate the fusion method, as shown in Figure 4.
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The battery will discharge to cut-off voltage with a dynamic discharging condition
(DDC), followed by a constant current-constant voltage (CCCV) charging to 100% SOC,
where the constant charging current is 1.375 A and the cut-off current for the CCCV
protocol is about 60 mA. A DDC and a CCCV form a complete operating cycle and the
whole experiment contains five complete cycles (notes as complete cycle 1–5). To verify the
adaptability of the proposed method, three cells with different aging statuses are employed
in this study, as shown in Table 1. During the experiments, Cell 1 and 2 will discharge
with the new European driving cycle (NEDC) and Cell 3 will discharge with the Urban
Dynamometer Driving Schedule (UDDS). The detailed current profiles of NEDC and UDDS
can be found in Ref. [51]. Table 1 also shows the battery’s actual capacity. The battery SOH
is determined as the ratio of residual capacity to the nominal capacity [32,52].

Table 1. Cells used in the experiments.

Cell No. Capacity SOH DDC

Cell 1 2.881 Ah 99.34% NEDC
Cell 2 2.729 Ah 94.11% NEDC
Cell 3 2.537 Ah 87.48% UDDS

4. Results and Discussion

To evaluate the performance of the capacity fusion technique effectively, two general
error criteria, including the maximum absolute percentage error (MaxAPE) and the root
mean square error (RMSE), are adopted. The definition of these two criteria is shown as
follows. The percentage error is used when calculating the RMSE.

MaxAPE = max(
∣∣∣ ŷi−yi

yi

∣∣∣)× 100%

RMSE =

√
1
m ∑m

i=1

(
ŷi−yi

yi

)2
× 100%

(12)

where ŷ and y are the estimated and actual battery capacity and m represents the number
of capacity estimates used for assessment.

4.1. Effectiveness of the Proposed Capacity Fusion

The effectiveness of the capacity fusion technique will be first verified based on the
experimental data for Cell 1. Figure 5 shows the estimation and fusion results.
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When using the TLS estimator during DDC, the initial capacity is set to 2.9 Ah. Actually,
this initial value has little influence on capacity estimation. Moreover, to prevent the
influence of outliers on capacity estimation, the maximum value during recursion is set to
3.0 Ah. The estimation result during DDC 1 is shown in Figure 5a. The first several values
have large deviations from the actual capacity (the dashed line represents the actual battery
capacity). After convergence (about 2500 s for this condition), the estimated capacity
becomes stable and close to the actual capacity. In addition, the 95% estimation band
becomes narrower after convergence, which means the estimation uncertainties gradually
decrease. Specifically, the convergence time of TLS is set to 1h and the estimated values
before convergence will not be considered during fusion. After convergence, the MaxAPE
and RMSE during DDC 1 are 2.558% and 1.195%, separately, indicating the effectiveness of
the SOC-based method.

The estimation result of the ICA method during CCCV 1 is shown in Figure 5b. The
capacity estimated through the last feature (F6) has the biggest uncertainty. The MaxAPE
and RMSE are 2.747% and 2.135%, which shows insufficient accuracy compared to the
SOC-based method. Another shortcoming is that too few capacity values are updated
based on IC curve features.

For the capacity fusion, the initial parameters of the Kalman filter during fusion are
set to: P0 = 5× 10−3, Ql = 10−4, and Rl is calculated according to Equations (9) and (11).
The capacity fusion result during the five complete cycles is shown in Figure 5c. It can
be found that most of the estimated values of the SOC-based and ICA-based methods
are smaller than the actual capacity. Through the Kalman filter, the trajectory of fusion
capacity has fewer fluctuations. In most cases, the fusion value follows the estimates from
the SOC-based method. However, when the uncertainty of the SOC-based method is
considerable or the observations come from the ICA-based method, the trajectory of fusion
capacity will change. Moreover, the ICA-based method has a larger estimation deviation
and the fusion method can endure these errors. The first ten values during fusion are
considered the Kalman filter’s convergence process and will be ignored when assessing
the performance. During five complete cycles, the MaxAPEs of SOC-based and ICA-based
methods are 2.328% and 3.278%, while the MaxAPE of the fusion method is 1.862%, which
is reduced by 0.466% and 1.416%, separately, compared with the above single method. It is
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noted that the ICA-based method has few estimates, which influences the performance of
the fusion method.

4.2. Adaptability to Different Aging Statuses

To validate the adaptability of the fusion method, another two cells with larger capacity
attenuation are employed to perform the capacity fusion, as shown in Figure 6. Figure 6a
shows the experimental results of Cell 2. The fusion capacity is closest to the battery’s actual
capacity. At the beginning of each DDC, the TLS estimator exports some outliers, which
results in a significant estimation error. On the contrary, the fusion method utilizes the
information from the ICA-based method and the uncertainty from the SOC-based method
and obtains a more accurate and stable estimation result. In addition, some inaccurate
estimates from the ICA-based method were also corrected. The MaxAPE is reduced by
1.478% and 0.985%, separately, compared with the SOC-based and ICA-based methods,
while the RMSE is reduced by 0.307% and 1.100%.
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The estimation results of Cell 3 are shown in Figure 6b. Unlike previous results for the
other two cells, most of the estimated values for the SOC-based and ICA-based methods are
larger than the actual capacity. Under such circumstances, the fusion method filters some
outliers generated from the ICA-based method and obtains a smoother capacity estimation
curve. During the five complete operating cycles, the MaxAPEs of the SOC-based, ICA-
based, and fusion methods are 2.876%, 4.542%, and 2.547%. Compared with the single
ICA-based method, the accuracy improvement in the fusion method is considerable.

Table 2 shows the estimation performance of different methods for cells with different
aging statuses. For these three cells, the maximum MaxAPE and RMSE of the SOC-based
method are 3.298% and 1.780% and those of the ICA-based method are 4.542% and 2.401%,
while for the proposed fusion method, the maximum MaxAPE and RMSE are 2.547% and
1.703%, separately. The proposed fusion methods show the highest estimation accuracy
from the capacity estimation results, indicating the adaptability to different aging statuses.
It has been mentioned in Section 2.1 that the average filter is also a common technology
in information fusion. Therefore, we compare the proposed fusion using the Kalman
filter and traditional fusion using the moving average filter, as shown in Table 2. The
window size for the moving average filter is 5. From Table 2, it can be found that moving
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average fusion also improves the estimation performance compared with SOC-based and
ICA-based methods. Nevertheless, it only uses the estimation value while ignoring the
estimation uncertainty. Comparatively, the proposed fusion method using the Kalman filter
still has a minor estimation error, indicating the effectiveness of the proposed method.

Table 2. The performance of different methods for different cells.

Method Criterion Cell 1 Cell 2 Cell 3

SOC-based
method

MaxAPE (%) 2.328 3.298 2.876
RMSE (%) 1.061 0.882 1.780

ICA-based method
MaxAPE (%) 3.278 2.805 4.542

RMSE (%) 2.300 1.675 2.401
Fusion method:
Kalman filter

MaxAPE (%) 1.862 1.820 2.547
RMSE (%) 1.144 0.575 1.703

Fusion method:
Moving average

MaxAPE (%) 2.239 1.823 2.698
RMSE (%) 1.141 0.751 1.788

4.3. Application with Inaccurate Battery Current Information

As discussed above, inaccurate current information will result in errors in capacity
estimation and different estimation methods may have different error scenarios. For a
battery with an early ISC fault, the measured current is larger than the battery’s effective
current during charging. In contrast, during discharging, the measured current is less than
the battery’s effective current. In this situation, for the SOC-based method, although the
SOC estimator may obtain relatively accurate SOC based on the feedback of measurement
voltage, the calculated charge accumulation is less than the actual value, which will further
result in a smaller capacity estimate. For the ICA-based method during charging, the
calculated IC value according to the measured current will be larger than its actual value;
thus, the capacity estimation based on IC features will be larger.

This section simulates two fault scenarios; one is with a 10 mA current deviation
(noted as Fault 1) and the other is with a 20 mA current deviation (noted as Fault 2). The
experimental data for Cell 1 are used for fault simulation. Figure 7 shows the capacity
estimation and fusion results.
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With the influence of the current deviation, the SOC-based method’s estimates have a
downward trend, while the ICA-based method’s estimates have an upward trend, com-
pared with the results shown in Figure 5c. It should be noted that if the current deviation
becomes large, the estimates from the ICA-based method will continue to move upward
and the estimation error will become larger.

Compared with the single method, the estimation accuracy of the fusion method is
not much improved. The main reason is that the ICA method outputs too few capacity
estimates, which cannot provide continuous correction to estimates coming from the SOC-
based method. Compared with the SOC-based method, the MaxAPEs of the fusion method
under Fault 1 and Fault 2 are reduced by 0.392% and 0.474%, respectively, while the RMSEs
under two fault conditions are reduced by 0.181% and 0.356%.

It is noticed that the difference between the three methods’ estimation averages under
the above scenarios is different. The difference between the three methods’ estimation
averages is slight for the normal conditions and conditions with a small current deviation.
In contrast, for conditions with a large current deviation, the estimation average of the
SOC-based and fusion method is close, while there is a significant deviation from that of
the ICA-based method. To quantitatively describe the deviation between capacity estimates
caused by inaccurate current information, the following criterion is proposed:

DC = max(

∣∣∣∣∣CSOC
m − CF

m

CF
m

∣∣∣∣∣,
∣∣∣∣∣CICA

m − CF
m

CF
m

∣∣∣∣∣)× 100% (13)

where DC represents the capacity estimation deviation; CF
m, CSOC

m and CICA
m mean the

average during capacity fusion, SOC-based estimation, and ICA-based estimation.
Figure 8 shows the DC for different cells under different current deviations. Note that

with an increase in current deviation, the capacity estimation deviations both show a rising
trend. Moreover, the more severe the battery aging, the higher the rising rate. It can be
found that a threshold can be set to diagnose the fault condition of current inaccuracy. Here,
we set this threshold to TC = 2%. Although the normal conditions and the slight fault
conditions (10 mA deviation) of Cell 1 and Cell 2 cannot be distinguished from each other,
the DC of Cell 3 at the slight fault condition is larger than the set threshold. In addition, all
the cells’ DC values are large than the set threshold. It is noted that the difference between
the estimation averages will become larger with an increase in current deviation. Hence, it
can be confirmed that a fault of current deviation can be identified when DC > TC happens
during capacity estimation and fusion.
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5. Conclusion and Future Research Trends

Accurate and stable capacity acquisition has vital importance to the battery manage-
ment technology in EVs. This study proposes an adaptive estimation–fusion method for
battery capacity, utilizing more battery information and operating under complete battery
operating conditions. The main conclusions of this study are drawn as follows:

(1) A general capacity fusion framework is proposed and then the SOC-based method
and ICA-based method are revisited and employed during different operating conditions;
further, the error covariance of different estimations is analyzed and derived.

(2) The adaptive battery fusion method is realized through the Kalman filter, which
intelligently combines two estimates and takes advantage of estimation uncertainties.

(3) The fusion method outputs more accurate and stable capacity estimates. Owing to
the utilization of more battery information, the maximum MaxAPE and RMSE are 2.547%
and 1.703%, separately, under different aging statuses, which are smaller than traditional
methods. Moreover, a judgment criterion based on capacity estimation and fusion for a
sizeable current deviation fault is proposed.

Based on this research, there are several trends to be explored in future studies:
(1) More capacity estimates involved in fusion and more adaptive noise-matching

methods in determining the process noise covariance will be helpful.
(2) Currently, the estimation during charging is the ICA-based method, which only

updates four capacity estimates. A capacity estimation method with timely updating will
continuously correct estimates from another method.

(3) The adaptability to different temperatures will be verified in further studies. More-
over, the estimation complexity caused by cell inconsistency shall be considered.

This study presents a detailed investigation of the application of information fusion
technology in battery capacity estimation. For complex electrochemical systems, such as
batteries, the information fusion technology will have more application scenarios, for ex-
ample, battery multi-state estimation and remaining-life prediction. With the development
of physical-based modeling and intelligent data-driven methods, as well as the availability
of advanced-sensing techniques, information fusion will have diverse implementations
and combinations to enhance the high-fidelity information acquisition from LIBs.
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