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Abstract: As the core component of an electric vehicle, the health of the traction battery closely affects
the safety performance of the electric vehicle. If the sub-health state cannot be identified and dealt
with in time, it may cause traction battery failure, pose a safety hazard, and cause property damage
to the driver and passengers. This study used data-driven methods to identify the two typical types
of sub-health state. For the first type of sub-health state, the interclass correlation coefficient (ICC)
method was used to determine whether there was an inconsistency between the voltage of a single
battery and the overall voltage of the battery pack. In order to determine the threshold, the ICC value
of each vehicle under different working conditions was analyzed using box plots, and a statistical
ICC threshold of 0.805 was used as the standard to determine the first sub-health type. For the second
type of sub-health state, the Z-score and the differential area method were combined to determine
whether the single cell voltage deviated from the overall battery pack voltage. A battery whose
voltage differential area exceeds the range of u ± 3σ is regarded as having a sub-health state. The
results show that both methods can accurately judge the sub-health state type of a single battery.
Furthermore, combined with the one-month operation data of the vehicle, we could calculate the
sub-health state frequency of each single battery and take single batteries with a high frequency as
the key object of attention in future vehicle operations.

Keywords: data driven; sub-health state; ICC; differential area; box plot; Pauta criterion

1. Introduction

In recent years, with the popularization of electric vehicles (EVs), more and more
problems have been exposed during their use [1]. Finding out how to make significant
developments to EVs has thus become an urgent problem to be solved [2]. Compared
to traditional vehicles, the power batteries of EVs have the characteristics of high heat
generation, multiple electrical circuits, and complex control systems during use and charge–
discharge. As the core component of EVs [3,4], traction battery systems can not only provide
power output and braking energy recovery, but also greatly affect the driving safety and
cruising range of EVs [5,6]. Although the research and development of traction batteries
and the production technology of traction batteries are making continuous progress, the
management strategy of traction batteries still needs to be improved [7,8]. Based on
the driver’s operation and various factors, the traction battery system, cell, or related
components will be damaged to varying degrees and enter a sub-health state during
use [9]. If the sub-health state cannot be identified and dealt with in time, it may cause
traction battery failure, pose a safety hazard, and cause property damage to the driver and
passengers. According to incomplete statistics, there were more than 124 electric vehicle fire
accidents in China in 2020, and nearly half of them occurred in July, August, and September.
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The causes of the accidents included the imperfect control strategy of the current battery
management system (BMS), improper use by the operators, poor environmental conditions,
etc. [10,11]. Therefore, the real-time monitoring and diagnosis of the health status of the
traction battery throughout its life cycle are particularly important.

At present, in order to ensure the safety and reliability of EVs and reduce the accident
rate caused by the failure of the traction battery system, domestic and international scholars
are committed to studying fault diagnosis methods for traction batteries [12,13]. Commonly
used traction battery fault detection methods include the threshold method, the empirical
model method, and machine learning methods [14].

Vehicle manufacturers and traction battery management system manufacturers have
set different fault levels, which mainly diagnose some simple and obvious battery faults. To
build on this, Chen et al. [15,16] proposed an improved threshold method which calculates
the voltage difference between any two terminal voltages and compares the maximum value
of the voltage difference with the threshold. When the difference exceeds the threshold, the
fault detection mechanism will alert the user. Han et al. [17] set a specific voltage threshold,
calculated the voltage change value of a battery pack continuously discharged with 1 C
current for a fixed period of time, and made a diagnosis by comparing the threshold value
with the measured value. Xia et al. [18] proposed a short-circuit fault alarm based on
temperature change rate, voltage threshold, and current threshold. The difficulty of the
threshold method is in setting a reasonable threshold. If the threshold is too small, alarms
will be issued frequently, and if the threshold is too large, the fault cannot be detected
in time.

For empirical modeling methods, many scholars have studied model simulation.
Chen et al. [19] proposed a synthesized design of reduced-order Luenberger observers
and LOs for the purpose of simultaneous fault isolation and estimation of a three-cell
battery string. The number of batteries used in the study of this method was small, and
the possibility of applying it to a multi-cell battery pack is not high. Xu et al. [20] used
a first-order RC equivalent circuit model to analyze the contact failure of a battery pack,
used the least square method to identify the model parameters, and analyzed the cause of
the battery failure through Simscape simulation. Sidhu et al. [21] estimated the residual
signal generated by the terminal voltage by extending the Kalman filter and applied it
to the multi-model adaptive estimations technology to generate a certain characteristic
failure probability to diagnose battery failures. Liu et al. [22] established a battery model
through equivalent circuit technology and proposed a battery fault diagnosis scheme to
detect faults in current or voltage sensors. Dey et al. [23] used an equivalent circuit model
and a thermal model to estimate current, voltage, and temperature, generated residuals
using three synovial film observers, and finally realized fault detection and isolation of the
voltage sensor, current sensor, and temperature sensor. Tran et al. [24] used a simulation
framework based on a battery voltage model and a degradation model to investigate the
feasibility and benefits of the battery replacement concept. Chen et al. [25] presented a
multi-fault diagnosis approach based on a hybrid system for diagnosing cell parametric
faults, sensor faults, and relay faults in a Li-ion battery pack. Hu et al. [26] proposed a
novel ISC diagnostic method which uses, for the first time, recursive total least squares with
variable forgetting (RTLS-VF) to mitigate the adverse effects of measurement disturbances.
These studies are still based on model simulation and were rarely verified by experiments.
In the actual application in EVs, the accuracy of fault diagnosis will have a certain deviation.

In recent years, with the gradual development of machine learning, research on fault
diagnosis based on machine learning has become more and more frequent. Hong et al. [27]
proposed a multi-step accurate prediction method of battery system voltage based on
deep learning, which is the first application of LSTM to voltage failure prediction in
a battery system. However, this method requires one-year operation data of vehicles,
which has high requirements on the time dimension of the sample size. Yao et al. [14]
proposed a fault detection method for lithium-ion batteries based on a wavelet neural
network based on the decomposition and reconstruction of discrete wavelet transform
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(DWT) to eliminate voltage signal noise. However, the required data sample size directly
affects the method accuracy. Yang et al. [28] used the two characteristics of maximum
temperature rise and minimum discharge capacity of leaking batteries and proposed a
method based on the random forest (RF) classifier to effectively classify normal and faulty
batteries and accurately diagnose external short-circuit faults. This method requires a lot
of training data. Gao et al. [29] established a single hidden layer back-propagation neural
network optimized by the genetic algorithm to diagnose battery faults. However, this
method directly regards the total voltage as the research object, without considering the
relationship between the single battery modules. Xia et al. [30] used BP and RBF neural
networks to make a preliminary diagnosis of lithium battery fault feature vectors based
on the complexity and uncertainty of lithium battery faults in EVs. Then, they used the
combination rules of the D-S evidence theory to fuse the evidence bodies of different neural
networks and the weighted evidence bodies to diagnose battery faults. However, due
to the use of multiple models, the algorithm was too complicated, and the calculation
efficiency was low. Although the machine learning method has a high accuracy, its accuracy
is affected by the sample size and noise, and applicability to EVs in actual operation is
difficult to achieve.

In summary, the current battery pack fault diagnosis methods have shortcomings
in different aspects in practical applications. Li et al. [31] used an ICC to advance fault
resolution by amplifying the voltage difference, and to determine whether the battery is
short-circuited. However, it is necessary to sequentially compare the size of the ICC between
the cell voltages when determining this, and without considering the consistency of the
voltage data, 0.75 was directly selected as the ICC threshold. In the work of Xue et al. [32],
although the 3σ multi-level screening strategy was used to determine the fault, it did not
consider the instantaneous rise in the voltage due to emergency operations. A certain
process is required for a battery to change from a healthy state to a faulty state. For this
reason, this article uses the term “sub-health state” to study the battery state. This paper
analyzes two potential sub-health states based on a data-driven method. The ICC, Z-score,
and differential area methods are used to identify the two sub-health states, and the method
is verified using vehicle voltage data under different working conditions.

2. Voltage Data Analysis
2.1. Data Introduction and Preprocessing

The operating data of EVs mainly include the traction battery system, motor drive
system, vehicle control system, and other parts. The parameter data of the traction battery
system mainly include the total voltage and current of the battery system, the SOC state,
the battery cell voltage, the temperature of the characteristic points of the battery pack, etc.

During the actual operation of EVs, due to the variability and unpredictability of
factors such as road conditions and driving behavior, the battery voltage will also fluctuate
sharply [27]. The vehicles we studied were 72 pure EVs equipped with lithium-ion battery
packs from the Open Lab of the National Big Data Alliance for New Energy Vehicles, a non-
shareable online data platform. The specific parameters are shown in Table 1. Real-time
monitoring data were transmitted through the network. There was a delay in the transmis-
sion process, which caused problems such as data loss, abnormality, duplication, and an
inconsistent sampling frequency. Therefore, it was necessary to delete duplicate values and
then identify and delete abnormal values according to the technical specifications. Due to
the small data transmission interval, the missing values could be filled with the upper and
lower mean values. Finally, the obtained data were resampled at 0.1 Hz.
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Table 1. Specific parameters of the vehicle.

Vehicle Type Pure Electric Vehicle

Curb weight (kg) 2420
Energy consumption per hundred kilometers (kwh/100) 20.5

Maximum speed (km/h) 155
Rated total energy of battery (kwh) 82

2.2. Types of Sub-Health Status

The power battery consists of multiple single cells in series and parallel combination.
The specifications and models of each single cell in the system are identical, so in theory,
they all have rotation symmetry. According to the characteristics of series and other flow,
the change trend and range of the single cell voltage are consistent [33,34]. The average
voltage of the single cells in a battery pack represents the concentration of the battery pack
voltage, which can reflect the overall trend of the battery pack voltage. In order to analyze
the consistency of the single-cell voltage and the overall voltage of the battery pack, the
single-cell voltage (V) was compared with the average value of battery pack voltage (V).
By analyzing the real-time monitoring voltage data of electric vehicles, two types of battery
sub-health status could be summarized.

Battery sub-health state type I: The voltage of the single cell is inconsistent with the
overall voltage of the battery pack. As shown in Figure 1, compared with the voltage of
single cell No. 53 on the left, the voltage of cell No. 1 on the right has an inconsistent
change with the overall voltage of the battery pack.
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Figure 1. Battery sub-health state type I (graph of the voltage of the single battery over time).

Battery sub-health state type II: The voltage of the single battery deviates from the
overall voltage of the battery pack. As shown in Figure 2, compared with the voltage of
single battery No. 4 on the left, the voltage of single battery No. 11 on the right deviates
from the overall voltage of the battery pack and exceeds the 3σ range.
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3. Identification of Sub-Health Status
3.1. Identification Algorithm of Sub-Health State Type
3.1.1. ICC

The ICC method can evaluate both quantitative data and the reliability of classified
data [35]. Its value is between 0 and 1. It is generally believed that a reliability coefficient
lower than 0.4 indicates poor reliability, and a reliability coefficient greater than 0.75 indi-
cates good reliability [36,37]. The sub-health state of the battery Type I is that the trend
of the voltage of the single cell is inconsistent with the average voltage of the battery
pack and does not change with the average voltage of the battery pack at some time, or
even changes with a delay. To show this inconsistency, we took the cell voltage difference
between adjacent time points in the j-th column (Vj,di f f ) as one group and used the overall
battery voltage average difference between adjacent time points (Vdi f f ) as another group.

ICC =
(MSbl −MSer)/m

(MSbl −MSer)/m + MSer
(1)

In Formula (1), MSbl is the mean square error of the block term, MSer is the mean
square error of the error term, and m is the number of treatment groups.

MSer =
SSer

ver
, (2)

MSbl =
SSbl
vbl

, (3)

where SSbl and SSer represent the sum of squares of deviation from the mean, and vbl and
ver represent the degrees of freedom.

vbl = b− 1, (4)

ver = (k− 1)(b− 1), (5)

SSbl = ∑b
i=1

(
∑k

j=1 xij

)2

k
− C, (6)

SStr = ∑k
j=1

(
∑b

i=1 xij

)2

b
− C, (7)

SSer = ∑ x2 − SSbl − SStr − C, (8)

where b is the number of blocks, k is the number of treatment groups, xij represents the
data of the i-th row and the j-th column, and C is the calculated correction coefficient.

C =
(∑ x)2

N
, (9)

where N is the total number of data points.

3.1.2. Z-Score

The Z-score, also called the standard score, is the result of dividing the difference
between a number and the mean by the standard deviation, which can reflect the relative
standard distance between the sample and its mean. Due to the consistency of a single
battery, the voltage of each single battery fluctuates within a certain range, and the Z-
score can determine the degree of dispersion of the voltage of each single battery. The
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sample is composed of instantaneous cell voltage, and the calculation model is shown in
Formula (10).

Zi,j =
xi,j − µi

σi
, (10)

where Zi,j is the Z-score of the j-th single battery’s voltage at the i-th time point, and xi,j is
the j-th single battery’s voltage at the i-th time point.

σi =

√
1
n

[
∑n

j=1

(
xi,j − µi

)2
]
, (11)

where σi is standard deviation of the battery pack voltage at the i-th time point, and µi is
the average value of battery pack voltage at the i-th time point.

µi =
1
n ∑n

j=1

(
xi,j
)
, (12)

Zi,j =
xi,j − 1

n ∑n
j=1
(
xi,j
)√

1
n

[
∑n

j=1
(
xi,j − µi

)2
] , (13)

3.1.3. Differential Area Method

Battery sub-healthy state type II is a single cell voltage, and the average voltage of
the battery pack difference is large and partly outside the ± 3σ range. To show this incon-
sistency, the area differential method calculates the area enclosed by the single battery’s
voltage and the average voltage of the battery pack within the selected time. The calculation
formula is as follows:

Adi f f = ∑
∣∣(xi,j − µi

)∣∣, (14)

where Adi f f is the differential area in the selected time period.

3.2. Identification of Sub-Health Status Type I
3.2.1. ICC Calculation of Sub-Health State Type

Sub-health state type I indicates that the voltage of the single battery is inconsistent
with the overall voltage of the battery pack, and the ICC principle can be used to identify it.
The ICC calculations for the voltage of single cell No. 1 are as follows:

C =
(∑ x)2

N
=

0.01236
358

= 3.4545× 10−5 (15)

SSbl =
b

∑
i=1

(
∑k

j=1 xij

)2

k
− C = 4.1430× 10−2 − 3.4545× 10−5 = 4.1395× 10−2 (16)

SStr = ∑k
j=1

(
∑b

i=1 xij

)2

b
− C = 4.0253× 10−5 − 3.4545× 10−5 = 5.7085× 10−6,

SSer = ∑ x2 − SSbl − SStr − C= 6.3644× 10−2 − 4.1395× 10−2 − 5.7085× 10−6 − 3.4545× 10−5 = 2.2209× 10−2

MSer =
SSer

ver
=

2.2209× 10−2

178
= 1.2478× 10−4

MSbl =
SSbl
vbl

=
4.140× 10−2

179
= 2.3256× 10−4
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ICC =

MSbl −MSer

m
MSbl −MSer

m
+ MSer

=
5.389× 10−5

1.7867× 10−4 = 0.3016

Based on Formula (1), the ICC of the voltage of battery No. 1 is 0.3016; the ICC of
each single battery voltage was calculated using analogy, as shown in Figure 3. It can be
concluded from Figure 1 that since battery No. 1 has sub-health state type I, the calculated
ICC is lower, while the ICC of single battery No. 53 without a sub-health state is 0.85, as
shown in the blue grap in Figure 3, which is significantly greater than that of single battery
No. 1. At this time, as shown in the green grap in Figure 3, not only is the ICC of battery
No. 1′s voltage low, but the ICCs of the voltages of cells No. 12 and 92 are also relatively
low. From Figure 4, it can be concluded that both batteries have sub-health state type I.

Batteries 2022, 8, x FOR PEER REVIEW 7 of 18 
 

𝑆𝑆 =    𝑥𝑘 − 𝐶 = 4.1430 × 10 − 3.4545 × 10 = 4.1395 × 10  (16)

𝑆𝑆 = ( ) − 𝐶 = 4.0253 × 10 − 3.4545 × 10 = 5.7085 × 10 , 

𝑆𝑆er = ∑𝑥 − 𝑆𝑆bl − 𝑆𝑆 − 𝐶=6.3644 × 10 − 4.1395 × 10 − 5.7085 × 10 − 3.4545 × 10 = 2.2209 ×10  

𝑀𝑆 = 𝑆𝑆𝑣    = 2.2209 × 10178 = 1.2478 × 10  
𝑀𝑆 = 𝑆𝑆𝑣 = 4.140 × 10179 = 2.3256 × 10  

𝐼𝐶𝐶 = 𝑀𝑆 − 𝑀𝑆𝑚𝑀𝑆 − 𝑀𝑆𝑚 𝑀𝑆 = 5.389 × 101.7867 × 10 = 0.3016 

Based on Formula (1), the ICC of the voltage of battery No. 1 is 0.3016; the ICC of 
each single battery voltage was calculated using analogy, as shown in Figure 3. It can be 
concluded from Figure 1 that since battery No. 1 has sub-health state type I, the calcu-
lated ICC is lower, while the ICC of single battery No. 53 without a sub-health state is 
0.85, as shown in the blue grap in Figure 3, which is significantly greater than that of 
single battery No. 1. At this time, as shown in the green grap in Figure 3, not only is the 
ICC of battery No. 1′s voltage low, but the ICCs of the voltages of cells No. 12 and 92 are 
also relatively low. From Figure 4, it can be concluded that both batteries have 
sub-health state type I. 

 
Figure 3. The ICCs of different cells’ voltages. Figure 3. The ICCs of different cells’ voltages.

Batteries 2022, 8, x FOR PEER REVIEW 8 of 18 
 

 
Figure 4. Graphs of the voltage of single batteries over time. 

3.2.2. Threshold Calculation of Sub-Health State Type I 
Usually, the ICC ranges from 0.75 to 1. When the ICC < 0.75, it is considered that the 

two groups of data are inconsistent; on the contrary, when the ICC > 0.75, it is consid-
ered that the two groups of data are consistent. Due to the consistency of the time series 
of single batteries, the ICCs of V𝑗,𝑑𝑖𝑓𝑓 and V   are both higher. Using a threshold of 
0.75 as the criterion to determine the sub-health state does not match the actual charac-
teristics of the battery voltage data. Therefore, this paper uses vehicle operation data 
under different working conditions to determine the threshold value. Figure 5 shows a 
box diagram of the ICCs of vehicles under different working conditions. We divided the 
one-month operation data of 72 vehicles at fixed time intervals and calculated the ICC 
value of each section of data. The figure shows that the lower limit of the box diagram of 
the 72 vehicles is distributed above 0.7. 

 
Figure 5. Box plot of ICCs of different vehicles. 

Box plots can not only observe the distribution of data but can also be used to re-
move outliers. Up to more than 90 percent of the data is contained between the upper 
and lower limits in the box plot, so the lower limit can be used as a threshold to remove 
abnormal data. Since the amount of data in the sub-health state is only a small part of 
the overall data volume, the lower limit can also be used as the identification criterion 
for the sub-health state. Although the lower limit values under different working condi-
tions are above 0.7, the specific values are different, and for the reliability of the thresh-

Figure 4. Graphs of the voltage of single batteries over time.

3.2.2. Threshold Calculation of Sub-Health State Type I

Usually, the ICC ranges from 0.75 to 1. When the ICC < 0.75, it is considered that the
two groups of data are inconsistent; on the contrary, when the ICC > 0.75, it is considered
that the two groups of data are consistent. Due to the consistency of the time series of
single batteries, the ICCs of Vj,diff and Vdiff are both higher. Using a threshold of 0.75 as
the criterion to determine the sub-health state does not match the actual characteristics of
the battery voltage data. Therefore, this paper uses vehicle operation data under different
working conditions to determine the threshold value. Figure 5 shows a box diagram of the
ICCs of vehicles under different working conditions. We divided the one-month operation
data of 72 vehicles at fixed time intervals and calculated the ICC value of each section
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of data. The figure shows that the lower limit of the box diagram of the 72 vehicles is
distributed above 0.7.
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abnormal data. Since the amount of data in the sub-health state is only a small part of 
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Figure 5. Box plot of ICCs of different vehicles.

Box plots can not only observe the distribution of data but can also be used to remove
outliers. Up to more than 90 percent of the data is contained between the upper and lower
limits in the box plot, so the lower limit can be used as a threshold to remove abnormal
data. Since the amount of data in the sub-health state is only a small part of the overall data
volume, the lower limit can also be used as the identification criterion for the sub-health
state. Although the lower limit values under different working conditions are above 0.7, the
specific values are different, and for the reliability of the threshold selection, the lower limit
values of the box plots under different working conditions are summarized in Figure 6. We
used the lower limit of 0.805 as the ICC threshold. When the ICC value is lower than the
threshold, it is determined that the single battery is in a sub-health state.
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3.3. Identification of Sub-Health State Type II
3.3.1. Z-Score Calculation for Sub-Health Type II

The calculation process for the voltage Z-score of cell No. 1 at a certain time is
as follows:
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µi =
1
n

n
∑

j=1

(
xi,j
)
=

1
98

98
∑

j=1

(
xi,j
)
= 3.188

σi =

√√√√ 1
n

[
n
∑

j=1

(
xi,j − µj

)2
]
= 0.01

Zi,1 =
xi,1 −

1
n ∑n

j=1
(
xi,j
)√

1
n

[
∑n

j=1
(
xi,j − µi

)2
] =

3.183− 3.188
0.01

= −0.5

According to Formula (13), the Z-score of the voltage of single cell No. 1 is −0.5. The
Z-score of each single cell voltage was calculated using analogy, as shown in Figure 7. Since
the driver’s emergency operation during the actual operation of the vehicle may cause the
voltage to rise temporarily, the instantaneous cell voltage Z-score cannot fully reflect the
battery status, so real-time monitoring voltage data over a certain period were selected to
calculate the Z-score box chart, as shown in Figure 8. The figure shows that the Z-scores
of the voltage of single cells No. 11 and 14 clearly deviate from the Z-score of the overall
voltage of the battery pack; therefore, the two single cells may be in sub-health state.
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3.3.2. Calculation of Sub-Health Type II by Differential Area Method

In order to eliminate the instantaneous increase in voltage caused by the driver’s
emergency operation, the differential area method was introduced to quantitatively describe
sub-health state type II. The further the single cell voltage deviates from the average value
of the cell pack voltage, the larger the differential area will be. This method can not
only determine the number of single batteries in the sub-health state, but also avoids the
misjudgment caused by the temporary rise in the voltage at a certain moment.

Adi f f =
30

∑
i=1
|(xi,1 − µi)| = 0.272

Based on Formula (14), the differential area of battery No. 1 is 0.272. The differential
area of each single battery voltage was calculated using analogy, as shown in Figure 9. It
can be concluded from Figure 2 that since battery No. 11 has a type II sub-health state,
the calculated differential area is 1.82. However, as shown in the blue grap in Figure 3,
the voltage differential area of battery No. 4 without sub-health status is 0.07, which is
significantly smaller than that of battery No. 11. as shown in the green grap in Figure 3,
Except for the higher differential area of battery No. 11 at this moment, the voltage
differential area of single batteries No. 14 and 55 are both higher. As shown in Figure 10,
the voltage of the single cell battery changes with time, and it can be concluded that the
two single cells No. 14 and No. 55 are in the type II sub-health state.
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3.3.3. Threshold of Sub-Health State Type II Based on the 3δ Rule

For sub-health state type II, although the differential area method and Z-score can
be used to compare the discreteness of each single battery clearly, it is possible to judge
which battery is more prone to the trend of entering a sub-health state. However, a unified
threshold cannot be given to determine whether a single battery is in a sub-health state. In
order to solve this problem, this paper introduces the 3δ rule on the basis of the Z-score
and differential area method to judge sub-health state type II. Figure 11 is a scatter plot of
the differential area Z-score. From the figure, it can be concluded that the Z-scores of the
voltages of cells No. 11, 14, and 55 were all greater than three. According to the principle of
the 3δ rule, these three single cells were in a sub-health state.
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4. Method Verification
4.1. Verification Methods for Sub-Health State Type I

In order to verify the feasibility of the ICC method, we selected the data of other
vehicles to calculate the ICC values of the single battery voltages, as shown in Figure 12. It
can be seen from the figure that the ICCs of single cells No. 33, 34, 35, 36, and 82 were all
lower than the threshold. We then drew a graph of the changes of these cells over time to
determine whether the sub-health state type I was satisfied. At the same time, cell No. 1
with an ICC greater than the threshold was selected as the control. As shown in Figure 13,
cells No. 33, 34, 35, 36, and 82 were in a sub-health state.
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Figure 13. Graphs of the voltage of single batteries over time.

In the repeated operation of the vehicle, a single sub-health state cannot reflect the
health of the battery. Therefore, it was necessary to calculate the frequency of the sub-health
state of the single batteries in each vehicle for one month. From the frequency chart of
sub-health state type I of single batteries in Figure 14, it can be seen that cells No. 33 and 70
had a higher frequency of sub-health state type I; in particular, for single battery No. 70,
the frequency of a sub-health state within one month was close to 0.5.
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4.2. Verification Methods for Sub-Health State Type II

In order to verify the feasibility of the method of sub-health state type II, the data of
other vehicles were selected to calculate the Z-scores of the differential area of single battery
voltages, as shown in Figure 15. The figure shows that the Z-scores of the differential area
of the voltage of single cells No. 14, 26, 34, and 97 were greater than three. We drew a
graph of the voltage changes of these single batteries over time to determine whether the
sub-health state type II was satisfied. At the same time, cells No. 1 and 2 with Z-scores of
differential areas lower than three were selected as the control. As shown in Figure 16, a
sub-health state occurred in cells No. 14, 26, 34, and 97.

Similar to sub-health state type I, we drew a frequency chart of the sub-health state
of the single batteries within one month, as shown in Figure 17. From the figure, it can be
seen that the frequency of sub-health state type II in cells No. 26 and 97 is higher, both
exceeding 0.5.
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5. Conclusions

This paper proposes two different methods to identify two typical battery sub-health
states. Based on the inconsistency between the voltage of a single cell and the overall
voltage of the battery pack, the ICC method was proposed, and the ICC threshold value of
0.805 was used as the criterion for judging the sub-health state based on the operating data
of each vehicle under different working conditions. Based on the problem of the voltage
of a single cell deviating from the overall voltage of the battery pack, the differential area
method and the Z-score method were combined, and according to the 3σ rule, a threshold
of three was used as the standard for determining the sub-health state by the Z-score of the
differential area.

Since a single sub-health state cannot fully reflect the overall health of the battery, it
is necessary to calculate the monthly sub-health state frequency of each vehicle’s single
battery and to take a single battery with high frequency as the focus of vehicle operation in
the future.
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Abbreviations

Nomenclature variable
Vj,di f f The difference in voltage of a single cell at adjacent time points in the j-th column
Vdi f f Difference between the average values of cell pack voltage at adjacent time points
MSer Mean square error of the error term between Vj,di f f and Vdi f f
MSbl The mean square error of the block term between Vj,di f f and Vdi f f
SSer Sum of squares of deviation from mean of the error term between Vj,di f f and Vdi f f
SSbl Sum of squares of deviation from mean of the block term between Vj,di f f and Vdi f f
SStr Sum of squares of deviation from mean of the treatment term between Vj,di f f and Vdi f f
vbl The degree of freedom of the block term between Vj,di f f and Vdi f f
ver The degree of freedom of the error term between Vj,di f f and Vdi f f
k The number of treatment groups between Vj,di f f and Vdi f f
b The number of blocks between Vj,di f f and Vdi f f
C Correction coefficient between Vj,di f f and Vdi f f
N Total number of data points between Vj,di f f and Vdi f f
Zi,j The i-th time point and the j-th Z-score of single battery voltage
xi,j The i-th time point and the j-th single battery voltage
µj The i-th time point average value of battery pack voltage
σj The i-th time point standard deviation of battery pack voltage
Subscripts
diff Difference
er Error
bl Block
tr Treatment
Acronyms
ICC Interclass correlation coefficient
EVs Electric vehicles
BMS Battery management system
C Capacity
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