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Abstract: The physics-based fractional-order model (FOM) for lithium-ion batteries has shown good
application prospects due to its mechanisms and simplicity. To adapt the model to higher-level
applications, this paper proposes an improved FOM considering electrolyte-phase diffusion (FOMe)
and then proposes a complete method for parameter identification based on three characteristic SOC
intervals: the positive solid phase, negative solid phase, and electrolyte phase. The method mainly
determines the above three characteristic intervals and identifies four thermodynamic parameters
and five dynamic parameters. Furthermore, the paper describes a framework, which first verifies
the model and parameter identification method separately based on pseudo two-dimensional model
simulations, and secondly verifies FOMe and its parameters as a whole based on the experiments.
The results, which are based on simulations and actual Li0.8Co0.1Mn0.1O2 lithium-ion batteries under
multiple typical operating profiles and comparisons with other parameter identification methods,
show that the proposed model and parameter identification method is highly accurate and efficient.

Keywords: lithium-ion battery; fractional-order model; parameter identification

1. Introduction

The electrochemical lithium-ion battery (LiB) model has been widely utilized in LiB
research, such as for parameter identification and aging mechanism research [1–4]. The
electrochemical model has a more precise physical meaning than the equivalent circuit
model (ECM) [5,6]. The parameters of the electrochemical model can reflect the inner elec-
trochemical status of an LiB, which is more suitable for many applications, such as battery
status monitoring. The commonly employed electrochemical models include the pseudo
two-dimensional (P2D) model [7] and single-particle model [8]. However, these models
require solving partial differential equation systems, which are computationally inefficient,
have too many parameters and are not easily identifiable. There are many papers that
propose reduced-order methods for these models. The main dynamics affecting the voltage
in a cell are solid-phase diffusion (SPD) and electrolyte-phase diffusion (EPD). For SPD,
the methods for simplification are polynomial approximation [9], Pade approximation [10],
etc. In particular, the fractional-order Pade approximation employed in the fractional-order
model (FOM) proposed by Guo [11] is more consistent with the fractional-order characteris-
tics exhibited in the electrochemical impedance spectrum (EIS), resulting in higher accuracy
and practicality. However, the FOM treats EPD as a medium-high frequency dynamic and
models as a lumping model, which limits the accuracy of the model at a higher current
rate. It has been noted that EPD tends to be a low-frequency dynamic for certain cells,
and its frequency may be lower than that of SPD [12–15]. Refs. [16,17] revealed that the
aging-induced increase in the diffusion impedance of LiB is mainly caused by the aging
of EPD. Therefore, it is necessary to add EPD modeling to the FOM. Commonly utilized
electrolyte-phase modeling methods include polynomial approximation [15], equilibrium
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point polynomial approximation [13], and Pade approximation [18]. The EPD model de-
rived by the polynomial approximation method is a first-order inertial component with
only two parameters, which is more accessible for application. We combine the FOM with
the EPD of the polynomial approximation method to propose a fractional-order model
FOMe considering EPD.

The electrochemical model requires an accompanying parameter identification method.
Accurate parameter identification is the key to monitoring the battery’s aging and safety
status and to enabling the model to better fit a real battery. Considering the usage scenario
of batteries, the method based on the input–output data of the battery in the time domain
shows a higher application value than the method that requires disassembly [19] or the
method that uses the EIS [20]. However, parameter identification using only input–output
data is also challenging due to the nonlinear characteristics of the cell, low sensitivity of the
parameters, and unmodeled dynamics. Refs. [12,21] observed the difference in the dynamic
frequency bands characterized by different parameters, which led to a parameter identifi-
cation method that uses frequency segmentation. Therefore, thermodynamic parameters,
low-frequency diffusion parameters, and mid-frequency parameters in electrochemical
models can be separately identified under different excitations of different frequencies.
In particular, the thermodynamic parameters can be identified with small rate constant
current discharging [22], and the ohmic internal resistance can be measured using the
HPPC profile [23]. However, this method does not adequately address the dynamics of
similar frequencies, such as SPD and EPD. Some analytical methods for diffusion coefficient
determination have been reported in the literature. For example, constant potential titration
(GITT) is a classical method for solid-phase diffusion coefficient determination. However,
analytical methods often suffer from a lack of accuracy due to the introduction of too
many assumptions [24]. Most studies treat the identification of diffusion parameters as an
optimization problem [20]:

arg min
P̂

∥∥Uexp −UMDL
∥∥2

2

s.t.UMDL = fMDL
(
Iexp, P̂, SOC0

) (1)

where Iexp is the current profile sequence, Uexp is the actual battery output voltage sequence
under excitation, UMDL is the output voltage sequence of the battery model, and P̂ is the
parameter to be identified. SOC0 is the state of charge (SOC) at the initial moment of the
experiment. When the rate of Iexp is low and the duration is short, the range of the battery
SOC changes throughout the experiment is small. Thus, SOC0 can also be considered the
operating point for parameter identification.

Equation (1) shows that three main factors affect the accuracy of parameter identifi-
cation: excitation current Iexp, operating point SOC0, and optimization method. Typical
optimization algorithms include metaheuristic approaches, such as PSO [9,25], genetic
algorithms [26,27], and neural network methods [28,29]. The difference in optimization
methods usually only affects whether the optimization solution will fall into a local op-
timum and the speed of convergence [30]. Iexp and SOC0 mainly affect the accuracy of
the parameter identification by influencing the sensitivity of the parameters and are the
essential objects that need to be designed. The influence of Iexp on the parameter sensitivity
is mainly reflected in the frequency spectrum of the excitation current [31]. For example, a
low-band abundant excitation should be used to identify low-frequency parameters. The
influence of the operating point on the sensitivity of the parameter is mainly reflected in the
slope of the positive and negative open-circuit potential (OCP): at some operating points,
the slope of the positive OCP curve is more significant, while the slope of the negative
OCP curve is slight. In such a case, the change in the battery terminal voltage is mainly
caused by the positive solid-phase overpotential. These operating points can be regarded
as the positive characteristic SOC interval. Similarly, the negative characteristic interval
can also be defined. Refs. [30,32] use data on a single operating point (or narrow operating
SOC segments) to identify all parameters, while certain parameters are not sensitive in
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these SOC intervals. Although some studies [13,33] concluded via sensitivity analysis
that positive solid-phase parameters are more sensitive in higher SOC intervals and that
negative solid-phase parameters are more sensitive in lower SOC intervals, no specific
method for determining the SOC intervals of positive and negative characteristics was
given. We aim to address this research gap. On the other hand, it is recommended in this
paper that three operating points are used instead of only the positive and negative charac-
teristic intervals to identify the three diffusion parameters, because three different diffusion
dynamics (positive SPD, negative SPD, and EPD) are included in FOMe. In addition, some
papers [34–36] use a very wide working region, an SOC interval of almost 0–100%, for
parameter identification, which leads to too many data and very low efficiency of parameter
identification. The calculation required can be significantly reduced by reasonably selecting
the SOC operating points for parameter identification.

FOMe and the parameter identification methods cannot be separately verified using
only physical experiments because the true parameter values of an actual battery are
unknown. For this reason, we propose a two-step validation method based on simulation
and experiments. FOMe and the parameter identification methods are separately verified
using a P2D model with high accuracy, and then FOMe and the parameter identification
methods are simultaneously verified by experiments.

The contributions of the study are summarized as follows:

1. A fractional-order model considering EPD is proposed by combining the fractional-
order model of SPD introduced by Guo with the polynomial approximation model
of EPD.

2. A parameter identification method based on the SOC intervals of positive and negative
solid- and electrolyte-phase characteristics is proposed.

3. A verification framework that combines simulation and experiments is proposed to
verify the model’s accuracy and parameter identification methods.

This paper is organized as follows: Section 2 describes the establishment of FOMe,
and Section 3 presents the parameter identification method of FOMe. Section 4 designs the
parameter identification process with a commercial Li0.8Co0.1Mn0.1O2 (NCM) lithium-ion
battery and then analyzes FOMe and its parameter identification process. Section 5 presents
the conclusion.

2. Model Improvement
2.1. Electrode Reaction Averaging Assumption

FOMe can be considered a simplified form of P2D. The P2D model treats each elec-
trode as numerous spherical particles with the same radius, as shown in Figure 1. The
components in this model are distributed only along the radial direction r of the spherical
particles and the cell thickness direction x. Five coupled partial differential equations or
algebraic equations in the rigorous P2D model describe the solid- and electrolyte-phase
concentration distribution, the solid- and electrolyte-phase potential distribution, and the
charge transfer process. Their mathematical forms are detailed in Ref. [15].

The partial differential equations for the solid-phase concentration and electrolyte-
phase concentration are coupled by the local volumetric transfer current density jf in P2D,
rendering the simplification complex. An assumption needs to be introduced for separately
modeling the solid-phase and electrolyte-phase processes of an LiB: jf is constant and equal
to its average value in each electrode, which is also widely accepted in the SPM and some
extended single-particle models [12]:

jf,p = − I
Aδp

jf,n = I
Aδn

(2)

The meaning of the parameters and variables of the P2D model is shown in Table A1.
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Figure 1. Schematic of the lithium-ion battery P2D model.

2.2. Solid-Phase Diffusion

Selecting the positive electrode as an example, according to Fick’s law, the solid-phase
diffusion process is expressed as follows:

∂cs,p(r,t)
∂t − Ds,p

r2
∂
∂r

(
r2 ∂cs,p(x,r,t)

∂r

)
= 0

s.t. cs,p(t, r)
∣∣
t=0 = cs,0

Ds,p
∂cs,p(r,t)

∂r

∣∣∣
r=0

= 0

Ds,p
∂cs,p(r,t)

∂r

∣∣∣
r=Rs,p

= − jf,p(x,t)
as,pF

(3)

The terminal voltage of the cell depends on the ratio of the lithium-ion concentration on
the particle surface csurf

s,p to the maximum lithium-ion concentration, i.e., cs,p
(

Rs,p, t
)/

cmax
s,p ,

which is noted as SOCsurf
p , indicating the positive surface state of charge.

According to Equations (2) and (3), the transfer function of SOCsurf
p versus current can

be written as [10],

SOCsurf
p (s)

I(s)
=

R2
s,p

3Aδpεs,pFDs,pcmax
s,p

sinh
(√

s
Ds,p

Rs,p

)
√

s
Ds,p

Rs,p cosh
(√

s
Ds,p

Rs,p

)
− sinh

(√
s

Ds,p
Rs,p

) (4)

Selecting the coupling relationship of the parameters in Equation (4), note that

Qp = 1
3600Aδpεs,pFcmax

s,p

τp =
R2

s,p
Ds,p

(5)

where Qp is the capacity of a positive electrode, whose dimension is Ah, and τp is the
SPD time constant of the positive electrode, whose dimension is in seconds. SOCsurf

p can
be divided into two parts: SOCmean

p , the average SOC of the electrode, and SOCdiff
p , the

difference in the SOC between the surface and the average due to the diffusion of lithium
ions along the r axis. SOCmean

p can be calculated using Coulomb counting,

SOCmean
p (t) = SOC0

p −
1

Qp

∫ t

0
Idt (6)
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where SOC0
p is the initial SOC of the electrode. Equation (6) can be transformed into the

complex domain,
SOCmean

p (s)
I(s)

=
1

Qps
(7)

Therefore, SOCdiff
p is expressed as follows:

SOCdiff
p (s)

I(s)
=

SOCsurf
p (s)− SOCmean

p (s)
I(s)

=
τp

1200Qp

(
sinh

(√
τps
)

√
τps cosh

(√
τps
)
− sinh

(√
τps
) − 3

τps

)
(8)

Hp(s) can be introduced to analyze the key dynamic of Equation (8),

Hp(s) =
sinh

(√
τps
)

√
τps cosh

(√
τps
)
− sinh

(√
τps
) − 3

τps
(9)

The obtained Hp(s) contains transcendental functions that cannot be directly em-
ployed. Many simplification methods have been presented. However, the phase of Hp(s) is
close to −45◦ at high frequencies, which cannot be described by any integer-order polyno-
mial. Therefore, the fractional-order Pade approximation method proposed by Guo [11] is
adopted. A fractional-order transfer function Hp,app(s) has been designed to approximate
Hp(s) based on the Bode plot,

Hp,app(s) =
19

95 + 12√τps
(10)

Next, SOCmean
p and SOCdiff

p can be calculated using Equations (7) and (10) and
summed to obtain SOCsurf

p . The positive solid-phase equilibrium potential can be obtained
by querying the OCP table, i.e., Ep-SOCsurf

p table.

2.3. Electrolyte-Phase Diffusion

The electrolyte concentration ce in P2D is expressed as follows:

∂

∂t
εe,ice(x, t) =

∂

∂x

(
Deff

e
∂

∂x
ce(x, t)

)
+ (1− t+)

jf(x, t)
F

(11)

The initial condition is
ce(x, t)|t=0 = ce,0 (12)

The boundary conditions are

ce(x, t)|x=δ−n
= ce(x, t)|x=δ+n

, ce(x, t)|x=δn+δ−sep
= ce(x, t)|x=δn+δ+sep

∂
∂x ce(x, t)

∣∣∣
x=0

= 0, ∂
∂x ce(x, t)

∣∣∣
x=L

= 0

−Deff
e,n

∂
∂x ce(x, t)

∣∣∣
x=δ−n

= −Deff
e,sep

∂
∂x ce(x, t)

∣∣∣
x=δ+n

−Deff
e,sep

∂
∂x ce(x, t)

∣∣∣
x=δn+δ−sep

= −Deff
e,p

∂
∂x ce(x, t)

∣∣∣
x=δn+δ+sep

(13)

For simplification, the electrolyte concentration distribution profiles are approximated
as polynomials within the negative electrode, separator, and positive electrode. ce is

ce(x, t) =


a1 + b1x + c1x2 + ce,0, x ∈ [0, δn)
a2 + b2x + ce,0, x ∈

[
δn, L− δp

]
a3 + b3(L− x) + c3(L− x)2 + ce,0, x ∈

(
L− δp, L

] (14)

The electrolyte concentration overpotential is only influenced by the electrolyte con-
centration of the two electrode/current–collector interfaces, where x is 0 and L. There are
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eight undetermined time-variant coefficients in Equation (14). By substituting Equation (14)
into the six boundary conditions given in Equation (13), the eight coefficients can be re-
duced to two coefficients. Next, by substituting the result into Equation (11), the electrolyte
concentration where x is 0 and L can be derived as[

ċe(0, t)
ċe(L, t)

]
=

[
A1 −A1
−γA1 γA1

][
ce(0, t)− ce,0
ce(L, t)− ce,0

]
+

[
B1
−γB 1

]
I(t) (15)

where
A1=De

ε1.5
e,sep

δnεe,n
1(

1−
ε1.5
e,sep
2ε1.5

e,n

)
δn+

(
1−

ε1.5
e,sep
2ε1.5

e,p

)
δp−L

B1 = 1−t+
AFδnεe,n

γ = δnεe,n
δpεe,p

(16)

Next, according to the P2D model, the electrolyte concentration overpotential between
the positive current collector and the negative current collector, denoted as ∆φe, is [12],

∆φe(t) = (1− t+)(1 + β)
2RgT

F
ln

ce(L, t)
ce(0, t)

(17)

Further simplification, the first-order Taylor expansion can be applied to
Equation (17),

∆φe(t) ≈ (1− t+)(1 + β)
2RgT
Fce,0

(ce(L, t)− ce(0, t)) (18)

Substituting Equation (15) into Equation (18), a simplified electrolyte-phase concentra-
tion overpotential model can be derived as

∆φe(s)
I(s)

=
Ke

Tes + 1
(19)

where

Te =

δp
2ε1.5

e,p
+ δn

2ε1.5
e,n

+
δsep

ε1.5
e,sep

De

(
1

δpεe,p
+ 1

δnεe,n

)
Ke =

2RgT
F2

1
ADece,0

(1− t+)
2(1 + β)

(
δp

2ε1.5
e,p

+ δn
2ε1.5

e,n
+

δsep

ε1.5
e,sep

) (20)

The simplified electrolyte-phase model is a first-order inertial element with only two
parameters, where Te denotes the EPD time constant and Ke represents the electrolyte-
phase gain. Te is only fixed by geometric parameters and the electrolyte-phase diffusion
coefficient De. The dimension of Te is in seconds, which is the same as τp and τn. Ke is
related to several parameters, and its dimension is Ohm.

2.4. Overall Block Diagram of FOMe

In addition to SPD and EPD, the dynamics in a cell include ohmic polarization, double-
layer capacitance, SEI film diffusion, and charge transfer [11]. SPD and EPD often appear
as low-frequency dynamics [12,15], while medium-high frequency dynamics are expressed
as a semiellipse in the EIS [37]. It is challenging to separately model and identify each
dynamic, so in this paper, only the identification of the low-frequency battery dynamics is
investigated. The medium-high frequency dynamics can be approximated as an equivalent
resistance R, as shown in Figure 2.
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Figure 2. Typical EIS of lithium-ion batteries.

The overall FOMe can be obtained by combining the FOM, electrolyte-phase model,
and equivalent resistance, as shown in Figure 3. The output voltage of FOMe is the
sum of the equilibrium potential of the solid phase, electrolyte-phase overpotential, and
medium-high frequency polarization potential,

U = Ep − En + ρ∆φe + IR (21)

where ρ is a correction factor with an approximate value of 0.7 at a low current rate [38]. Han
pointed out that the position error of the particle can be compensated for by introducing
this correction factor, leading to a more precise approximation to the P2D model [38].

p

1

Q sp

1

Q s
-+

+-

++

++ +-

Solid Phase Diffusion

p

p p

19

3 12 95Q s



 +

n

n n

19

3 12 95Q s



 +

e

e 1

K

T s +

R

0

pSOC

mean

pSOC

diff

pSOC surf

pSOC

( )surf

p pE SOC

( )surf

n nE SOC

nE

pE

0

nSOC

mean

nSOC

diff

nSOC surf

nSOC

I

+++ U

e

Electrolyte Phase Diffusion

0.7 =

n

1

Q s

Figure 3. Block diagram of FOMe.

3. Parameter Identification Method of FOMe

The FOMe includes nine parameters to be identified: Qp, Qn, SOC0
p, SOC0

n, τp, τn,
Te, Ke, and R. These parameters can be divided into three groups according to the time
scale of the dynamics that they describe: thermodynamic parameters, including Qp, Qn,
SOC0

p, and SOC0
n; low-frequency dynamics parameters, including τp, τn, Te, and Ke; and

the medium-high frequency dynamics parameter R.
The static-state performance of an LiB is only determined by thermodynamic param-

eters. In contrast, thermodynamic parameters and low-frequency dynamic parameters
influence the transient-state performance. Therefore, first, the static-state performance
of an LiB is tested to identify thermodynamic parameters. Second, the low-frequency
dynamic parameters are determined based on the transient-state performance of the LiB,
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and thermodynamic parameters are obtained. The high-frequency dynamic parameter R
can be obtained from the value of the voltage jump edge under HPPC excitation [23].

3.1. Identification of the Thermodynamic Parameters (Qp, Qn, SOC0
p, SOC0

n)

The identification of thermodynamic parameters is based on the double-tank model
proposed by Han [22]. For an LiB, after long-term relaxation, both low-frequency dynamics
and medium-high frequency dynamics have reached their steady states, and the polariza-
tion overpotential is zero. Under this condition, the terminal voltage is only determined
by SOCmean

p , SOCmean
n , and thermodynamic parameters. FOMe can be replaced by the

double-tank model,

SOCmean
p (t) = SOC0

p − 1
Qp

∫ t
0 I(t)dt

SOCmean
n (t) = SOC0

n + 1
Qn

∫ t
0 I(t)dt

OCVDT(t) = Ep

(
SOCmean

p

)
− En(SOCmean

n )

(22)

where OCVDT(t) is the open-circuit voltage (OCV) calculated using the double-tank model.
The OCV of the battery experiencing long-term relaxation over the entire SOC range is
tested and employed for thermodynamic parameter identification:

arg min
Qp,Qn,SOC0

pSOC0
n

∥∥OCVexp −OCVDT
∥∥2

2 (23)

OCVexp can be approximately obtained from the voltage of LiB at a low discharging current
of 0.05 C.

3.2. Identification of the Diffusion Parameters (τp, τn, Ke, Te) Using SPD and EPD
Characteristic Intervals

There are three low-frequency diffusion dynamics in FOMe: positive SPD, negative
SPD, and EPD. Four parameters that describe these dynamics can be identified by solving
Equation (1) with the thermodynamic parameters identified. The HPPC profile is adopted
as the Iexp for two reasons: only 120 s are needed, which makes parameter identification
more efficient; it has a higher low-frequency component compared with driving profiles
such as FUDS.

The contributions of SPDs and EPD to the terminal voltage are influenced by the slope
of the positive and negative OCP curves, so they will vary with the operating point. For
example, when the SOC is high, the negative SPD has almost no effect on the terminal
voltage due to the high SOCsurf

s,n and the slight slope of the negative OCP curve. Thus,
the terminal voltage is insensitive to the negative SPD time constant. Thus, according to
the variation in the slope of positive and negative OCP curves with the SOC, the entire
SOC range can be divided into three segments: the positive characteristic interval (PCI),
negative characteristic interval (NCI), and positive and negative similar areas. For the
operating points in the PCI, the terminal voltage is mainly influenced by the positive SPD
and has a high sensitivity to the positive SPD parameters. Voltage is mainly influenced by
the negative SPD in the NCI and has a high sensitivity to the negative SPD parameters. For
the other operating point, the effects of positive and negative SPD on the terminal voltage
are similar, and the SPD parameters are not easily identified. Furthermore, if there is a
specific SOC interval such that both positive characteristics and negative characteristics
are small, the terminal voltage is mainly determined by the EPD, and the electrolyte-phase
characteristic interval (ECI) can be defined.

The parameters of the three dynamics have high sensitivity in the three characteristic
intervals. Therefore, the current and voltage data from each of the three different character-
istic intervals should be simultaneously employed to identify the dynamic parameters for
accuracy. The optimization in Equation (1) should be rewritten as
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arg min
P̂

3

∑
i=1

∥∥Uexp
(
Iexp, SOC0,i

)
−UMDL

(
Iexp, P̂, SOC0,i

)∥∥2
2 (24)

where
SOC0,1 ∈ PCI
SOC0,2 ∈ NCI
SOC0,3 ∈ ECI

(25)

Particle swarm optimization (PSO) is selected as the optimization method, comprehen-
sively considering the issues of convergence speed, global optimum, and algorithm complexity.

To determine the ranges of the PCI, NCI, and ECI, the slope of the OCP curve with
SOC needs to be plotted. Since the correspondence among SOCp, SOCn and full-cell SOC is
affected by the thermodynamic parameters, these parameters must be identified to further
determine the three characteristic intervals.

On the other hand, since the battery operating point will deviate from the initial
operating point during Iexp excitation, this may lead to the following situation. Although
the initial operating point of the battery is located within the characteristic interval, it may
leave the characteristic interval during excitation. Therefore, the shift in the operating
point should be considered to keep the battery in the characteristic interval during the
experiment. This shift, according to FOMe, is

SOCsurf
i − SOC0

i =
1

3600

(
1

Qis
+

τi
3Qi

19
12
√

τis + 95

)
I(s), i = p, n (26)

which is related to the parameter value and current magnitude. Considering the range of
values of the parameters, the maximum value of this offset is approximately 4% when Iexp
is the HPPC.

Therefore, the process of determining the characteristic interval is as follows:

1. The slopes of the positive and negative OCP curves are plotted versus SOC without
considering the SOC shift, and three characteristic intervals are calculated, denoted as
PCInoShift, NCInoShift, and ECInoShift.

2. SOC0
p is increased by 4% and SOC0

n is decreased by 4%; the three intervals are recalcu-
lated, and are denoted as PCIShift, NCIShift, ECIShift.

3. These are intersected with PCInoShift, NCInoShift, and ECInoShift to obtain the real PCI,
NCI, and ECI.

4. Verification and Discussion

FOMe and the parameter identification method are verified with the P2D model and
experiments for a commercial NCM battery. The test environment for the battery is listed
in Section 4.1.

Two dependent parts need to be verified: the modeling of FOMe and the parameter
identification method. However, the two parts cannot be separately verified for an actual
battery since the true parameter values in the actual battery are unknown. However, the
P2D model with known parameters can be treated as a digital twin of the real battery [39,40],
allowing the two parts to be independently verified. Therefore, first, the P2D model is
employed for verification. The modeling accuracy is verified by comparing the output
voltage of the P2D model and FOMe with the same parameter configuration and excitation.
Second, the output voltage of the P2D model is treated as the actual voltage, and the
parameters of the FOMe are estimated using the proposed parameter identification method.
Last, a comparison of the identification results with the actual values of the parameters
in the P2D model is carried out to verify the effectiveness of the parameter identification
method. A schematic is shown in Figure 4. This part will be elaborated in Section 4.4.

The verification procedures based on the actual battery data are presented as fol-
lows: First, all the parameters of the actual battery are identified. Second, the results are
loaded into FOMe, and the voltage error between FOMe and the experimental battery
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under multiple profiles is compared. The EIS error between FOMe and the actual battery
is analyzed.
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Figure 4. Block diagram of the verification method of FOMe and the parameter identification method.

The verification methods based on the P2D model and the actual battery require
knowledge of the positive and negative characteristic intervals. Therefore, the results for
identifying thermodynamic parameters and determining the PCI, NCI, and ECI will be
provided in Sections 4.2 and 4.3.

4.1. Experiment

A commercial NCM battery, whose parameters are given in Table 1, is tested. The
experiment consists of three parts: a time domain experiment, EIS test, and half-cell test.

Table 1. Specifications of the battery.

Term Value

Positive electrode NCM-LMO
Negative electrode Graphite

Type WX1413724
Rated capacity (Ah) 24

Charge cut-off voltage (V) 4.2
Discharge cut-off voltage (V) 2.5

The time-domain experiments are performed with the Neware CT-4008-5V100A-NTFA,
whose voltage sampling accuracy is ±0.05%FS. The sampling period is 1 s. The DGBELL
BTH-150C thermal chamber maintains an ambient temperature of 25 ◦C. The time-domain
experiment means obtaining the response voltage of the battery under different excitation
current profiles, including a discharging test with a current of 0.05C, an HPPC test, a FUDS
test, a DST test, and an NEDC test. The currents of these four profiles are shown in Figure 5.
The EIS test is implemented to capture battery performance in the frequency domain. The
applied current amplitude of the EIS test is 0.5 A, and the frequency range is 2 mHz–2 kHz.

To measure the positive and negative OCP, the positive and negative electrodes of the
battery are retrieved and used to assemble two half-cells. The details of the half-cell test are
presented in Ref. [11].

The P2D model is established in COMSOL Multiphysics ver 5.4. FOMe, and the
parameter identification method is programmed and simulated in MATLAB R2020a. All
simulations are carried out with a Lenovo Legion R7000 computer.
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(a) (b)

(c) (d)

Figure 5. Current of (a) HPPC profile, (b) FUDS profile, (c) DST profile, and (d) NEDC profile.

4.2. Identification of Thermodynamic Parameters

Figure 6 shows the OCP accessed through the half-cell test. The estimated results for
the thermodynamic parameters are presented in Table 2. The simulated and measured
voltage curves under 0.05C are shown in Figure 6, with a root mean square error (RMSE) of
0.61 mV.

Table 2. Parameter configuration of FOMe.

Symbol Parameter Unit Value Range

Qp Capacity of positive electrode Ah 28.54 20–30
Qn Capacity of negative electrode Ah 21.83 20–30

SOC0
p Initial SOC of positive electrode 1 6.87% 0–20%

SOC0
n Initial SOC of positive electrode 1 98.73% 80–100%

τp Time constant of SPD in positive electrode s 1500 20–3000
τn Time constant of SPD in negative electrode s 2000 20–3000
Te Time constant of EPD s 26.48 5–735
Ke Open-loop gain of electrolyte overpotential Ω 1.21× 10−3 1.5× 10−4–0.01
R Lumped resistance Ω 1.74× 10−3 1× 10−3–3× 10−3
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Figure 6. Positive and negative OCP and double-tank model simulation voltage.

4.3. Determination of PCI, NCI, and ECI

According to the method proposed in Section 3.2, the slope of the OCP curve is plotted
with respect to the SOC, as shown in Figure 7. To quantify three characteristic intervals,
we define the PCI as an SOC interval, where the positive characteristic is five times larger
than the negative characteristic, and similarly defines the NCI. The interval where the
difference between the slope of the positive OCP curve and the negative OCP curve is
slight is defined as the ECI. Selecting the intersection of each characteristic interval before
and after considering the SOC shift, we determine that the PCI ranges from 50% to 99%,
that the NCI ranges from 0% to 10%, and that the ECI ranges from 23% to 42%.
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Figure 7. Slopes of positive and negative OCPs curves with SOC.

4.4. Verification with the P2D Model
4.4.1. Verification of FOMe Modeling

The voltages under the FUDS of FOMe and P2D are compared. The parameters
of P2D are listed in Table A1. The FOMe parameters are listed in Table 2, which are
calculated according to the corresponding parameters of P2D. The parameters in Table A1
are derived from measurements (geometric parameters) or studies, and some parameters
are estimated using the experimental results (thermodynamic parameters). The ranges
of certain parameters of P2D are also given in Table A1; most of them are derived from
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Ref. [41]. The ranges of the P2D parameters are used to determine the upper and lower
limits of the FOMe parameters in the PSO algorithm.

The voltages of P2D and FOMe are shown in Figure 8. The RMSE between the
two voltages is 0.55 mV, and the maximum error is 3.6 mV. The results indicate that FOMe
provides an adequate approximation of P2D. For the computation time, for the 20,000 s
FUDS profile shown in Figure 8, the P2D model takes 21 min to solve, while FOMe needs
only 7 s.
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Figure 8. (a) Voltage of P2D and FOMe under the FUDS profile, and (b) the error.

4.4.2. Verification of the Parameter Identification

First, the HPPC voltage response data of the P2D at the initial SOCs of 90%, 30%, and
10% are obtained through simulation with the parameter configuration in Table A1. Second,
the voltage data are considered the output voltage of a virtual cell, and its corresponding
FOMe parameters are identified using the parameter identification method described in
Section 3.

Figure 9 gives the positive SPD overpotential, negative SPD overpotential, and EPD
overpotential for the P2D model at three operating points under the HPPC profile. The ratio
of the three overpotentials varies, and the three operating points belong to three different
characteristic intervals.

(a) (b) (c)

Figure 9. Positive SPD overpotential, negative SPD overpotential, and EPD overpotential of P2D at
the operating point of (a) 90% SOC (b) 30% SOC, and (c) 10% SOC.

The results from comparing the identified values with the true values in the P2D
model are shown in Table 3, which shows that this method can accurately estimate the
parameters of the P2D model.
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Table 3. Parameters’ ground truth of P2D and identification results.

τp (s) τn (s) Ke (Ω) Te (s)

Ground truth 1500 2000 1.19× 10−3 26.4
Identification result 1405 1859 1.12× 10−3 22.9

Relative error 6.3% 7.1% 5.8% 13.2%

4.5. Verification with Experiment

First, HPPC experiments are conducted on the NCM battery at every 10% SOC from
90% to 10% SOC, and a total of nine HPPC experimental data are obtained. Second, the data
of 90% SOC, 30% SOC, and 10% SOC are selected for diffusion parameter identification.
The results are shown in Table 4.

Table 4. Parameters’ identification result of FOMe.

τp (s) τn (s) Ke (Ω) Te (s)

Identification result 396 2012 2.0× 10−3 54.7

Substituting the results into FOMe, the comparison between FOMe and the actual
voltages at nine operating points is shown in Figure 10. The RMSE over the nine operating
points is 2.75 mV.

Figure 10. Voltage of the experiment and FOMe at nine operating points of the HPPC profile.

Furthermore, comparisons of the FOMe voltage with experiments under the FUDS,
DST, and NEDC profiles are given. As shown in Figure 11, the statistics of errors are shown
in Table 5. In addition, in the frequency domain, the simulated EIS of FOMe is compared
with the measured EIS, as shown in Figure 11. The mean absolute percentage error (MAPE)
in the low-frequency part is 2.03%. In summary, FOMe and its parameter identification
method demonstrated high accuracy for the investigated battery.

Table 5. Error between FOMe and experiment voltage (RMSE).

Data Used for Identification HPPC (mV) FUDS (mV) DST (mV) NEDC (mV)

ACI 2.74 2.46 1.64 2.27
PCI and NCI and ECI 2.75 2.51 1.67 2.28

PCI and NCI 3.04 2.64 1.90 2.48
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Figure 11d shows a slight difference between the simulated EIS and the measured EIS
in the very low frequency band. The measured EIS tends to be a straight line perpendicular
to the real axis in this band, which indicates that the measured EIS is dominated by the
Coulomb counting in this band. In contrast, the simulated EIS suggests that the influence of
the solid- and electrolyte-phase diffusion dynamics remains significant in this band [6,42]. It
indicates that the diffusion time constants obtained from our identification are slightly larger
than those exhibited by the measured EIS, which is attributed to the subtle inconsistency
between the time-domain test and the frequency domain test due to the nonlinearity of
the battery.

(a) (b)

(c) (d)

Figure 11. Voltage of experiment and FOMe under (a) FUDS profile, (b) DST profile, (c) NEDC profile,
and (d) the EISs of experiment and FOMe.

4.6. Discussion on the Influence of the Operating Point on Identification Results

The proposed parameter identification method uses the HPPC experimental data of
three operating points in PCI, NCI, and ECI to simultaneously identify the four diffusion
parameters. The following part provides a comparison of this method with the method that
uses only PCI and NCI data and the method that uses all nine operating points (denoted
as ACI).

The results for the parameters identified by the above three methods are shown in
Table 6. The identification results using PCI and NCI data are substituted into FOMe,
and the output voltages under HPPC profiles are shown in Figure 10. The voltage errors
compared with the experiments are shown in Figure 12.
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Table 6. Parameters’ identification results for the three methods.

Data Used for Identification τp (s) τn (s) Ke (Ω) Te (s) Identification Time (min)

ACI 431 1939 2.036× 10−3 58 193
PCI & NCI & ECI 397 2012 2.004× 10−3 55 27

PCI & NCI 250 1725 2.331× 10−3 51 20

Figure 12. Voltage error between the experiment and FOMe under HPPC.

The error between the FOMe voltage and the experiment for the four profiles of HPPC,
FUDS, DST, and NEDC under the above three sets of parameters are shown in Table 5.

According to Table 5, the identification results for the ACI allow FOMe to achieve the
minimum error compared with the actual battery, followed by the identification results
achieved using the PCI, NCI, and ECI. The identification results for the PCI and NCI allow
FOMe to achieve the maximum error. In addition, the identification results for the ACI
are similar to those of the PCI, NCI, and ECI, as shown in Table 6. Considering the time
consumed by the three identification methods, it can be concluded that the method that
uses the PCI, NCI, and ECI can yield high identification efficiency while ensuring the
accuracy of parameter identification.

5. Conclusions

In this work, a fractional-order mechanistic model with simplified electrolyte-phase
diffusion, named FOMe, is proposed. In addition, the parameter identification method of
FOMe is presented. The key points of this study are summarized as follows:

1. A new FOMe model improves the accuracy of approximation to the P2D model with a
slight increase in computational effort over the original model.

2. A method for determining the characteristic SOC intervals of positive and negative
solid-phase diffusion and electrolyte-phase diffusion is given. The parameter identifi-
cation method of FOMe is presented based on the three characteristic intervals. The
paper also discusses the influence of the number of characteristic intervals used for
parameter identification on the parameter identification results.

3. A verification framework that is based on simulation and physical experiments is
proposed. First, based on the P2D model, the FOMe model and parameter identifica-
tion method can be separately verified, thus ensuring the correctness of the content of
the paper. Second, the physical experimental verification based on commercial NCM
lithium batteries focuses on the overall verification of the "model + parameters". The
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results show that the proposed FOMe and parameter identification method exhibit
high accuracy under complex operating conditions (e.g., NEDC).

Future work based on the proposed FOMe and its parameter identification method
will address the following topics: (1) the use of more batteries of different batches and
types to verify the model, (2) evaluation and improvement of the accuracy of the model in
a wider range of application scenarios, such as under higher charging rates and extreme
ambient temperatures, and (3) online parameter identification method of the model and
aging diagnosis based on the model.
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Abbreviations
The following abbreviations are used in this manuscript:

FOM Fractional-order model
FOMe Fractional-order model with electrolyte-phase diffusion
LiB Lithium-ion battery
SPD Solid-phase diffusion
EPD Electrolyte-phase diffusion
SOC State of charge
PCI Characteristic interval of the positive electrode
NCI Characteristic interval of the negative electrode
ECI Characteristic interval of the electrolyte phase
HPPC Hybrid pulse power characterization
FUDS Federal urban driving schedule
DST Dynamic stress test
NEDC New European driving cycle
EIS Electrochemical impedance spectrum
RMSE Root mean square error

Appendix A

Table A1. Parameters of P2D.

Symbol Parameter Unit Value Range

Constant
F Faraday constant C/mol 96487

Rg Ideal gas constant J/(mol·K) 8.314
T Temperature K 298.15
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Table A1. Cont.

Symbol Parameter Unit Value Range

Geometric parameters and volume fractions
A Area of Electrode m2 0.5 a 0.4–0.6
δp

Length m
6.8× 10−5 a 5× 10−5–1× 10−4

δn 9× 10−5 a 5× 10−5–1× 10−4

δsep 3× 10−5 a 2× 10−5–4× 10−4

Rs Particle radius m 1× 10−6 [43] 5× 10−7–2× 10−6

εe,p
Volume fraction of the electrolyte phase 1

0.444 [44] 0.4–0.5
εe,n 0.357 [44] 0.3–0.4

εe,sep 0.45 [44] 0.4–0.5
εs,p Volume fraction of the solid phase 1 0.297 [44] 0.4–0.5
εs,n 0.471 [44] 0.3–0.4

Transport properties
Ds,p Solid-phase diffusion coefficient m2/s 1.14× 10−15 [11] 5× 10−16–5× 10−14

Ds,n 3.66× 10−15 [11] 5× 10−16–5× 10−14

De Electrolyte-phase diffusion coefficient m2/s 2.5× 10−10 [41] 1× 10−11–1× 10−9

ce,0 Initial concentration of Li+ in electrolyte mol/m3 1200 [43] 800–1500
cmax

s,p Solid-phase maximum concentration of Li+ mol/m3 75,326 b

cmax
s,n 27,456 b

c0
s,p Solid-phase initial concentration of Li+ mol/m3 5175 b

c0
s,n 27,107 b

t+ Transference number 1 0.35 [41] 0.1–0.4
β Electrolyte activity coefficient 1 0.9 [44] 0.5–1

a The geometric parameters are derived from measurements of the NCM battery. b The thermodynamic parameters
are identified from the low-rate discharging test.
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