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Abstract: TiNb2O7 anode material with a Wadsley–Roth crystallographic shear structure was pre-
pared by solid-state synthesis at a relatively low temperature (1000 ◦C) and a short calcination time
(4 h) using preliminary mechanical activation of the reagent mixture. The as-prepared final product
was then ball milled in a planetary mill with and without carbon black. The crystal structure and mor-
phology of the samples were studied by X-ray diffraction (XRD) and scanning electron microscopy
(SEM). Electrochemical performance was studied in a galvanostatic mode in varied voltage intervals
and at different cycling rates in combination with in situ electrochemical impedance spectroscopy
(EIS) measurements. The resistance measured using in situ EIS had the highest values at the end
of the discharge and the lowest when charging. The lithium diffusion coefficient, determined by
galvanostatic intermittent titration technique (GITT), in samples milled with and without carbon
black was an order of magnitude higher than that for the pristine sample. It was shown that im-
proved electrochemical performance of the carbon composite TiNb2O7/C (reversible capacity of
250 mAh g−1 at C/10 with Coulomb efficiency of ~99%) was associated with improved conductivity
due to the formation of a conductive carbon matrix and uniform distribution of submicron particles
by size.

Keywords: TiNb2O7; mechanical activation; carbon coating; galvanostatic cycling; EIS

1. Introduction

Most commercial lithium-ion batteries (LIBs) use graphite as an intercalating anode
with a theoretical capacity of 372 mAh g−1. The intercalation potential of Li into graphite is
between 0 and 0.25 V vs. Li+/Li. This falls below the electrochemical stability window of
the electrolyte during charging, which leads to its decomposition at the graphite surface,
forming the passivating solid electrolyte interphase (SEI) [1,2]. Moreover, graphite anodes
do not meet the requirements for high-power LIBs because of sluggish Li-ion diffusion
and insufficient electrochemical kinetics. To avoid the formation of SEI and to improve
kinetics, a series of high-voltage oxide anode materials has been developed [3]. The most
promising among them is lithium titanium spinel Li4Ti5O12, which is a ‘zero strain’ anode
material. It has an operating voltage of 1.55 V vs. Li+/Li, which avoids the SEI formation [4].
The disadvantage of Li4Ti5O12 is its low theoretical specific capacity (175 mAh g−1) and
the need to be prepared at nanoscale for practical application [4].

Recently, Nb-based oxides with Wadsley–Roth crystallographic shear structures have
been intensively studied as high-rate anode materials with increased specific capacity
for LIBs [5–9]. Their unique stable shear ReO3-type crystal structure and the possibility
of implementing multielectron redox processes give hope for the development of next-
generation of LIBs characterized by high energy density and long cycle life [9]. Li-ion
insertion into Nb-based oxides mainly occurs at a voltage above 1 V vs. Li+/Li; therefore,
SEI is not formed [9]. The theoretical volumetric capacities of Wadsley–Roth phases are
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above 1679 mAh cm−3, while that of Li4Ti5O12 is 609.3 mAh cm−3 [7]. Therefore, such
anode materials can provide great advantages over the conventional graphite and Li4Ti5O12
anodes in terms of specific energy, rate capability, and safety and should be promising
candidates for the role of the anode for high-power LIBs.

TiNb2O7 is the most titanium-rich member of the TiO2–Nb2O5 system [10,11]. It was
first proposed as an anode material by Goodenough et al. in 2011 to replace Li4Ti5O12 [12].
The theoretical capacity of TiNb2O7 is 387.6 mAh g−1, arising from the operation of several
redox couples (Ti4+/Ti3+, Nb5+/Nb4+, Nb4+/Nb3+) for a five-electron transfer, which is
more than twice of that of Li4Ti5O12 and is comparable with that of graphite [12]. Its average
insertion voltage is about 1.64 V vs. Li+/Li at 0.1 C, which is close to that of 1.55 V for
Li4Ti5O12. However, pure TiNb2O7 has the same drawbacks as Li4Ti5O12: it is an oxide
with a wide band gap and therefore has poor electronic conductivity (10−9–10−11 S cm−1),
which can be increased by the introduction of oxygen vacancies, doping, and conductive
coating [5,8,9].

Li diffusion in the crystal structure of TiNb2O7 is anisotropic. As shown in [13],
lithium is capable of rapidly migrating through T1 and T2 tunnels along the b axis within
the (3 × 3)∞ block (Figure 1), which determines the high-rate capability of TiNb2O7.
In addition, cross-tunnel diffusion is possible within the block, but diffusion between
blocks is negligible [13].
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Figure 1. The crystal structure of (a) TNO and (b) Li4TiNb2O7 with Li and Nb/Ti positions. Yellow
dashed frames mark (3 × 3)∞ of ReO3-like blocks.

TiNb2O7 can be obtained in various ways. Solution methods, such as hydrothermal
and sol–gel, allow one to adjust the morphology and particle size and obtain nanosized
TiNb2O7 with a uniform particle size distribution [8]. However, these methods typically use
expensive organic reagents, which limit their application in industry. Usually, cost-effective
and simple solid-state synthesis is used as the most suitable way to produce TiNb2O7.
However, this method requires heat treatment of a reagent mixture of TiO2 and Nb2O5 at
a high temperature of 1000–1400 ◦C for 12–24 h and usually results in the formation of a
heterogeneous product with micron-sized agglomerated particles and wide particle size
distribution [5,8]. There have been several reports in which the authors tried to reduce
the temperature and synthesis time. Baek et al. [14] reported a fast synthesis method for
TiNb2O7 that required 7 min of heating in the microwave. Although microwave synthesis is
fast, simple, and inexpensive, its scalability is questionable. The combination of solid-state
synthesis with preliminary mechanical activation (MA) is a promising way to prepare
highly homogeneous materials by reducing the temperature and duration of the process.
Adhami et al. [15] synthesized TiNb2O7 using MA for 5 h and postannealing at 900 ◦C for
2 h. Oliveira et al. [16] reduced the synthesis time to 2 min but used long-term operations
to prepare the precursor, including ball milling for 24 h.

In the present work, TiNb2O7 (hereafter TNO) was prepared by solid-state synthe-
sis using preliminary MA of the reagent mixture for 5 min and subsequent heating at
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1000 ◦C for 4 h. The micrometer-sized single-phase final product was then ball milled in
a planetary mill with and without carbon black (hereafter TNO/C and TNO-MA, respec-
tively). The electrochemical performance of the as-prepared samples was studied.

2. Results and Discussion
2.1. Crystal Structure, Particle Size, and Morphology

The crystal structure of TNO is built from (3 × 3)∞ blocks or columns of ReO3 type,
infinite along the b axis and bounded by crystallographic shear planes [17,18]. It consists
of TiO6 and NbO6 octahedra sharing corners within the blocks and edges between the
blocks (Figure 1). According to [13], lithium migrates through tunnels between MO6
(M = Nb, Ti) octahedra in the ReO3 block, hopping between positions with a tetrahedral
(LiO4) and a pyramidal (LiO5) environment; diffusion through the crystallographic shear
planes is disrupted. The authors [13] showed that the activation energies of lithium
migration down the tunnels are small (100−200 meV), while for lithium migration across
the block, the activation energies are noticeably higher (700−1000 meV). At a high Li content
in TiNb2O7, ionic motion is hindered. On the other hand, during lithium intercalation,
effective n-type self-doping occurs, causing high-rate conductivity. The structure undergoes
a transition from partially localized to delocalized electronic behavior as the concentration
of lithium increases [13].

Rietveld-refined XRD patterns of the as-prepared TNO, TNO-MA, and TNO/C sam-
ples are shown in Figure 2. The samples were well-crystalline and single-phase materials.
All reflections were successfully indexed based on the monoclinic structure with the C2/m
space group (PDF #77-1374) [19]. After MA, the broadening of reflections increased, which
indicated a decrease in coherent scattering regions. Average crystallite sizes were equal to
161.1(19) nm for TNO, 74(1) nm for TNO-MA and 99(2) nm for TNO/C. The refined lattice
parameters of the samples and the Rietveld discrepancy values, Rwp and GOF, are shown
in Table 1. Lattice parameters slightly increased after MA and carbon coating, which was
attributed to a slight structural disordering or partial reduction of Ti4+ or Nb5+ ions.
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Figure 2. Rietveld refined XRD patterns of (a) TNO, (b) TNO-MA, and (c) TNO/C.

Table 1. Refined lattice parameters of TiNb2O7 samples.

Sample a, Å b, Å c, Å β, ◦ V, Å3 GOF Rwp, %

TNO 20.3488(5) 3.7926(8) 11.8823(3) 120.235(2) 792.25(4) 3.086 7.00
TNO-MA 20.3548(14) 3.7979(3) 11.8847(11) 120.213(6) 793.16(13) 1.741 5.62
TNO/C 20.3596(15) 3.7975(3) 11.8859(10) 120.211(5) 794.16(13) 3.756 8.23

Microstructural analysis of the as-prepared TNO, TNO-MA, and TNO/C samples was
carried out by SEM (Figure 3). The particles of TNO had an irregular morphology with
a submicron particle size, as is typical for mechanochemically prepared materials. It was
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possible to distinguish small primary particles of about 500 nm in size, along with larger
micron-sized agglomerates of smaller primary particles. The particle sizes of TNO-MA
and TNO/C were noticeably smaller than those of pristine TNO and were equal to about
350 nm. Figure 4 shows the particle size distribution for these three samples as measured
by a particle size analyzer. Several maxima ranging from 5 to 50 µm were observed
on the histogram of TNO with D50 = 12.4 µm. After MA, the particle size decreased to
1–10 µm with D50 = 2.13 µm. For the carbon composite TNO/C, the narrowest particle
size distribution was observed with D50 = 2.22 µm. Thus, the short-time MA of TNO with
or without carbon black significantly reduced the particle size. The addition of carbon
black contributed to a more uniform particle size distribution, which agreed well with the
SEM results.
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2.2. Electrochemical Performance of TNO Samples

In order to choose an appropriate voltage interval for cycling of all TNO samples,
we first investigated the electrochemical performance of pristine TNO in different voltage



Batteries 2022, 8, 52 5 of 12

ranges from 3 to 1 V and then reducing the low cutoff by 0.1 V with each cycle (Figure 5).
The initial charge–discharge specific capacity, when cycled to 1 V, was 296/267 mAh g−1.
When the low cutoff decreased to 0.8 V, the specific discharge and charge capacities slightly
increased. When the low cutoff decreased to below 0.8 V, the capacity decreased, most
probably because of side reactions of the electrode with the electrolyte. This was accompa-
nied by a notable increase in resistance, registered by in situ EIS in the frequency range of
10 kHz–100 mHz (Figure 5b). The reduced capacity was maintained even after returning to
the 1 V cutoff (see value of capacity after red dashed line in Figure 5a).
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low cutoff.

In the further experiments, the as-prepared TNO, TNO-MA, and TNO/C samples were
cycled in the 1.0–3.0 V range at C/10–5C cycling rates. Figure 6 shows charge–discharge pro-
files of the samples and the corresponding dQ/dV vs. voltage plots. The charge–discharge
profiles have three regions: namely, a sloping shape from 3.0 to 1.6 V (corresponding to
insertion of ~1 Li) followed by a small plateau at 1.6 V (1–2 Li) and then a sloping curve
from 1.6 to 1.0 V (>2 Li). This indicates a change in the Li intercalation mechanism from
single-phase to two-phase and back to single-phase [20,21]. The process is accompanied
by simultaneous reduction of both titanium and niobium during discharge due to the
overlap of their d-bands [13,22]. According to [23], the two overlapping redox couples ob-
served on the differential curves at 1.75–1.81 V and 1.61–1.66 V were attributed to Ti4+/Ti3+

and Nb5+/Nb4+, while the couple of less-intensive peaks at 1.32–1.34 V corresponded to
Nb4+/Nb3+.

Figure 7 shows the charge–discharge specific capacity of TNO, TNO-MA, and TNO/C
vs. cycling number and cycling rate. The initial discharge capacities at a C/10 rate were
equal to 310 mAh g−1 for TNO, 322 mAh g−1 for TNO-MA, and 309 mAh g−1 for TNO/C,
which were close to the theoretical capacity (387.7 mAh g−1). The initial charge capacities
were 276, 267, and 270 mAh g−1 for TNO, TNO-MA, and TNO/C, respectively. There-
fore, the irreversible capacities were equal to 34 mAh g−1 (11%), 55 mAh g−1 (17%),
and 39 mAh g−1 (13%) for TNO, TNO-MA, and TNO/C, respectively, probably arising
from the formation of a solid electrolyte interface (SEI). According to [24], a thin SEI
layer was formed during the first discharge, although the operating voltage is higher than
1.0 V. Meanwhile, it was partially dissolved during the first charge in the voltage range of
1.0–3.0 V. After 50 cycles, the reversible capacity stabilized at 140 mAh g−1 for TNO,
at 224 mAh g−1 for TNO-MA, and at 225 mAh g−1 for TNO/C, with Coulomb efficiency of
~99%. When the cycling rate increased from C/10 to 5C, the highest capacity (168 mAh g−1)
was observed for TNO/C as a result of decreased particle size, uniform particle size distribu-
tion, and increased electronic conductivity due to formation of a conductive carbon matrix.
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Figure 6. (a) Charge–discharge profiles and (b) differential capacity vs. voltage plots for TNO,
TNO-MA, and TNO/C.
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Figure 7. Discharge–charge capacity vs. (a) cycle number at C/10 and (b) cycling rate in the 1.0–3.0 V
range for TNO, TNO-MA, TNO/C.

2.3. Changes in Ionic and Electronic Conductivity during Charge and Discharge

The impedance spectrum of the TNO/C sample showed a frequency-independent char-
acter, indicating that it had electronic conductivity with a high value of 8.67 × 10−3 S·cm−1.
On the other hand, the curves for TNO and TNO-MA had a sloping form. Approximat-
ing their intersections with the x axis allowed obtaining values of conductivity equal to
4.32 × 10−11 S·cm−1 for TNO and 4.10 × 10−11 S·cm−1 for TNO-MA (Figure 8).
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Figure 8. Electronic conductivity vs. frequency for TNO, TNO-MA, and TNO/C.

Interestingly, pristine carbon-free TNO mixed only with the binder with a ratio of
TNO/PVDF = 95:5 intercalates Li ions during the first discharge at C/10 cycling rate
(Figure 9a). The initial discharge capacity was equal to 210.37 mAh g−1. Note that TNO
showed a clear insulating character with a wide band gap of ~3 eV [22,25]. The conduction
band was contributed by d states of Nb and Ti atoms. The valence band was mostly
contributed by p states of oxygen atoms [22]. During lithium intercalation, electrons
from ionized Li ions partially occupied the conduction band of TNO, which led to a
significant increase in the Fermi level of the system and metallic electronic conduction as a
consequence [13,22,25]. The authors of [13], using magnetic measurements, showed that
the electronic conductivity of TNO increased by seven orders of magnitude upon lithiation
(n-type doping) and indicated that electrons exhibited both localized and delocalized
character near the composition of Li0.60TiNb2O7. They established that the proportion of
localized electrons was the largest at low lithium content, while at high lithium content,
most electrons were delocalized. It is obvious that n-doping of the insulating d0-TNO by
electrochemical reduction increased the concentration of carriers to turn it into an effective
conductor. The discharge capacity was 210 mAh g−1, which was close to the discharge
capacity of TNO with a conductive additive. However, the charge capacity of carbon-free
TNO was only 32.5 mAh g−1. Figure 9b shows in situ EIS spectra of the pristine and
carbon-free TNO after its discharge and charge. The resistance of carbon-free TNO after
discharge became much smaller than that of pristine material; however, it significantly
increased on charge. A similar phenomenon was described in [25]. The authors assumed
that upon the initial discharge, a thin layer of electronically conductive phase LixTiNb2O7
was formed, while when charged, a nonconductive delithiated phase was generated on the
surface of the TNO particles, which prevented the deintercalation of Li ions.
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Based on the analysis of the crystal structure of TNO, where metal−metal interatomic
distances through edge-shared octahedra along the shear planes (3.2–3.4 Å) were shorter
than those for the ac planar cross-block metal−metal pathways (≥3.8 Å), the authors of [13]
suggested that long-range electronic conductivity in TNO was directed down the b axis as
well as long-range ionic conduction. The authors of [13] believed that ionic and electronic
conductivity in TNO was strongly anisotropic because of the crystallographic shear planes,
which prevented the transfer in the ac plane. Hence, TNO can be approximated as one-
dimensional in the direction along the tunnel (b axis). Lithium diffusion decreased rapidly
at higher Li content in TiNb2O7 [13]. Nevertheless, high-rate (de)lithiation of the bulk
structure is determined by the facile hopping between parallel tunnels within ReO3 block,
which makes 1D diffusion in TiNb2O7 different from that of LiFePO4 [13].

In situ EIS spectra were recorded for TNO at different states of charge and discharge.
Figure 10 shows charge–discharge profiles for the first two cycles and how the impedance
spectra changed at different voltages (marked with colored dots on the cycling curves).
At the first discharge, the resistance increased from 308 Ω at the initial state to 369 Ω at
1.55 V. Next, it decreased to 282 Ω at 1.00 V. Upon the first charge, an extra semicircle
appeared in the middle frequency range at voltages below 1.85 V, which most probably
corresponded to the charge transfer. The resistance decreased until the end of the charge
from 282 Ω at 1.00 V to 36 Ω at 3.00 V. At the second discharge, it increased slightly from
36 Ω at 3.00 V to 57 Ω at 1.55 V and then increased sharply to 270 Ω at the end of discharge.
The changes upon the second charge were similar to those upon the first one: the resistance
decreased from 270 Ω to 58 Ω. In Figure 10b,c, two equivalent circuits are present. The first
describes the impedance spectra of TNO before cycling, while the second describes the
impedance spectra of TNO upon the first charge at 1.85 V. R1 corresponds to the electrolyte
resistance. The high-frequency semicircle is a parallel connection of the constant phase
element CPE1 and resistance R2, which was attributed to the surface film formed on
the anode [26,27]. The parallel connection of CPE2 and R3 describes a middle-frequency
semicircle corresponding to charge transfer. In the low-frequency region, a straight line
corresponds to the Warburg diffusion impedance W. Similar results for the second cycle
were obtained by other authors [26–29]. The authors of [13] showed that lithium mobility
was hindered at high Li content (i.e., at x > 3 in LixTiNb2O7) because of a transition from
interstitial-mediated diffusion to vacancy-mediated diffusion.

Figure 11 shows the GITT and OCV curves and the calculated Li+ diffusion coefficient
DLi+ as a function of the cell voltage during charge and discharge of TNO, TNO-MA,
and TNO/C at room temperature. The average value of DLi+ for discharge/charge of TNO
was 7.26 × 10−14/9.07 × 10−14 cm2 s−1. The average values of DLi+ for TNO-MA and
TNO/C were greater than that for TNO and were equal to 1.84 × 10−13/2.56 × 10−13 cm2 s−1

and 1.41 × 10−13/1.52 × 10−13 cm2 s−1, respectively. For all the samples, DLi+ curves had
a minimum corresponding to the plateau at 1.6 V characteristic of a two-phase Li+ in-
tercalation mechanism, where the interface between two coexisting phases worsens the
conditions for Li+ diffusion. This was comparable to data from the literature [13,30–33].
GITT measurements revealed that the values of DLi+ in TNO-MA and TNO-C were one
order of magnitude higher than that in TNO and confirmed that the chemical diffusion
coefficient of Li+ during the delithiation was higher than that during lithiation at high
lithium concentration.
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3. Materials and Methods

TiNb2O7 was prepared by solid-state synthesis using preliminary mechanical activa-
tion. Stoichiometric amounts of TiO2 anatase (Sigma Aldrich, St. Louis, MO, USA, 99.8%)
and Nb2O5 (Reachim, Russia, 99.9%) were mechanically activated using a high-energy
AGO-2 planetary mill with stainless steel jars and balls at 900 rpm for 5 min. The ball-to-
powder ratio was 40:1. The activated reagent mixture was pressed into pellets and then
annealed at 1000 ◦C for 4 h in air. One part of the as-prepared TNO was ball milled at
450 rpm for 3 min (hereafter TNO-MA). Another part of the TNO was ball milled with car-
bon black “P277” (from the Center for New Chemical Technologies SB RAS, Omsk, Russia)
in a ratio of 95:5 under the same conditions to prepare a carbon composite TiNb2O7/C
(hereafter TNO/C).

X-ray powder diffraction (XRD) patterns of the as-prepared samples were recorded
within the 2θ range of 5–80◦ with a 0.02◦ step and an exposure time of 0.2 s in one point using
a Bruker D8 Advance diffractometer with a high-rate LYNXEYE detector (Cu Kα radiation
(λ = 1.54181 Å)). The lattice parameters were refined by the Rietveld method using the
GSAS software package. The morphology of the samples was studied by scanning electron
microscopy (SEM) using a Hitachi TM-1000 scanning electron microscope. The particle size
distribution of the samples was measured using a MicroSizer 201 laser particle size analyzer.

For electrochemical testing, the composite cathodes were fabricated by mixing the
active material with carbon black and PVDF/NMP binder in a ratio of 75:20:5. The mixed
slurry was then casted on a copper foil using a doctor blade to obtain working electrodes.
The working electrodes were dried in a vacuum oven at 90 ◦C for 2 h. The loading density
of the active material was 2–3 mg cm−2; the electrode diameter was 10 mm. The Swagelok-
type cells were assembled in an argon-filled glove box (VBOX-SS 950, Vilitek, Moscow,
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Russia) with Li as an anode, 1 M LiPF6 (Sigma Aldrich, 99.99%) solution in ethylene
carbonate and dimethyl carbonate (Alfa Aesar, Haverhill, MA, USA, 99%) 1:1 by weight
as an electrolyte, and a glass fiber filter (Whatman, Maidstone, UK, Grade GF/C) as a
separator. The electrochemical performance of the samples was tested using a Biologic
BCS 805 battery cycling system in a galvanostatic mode at C/10–5C charge–discharge
rates within the voltage range of 1.0–3.0 V vs. Li+/Li at room temperature. Galvanostatic
intermittent titration technique (GITT) measurements were carried out at a C/10 rate by
applying a galvanostatic step for an interval of 20 min and a relaxation time of 40 min.
The electrochemical impedance spectra (EIS) were measured in electrochemical cells during
cycling at different states of charge–discharge in the frequency range 50 Hz–1 MHz at
room temperature. The conductivity of the as-prepared samples was measured in pellets
with Ag electrodes using a RLC meter E7-25 (Belarus) within the 50 Hz–1 MHz range at
room temperature.

4. Conclusions

It was shown that when using preliminary mechanical activation, TiNb2O7 anode ma-
terial with a Wadsley–Roth crystallographic shear structure could be successfully prepared
by solid-state synthesis at a temperature of 1000 ◦C and within a short calcination time
(4 h), both of which were lower than are usually used in conventional ceramic synthesis
(~1200 ◦C and ~20 h, respectively). Ball milling of the final product with and without car-
bon black led to a decrease in particle size and a narrowing of granulometric composition.
In situ EIS measurements revealed that the resistance varied from the highest at the end
of discharge to the lowest when charging. It also increased with a decrease in low cutoff
to 0.1 V because of the interaction of TNO with the electrolyte and the formation of SEI.
The lithium diffusion coefficients determined by GITT in the milled samples were an order
of magnitude higher than that for the pristine sample. It was shown that the enhanced
electrochemical performance of the carbon composite TiNb2O7/C (reversible capacity of
250 mAh g−1 at C/10 with Coulomb efficiency of ~99%) was associated with improved
conductivity due to the formation of the conductive carbon matrix and uniform distribution
of submicron particles by size.
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