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Abstract: This paper presents and parameterizes an equivalent circuit model of an all-solid-state
lithium-sulfur battery cell, filling a gap in the literature associated with low computational intensity
models suitable for embedded battery management applications. The paper addresses this gap by
parameterizing a three-state equivalent circuit model using experimental pulse power characterization
data from a laboratory-fabricated lithium-sulfur cell. The cell is mechanically loaded during electrical
cycling to achieve maximum ionic conductivity and consistent capacity. A nested combination of
linear and nonlinear least squares regression is used to estimate the model parameters. The model
captures slow cycling and fast pulse charge/discharge dynamics within 34 mV RMS error. The series
resistance changes significantly at high/low states of charge and low C-rates. A sensitivity analysis
determines that accurately modeling the dependence of resistance on C-rate and state of charge is
important for model fidelity.

Keywords: equivalent circuit; solid state; lithium-sulfur

1. Introduction

Lithium-Sulfur (Li-S) batteries have the potential for five times higher specific ca-
pacity/energy densities relative to current commercially available lithium-ion cells with
theoretical values of 1675 mAh/g and 2600 Wh/kg. Experimental testing of liquid and
solid-state cells demonstrated energy densities of more than 1800 Wh/kg [1–4]. Sulfur is
the 10th most abundant element on earth [5], making it an inexpensive alternative to nickel,
magnesium, aluminum, and cobalt used in current lithium-ion cells. Sulfur is also a good
insulator, providing intrinsic safety mechanisms [6,7]. However, the Li-S cathode under-
goes several molecular and phase changes [7] and experiences an 80% change in volume
when cycled [8] introducing cathode pulverization as a significant degradation mechanism.

Solid-state Li-S cells do not include flammable liquid electrolytes so they are safer than
liquid electrolyte cells. Moreover, solid electrolytes inhibit lithium dendrite penetration and
eliminate the polysulfide shuttling effect [9–13]. Solid-state Li-S cathodes and separators
present a promising pairing with pure solid lithium metal anodes, further increasing
theoretical cell energy density.

The main goal of this work is to develop a low-order, experimentally parameterized
dynamic model that can accurately predict the dynamic response of solid-state Li-S batteries.
This will enable the development and optimization of battery management systems (BMS)
functionalities for this chemistry, including state of charge (SOC) estimation, state of health
(SOH) estimation, model-based battery pack balancing, optimal charging, optimal pack
power/energy management, fault detection/diagnosis, and fault-tolerant control.

The Li-S battery modeling literature focuses primarily on liquid electrolyte Li-S cells.
Physics-based liquid electrolyte models [14–16] capture the oxidation-reduction reaction,
diffusion, precipitation, and self-discharge dynamics to various degrees of complexity
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ranging from one-dimensional to full electrochemical characterizations. These models
often result in a large number of coupled partial differential algebraic Equations (PDAEs).
They achieve high levels of fidelity in describing the underlying battery physics, often at
the expense of greater complexity and computational cost [17]. Zero-dimensional physics-
based models, in contrast, use the laws of electrochemistry to model the underlying battery
reactions while neglecting the diffusion of species in Li-S battery cells. These simplifications
result in lower-order models, fewer parameters to identify, and reduced computational
complexity [18,19]. Finally, equivalent circuit models (ECMs) often offer an acceptable
trade-off between fidelity and complexity and can be well-suited for real-time execution to
support BMS functions. There is significant work in the literature on developing ECMs for
liquid electrolyte Li-S cells using electrochemical impedance spectroscopy (EIS), the gal-
vanostatic intermittent titration test (GITT), and the hybrid pulse power characterization
test (HPPC) [20–26].

Physics-based solid-state models of non Li-S cells focus mainly on characterizing
Lithium Cobalt Oxide (LCO) cathodes [27–31]. The literature also presents a few studies
on the ECM and/or transmission line modeling of solid-state Li-S cells, using EIS for cell
characterization [32–34].

In the literature, various techniques are used to parameterize ECMs of liquid electrolyte
Li-S cells. These models result in a root mean square (RMS) voltage error of 32 mV,
sum-square error of 23 mV, and average error of 20 mV [20,24,35]. This work will show
a modeling and parameterization technique that results in less than 10mV RMS error.
In addition to reduced modeling error, the novelty of this paper lies in its focus on fitting
an equivalent circuit model to time-domain solid-state Li-S battery cycling data at multiple
time scales Specifically, 10 mm single-layer Li-S coin cells were fabricated and pulse power
tested to enable system identification of an ECM. The anode material is a lithium-indium
alloy, selected because of its potential to reduce lithium dendrite growth and improve
Coulombic efficiency [36–41]. These cells were cycled using a modified form of HPPC,
and an equivalent circuit model was fit to the resulting data, for both slow cycling and fast
pulse data. Furthermore, the sensitivity of the model fidelity to the number of parameters
used was examined.

2. Cell Fabrication

Figure 1 shows the configuration of the solid-state Li-S cell used for testing. The cell
consists of two stainless steel rod current collectors, a lithium-indium anode, solid elec-
trolyte membrane, and sulfur composite cathode. The cell is housed in a commercial
split cell holder (MTI corporation, 10 mm diameter) that is placed in a screw press to
mechanically apply pressure.

2.1. Preparation of Solid Electrolytes

Li2S (99.98%) and P2S5 (99%) purchased from Sigma-Aldrich were used as precursors.
75Li2S-25P2S5 (LPS) solid electrolyte was prepared following a previously reported method
employing mechanical ball-milling [2].

2.2. Preparation of Sulfur Cathode Composite

Sulfur and conductive carbon (Ketjenblack EC-600 JD, (KB), Nouryon) were mixed
using an agate mortar and pestle at a weight ratio of 50:20. The mixture was then heated
at 160 ◦C for 6 h in a sealed glass container. Finally, the obtained sulfur-carbon compos-
ite powders were mixed with LPS at a weight ratio of 70:30 by mechanical ball milling
(Planetary Micro Mill PULVERISETTE 7, FRITSCH) for 6 h at 300 RPM.

Note, Li6PS5Cl (LPSCl, ∼4 mS cm−1 at room temperature) possesses higher ionic
conductivity than 75Li2S-25P2S5 (LPS, ∼0.3 mS cm−1 at room temperature). Leading to
the use of LPSCl for fabricating the membrane (solid electrolyte), and employment of LPS
solid electrolyte in the cathode.
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Figure 1. Mechanical screw press with commercial split cell housing.

2.3. Solid-State Li-S Cell Fabrication

To prepare solid-state Li-S cells, first, 60 mg Li6PS5Cl (LPSCl, MSE Supplies) was
weighed and pressed at 1 ton for 1 min in a 10 mm diameter die to form a pellet. Next,
4∼5 mg of sulfur cathode composite cathode powders (2∼2.5 mg sulfur cm−2) were pressed
onto one side of the pellet at 3.5 tons for 3 min. Then, ∼3 mg lithium (Lithium Foil, China
Energy Lithium Co., Ltd.) and indium alloy foil (0.127 mm, 99.99%, Indium foil, Sigma-
Aldrich) in a 70:30 ratio was pressed onto the other side of the LPSCl pellet at 0.5 ton for
1 min. Finally, the fabricated Li-S battery pellet was loaded into the split cell.

3. Cell Characterization

Multiple Li-S cells were fabricated and characterized experimentally starting at begin-
ning of life . The modeling and parameterization results described in this paper focus on a
representative cell from this fabrication and testing work. Note, cells and their fabrication
methods are similar to the previously referenced work including a scanning electron mi-
croscope (SEM) analysis of the cathode and demonstrating a capacity retention of 91.9%
after 100 cycles [2]. The cell was mechanically and electrically loaded over a fifty-two-hour
period in a fixed volume press while current and voltage were recorded. Initial pressure
was set by adjusting a screw press. The split cell enclosure was constrained radially by
its radially-stiff and non-conductive die sleeve, in turn, radial force resulted in uniform
cell pressure. The screw press was locked during testing, resulting in a constant volume
experiment with the cell pressure changing as the electrodes expanded and contracted
during battery cycling. When Li-S cathodes are unconstrained, they experience sizeable
volumetric expansion during discharge [42]. In this constrained configuration, internal
pressure changed significantly as a function of battery SOC [43]. After setting the initial
volume and associated force/pressure (20 MPa), the cell was allowed to rest for 4 h in an
open circuit configuration.

Figure 2 shows the testing data set, with the current loading and cell voltage response.
Following a profile similar to the Hybrid Pulse Power Characterization Test [44] the cell
was cycled using an ARBIN test machine at a (+/−) 0.1 C-rate (where, 1 C = 1675 mAh/g)
in a 60 ◦C environment. This cycle was repeated 3 times and then immediately followed
by a series of higher C-rate pulse sets designed to capture the voltage response of the cell
under its full range of power capability. The 0.1 C-rate loading captured slower dynamics,
including ionic conductivity and diffusion. Then, higher C-rate loading started with a
discharge pulse, rest, and then a charge pulse of the same C-rate. This was repeated with 0.5,
1, 3, and 5 C rate pulses with short rest periods in between. Finally, a 0.1 C rate discharge
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and 1-h rest completed the pulse set to lower the initial SOC for the next pulse set. This
pattern started with a fully charged cell and was repeated at approximately every 5% SOC
until the cell was depleted.

Figure 2. Data set showing current and voltage during both low (0.1) and high (0.5, 1, 3 and 5)
C-rate loading: (a) Current input, (b) High C-rate current input, (c) Voltage response, (d) High C-rate
voltage response.

4. Equivalent Circuit Model

Figure 3 shows the proposed equivalent circuit model for the Li-S cell. The model
consists of a nonlinear relationship between open-circuit potential and SOC, in series with
an Ohmic resistor plus multiple (two shown in Figure 3) linear RC pairs. Thus, the equiv-
alent circuit captures the open circuit, series resistance and transient behavior of the cell.
The governing equations are:

ẋ =
1
Q

u,

ẋi = −
1
τi

xi + u,

y = OCV(x) +
p

∑
i=1

1
Ci

xi + Ro(x, u)

(1)

where t denotes time, u(t) is the battery current input (positive in the charge direction),
x(t) is the state of charge in the cell, p is the number of RC pairs, xi(t) represents the charge
stored in each capacitor Ci, Q is the total capacity of the cell, and τi are the time constants
for the parallel RC circuits (where τi = RiCi). The output y(t) is the terminal voltage of the
cell where OCV(x) and R0(x, u) are OCV and series resistance, respectively. In addition,
the measured (or commanded) input current is assumed to be equal to the true current,
u(t), plus an unknown constant measurement bias, b.

The goal of the paper is to estimate the charge capacity Q, time constants τi, capaci-
tances Ci, OCV-SOC curve, resistance Ro(x, u), initial SOC, and bias b in the experimental
measurement of input current, u(t).
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Figure 3. Equivalent circuit model with two RC pairs.

The fact that the above model’s differential (i.e., state) equations are linear makes it
possible to solve for the output variable, y(t), analytically. This, in turn, has the potential
to simplify the process of identifying the model’s parameters. Specifically, one can use
integration with respect to time plus convolution integrals to solve for x(t) and xi(t),
respectively, as shown below:

y(t) = OCV
[

x(0) +
1
Q

∫ t

0
ũ(τ)dτ

]
+

p

∑
i=1

1
Ci

[
e−

1
τi

txi(0) +
∫ t

0
ũ(τ)e−

1
τi
(t−τ)dτ

]
+Ro

[
x(0) +

1
Q

∫ t

0
ũ(τ)ũ(t)dτ

] (2)

where ũ(t) is equal to the measured input current minus an estimate of the bias, b, and is
assumed to be an accurate estimate of the true current u(t).

The remainder of this section approximates both the battery cell’s open-circuit voltage
and series resistance Ro as piecewise-linear functions of SOC, and u. This approximation
can be written as follows:

OCV(x(t)) =
n

∑
k=1

OCV′kzk(x(t))

R(x(t)) =
n

∑
k=1

R′kzk(x(t))
(3)

where OCV′k and R′k are the values of OCV(x(t)) and R(x(t)) at specific values of SOC used
for linear interpolation, and the family of functions zk(x(t)) enables interpolation between
these values. In the remainder of this section, these functions will be used specifically for
linear interpolation in terms of SOC, as illustrated in Figure 4 and Equation (4).

Figure 4. Linear interpolation functions zk(x) for n = 3.
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zk(x) =



0 x < SOCk−1

x− SOCk−1
SOCk − SOCk−1

SOCk−1 ≤ x ≤ SOCk

SOCk+1 − x
SOCk+1 − SOCk

SOCk ≤ x ≤ SOCk+1

0 x > SOCk+1

(4)

Given the above definitions, the model’s output equation becomes:

y(t) =
n

∑
k=1

OCV′kzk(x(t))

+
p

∑
i=1

1
Ci

[
e−

1
τi

txi(0) +
∫ t

0
ũ(τ)e−

1
τi
(t−τ)dτ

]

+

[
n

∑
k=1

R′kzk(x(t))

]
ũ(t)

(5)

5. Model Parameterization

The structure of Equation (5) makes it possible to estimate the model parameters
using a nested linear/nonlinear approach. A linear regression inner loop simplifies model
parameterization by reducing the dimensionality of the nonlinear regression outer loop.
Linear regression estimates parameters that appear linearly in the output equation, thereby
reducing overall computational complexity.

Two different variants of this nested approach were employed: a variant based on
Equation (5) and a variant where the series cell resistance is approximated as a function of
input current, as opposed to SOC, as shown in the output equation below:

y(t) =
n

∑
k=1

OCV′kzk(x(t))

+
p

∑
i=1

1
Ci

[
e−

1
τi

txi(0) +
∫ t

0
ũ(τ)e−

1
τi
(t−τ)dτ

]

+

[
n

∑
k=1

R∗k z′k(ũ(t))

]
ũ(t)

(6)

The battery cell’s series resistance can, in general, be a function of both SOC and input
current. However, each variant of the nested optimization approach captures dependence
on either SOC or input current, for simplicity. In the above output equation, the functions
z′k are interpolation functions used for computing overall resistance based on the input
current ũ(t), and R∗k are the coefficients associated with interpolation.

5.1. Outer Loop: Nonlinear Regression

The outer regression loop estimates the current bias, b, the RC pair time constants, τi,
and the RC pair initial conditions, xi(0). Note that because the time constants, τi, do not ap-
pear linearly in Equation (5), they cannot be estimated using linear regression. Constrained
nonlinear particle swarm optimization is used in the outer loop for nonlinear regression,
where the optimization objective is to minimize the sum of the voltage prediction error
squared over the time duration of interest. Solving this nonlinear least-squares problem
uses estimates of the remaining battery model parameters from the inner loop algorithm.

In transitioning between the outer and inner loop optimization routines, we make the
simplifying assumption that the battery cycle used for parameter estimation covers the full
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range of battery SOC. This makes it possible to determine the values of initial SOC, SOCo,
and the charge capacity, Q, such that SOC is actively bounded between 0 and 100% during
the course of the test cycle, while this step is not strictly required by the nested optimization
approach, it is consistent with the broad range of SOC values visited during this article’s
battery cycling. Additionally, this approach has the benefit of eliminating the need for
optimally estimating SOCo and Q. The approach relies on pre-computing the integral of
the current measurement versus time, starting from a zero initial condition, as follows:

q(t) =
∫ t

0
(u(τ) + b)dτ, (7)

where the expression u(τ) + b represents the measured battery current, including the
current bias, b. Battery charge capacity, Q, and battery SOC can be computed as follows:

Q = max(q(t))−min(q(t))x(t) =
q(t)−min(q(t))

Q
(8)

5.2. Inner Loop: Linear Regression

The output voltage in Equation (5) is linear in all the model parameters that are
not included in outer loop optimization. Therefore, this output can be expressed as
y = Φ~θ, where the vector of remaining unknown parameters, ~θ, includes OCV′i , 1/Ci,
and R′i. The vector ~θ can then be estimated using the standard linear least squares for-

mula, ~̂θ = [[Φ]T [Φ]]−1[Φ]T~y . To apply this formula, one needs to construct the matrix,
Φ, of regressors (Φl for low and Φh for high C-rate. Each column of this matrix will
contain a history of the regressor associated with the corresponding unknown parameter.
For instance:

• The regressor associated with OCV′k is zk(x(t)), evaluated at every sampling time.

• The regressor associated with 1/Ci is e−
1
τi

txi(0) +
∫ t

0 ũ(τ)e−
1
τi
(t−τ)dτ, evaluated at

every sampling time.
• The regressor associated with R′k is zk(x(t))ũ(t), evaluated at every sampling time,

for the variant of the estimation algorithm where battery series resistance is assumed
to be a function of SOC.

• The regressor associated with R∗k is z′k(x(t))ũ(t), evaluated at every sampling time,
for the variant of the estimation algorithm where battery series resistance is assumed
to be a function of input current.

6. Parameterization Results

The above, nested regression procedure, was used for fitting the proposed equivalent
circuit model to both the slow and fast cycling datasets. Significant differences in series
battery resistance between these two datasets precluded the accurate fitting of a single
ECM to both datasets simultaneously. This section, therefore, focuses on fitting the ECM
to each dataset independently. Series battery resistance is approximated as a function of
SOC for the slow cycling dataset and as an SOC-independent function of input current
for the fast cycling dataset. This is consistent with the degree to which the slow cycling
dataset covered a broad SOC range at one charge/discharge C-rate, while the fast cycling
data included multiple C-rates.

Figure 5 shows the fitted versus measured battery voltage profiles for both the slow
cycling and fast pulse portions of the overall battery test. The fit is quite accurate in both
cases. For instance, the root mean square battery voltage prediction errors are 34.2 mV and
11.5 mV during the slow cycling and fast pulse portions of the overall battery experiment,
respectively. This suggests that the use of a simple ECM for fitting the dynamics of the
all-solid Li-S cell described in this work is reasonable, at least for the range of operating
conditions in which the ECM was parameterized.
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The accuracy with which the proposed ECM fits the measured voltage data is partly
a reflection of the accuracy of the model’s parameters, including the parameterization of
both OCV and Ro. Figure 6 compares the model’s estimate of OCV vs. SOC, obtained using
nested regression for the slow cycling data, to the average of the battery terminal voltages
corresponding to 0.1 C charge and discharge, respectively. Good accuracy is achieved
in fitting OCV vs. SOC, highlighting the effectiveness of the nested parameterization
approach. Figure 6 also plots the estimated battery series resistance, Ro, versus SOC for
the slow cycling tests. This estimate is compared to an empirical approximation of R0
computed by subtracting battery OCV at every moment in time from terminal voltage,
then dividing the resulting voltage difference by the input current. Again, a good match is
obtained between the empirical approximation of series resistance versus the optimized
estimate of this resistance, at various SOC values. Finally, Figure 7 shows an estimate for
Ro versus u(t) in terms of cell c-rate for the fast pulse tests. This estimate of Ro versus
C-rate provides an attractive level of accuracy in capturing fast cycling data, with an RMS
voltage prediction error of 11.5 mV. However, there is a strong discrepancy between the
range of values of Ro estimated for slow cycling versus fast pulse data, with much higher
series resistance values seen in association with slow cycling.

Figure 5. Low and high C-rate measured vs. modeled data: (a) Low C-rate Voltage, (b) High C-rate
Voltage, (c) Low C-rate Current, (d) High C-rate Current.

Figure 6. Measured and estimated OCV (a) and ESR (b) vs. SOC at 0.1 C-rate.
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The fact that the estimated series resistance, Ro, is much larger for slow cycling
warrants investigation in future research and its impact can be seen in the cycling his-
tory plot in Figure 8. Three large loops are seen in this plot, where measured battery
voltage during charge is substantially different compared to discharge, even though the
slow charge/discharge currents are small in magnitude. Superimposed on the same plot,
the discrepancies between battery voltage during charge versus discharge for fast pulses
consistently points to much smaller series resistance values, regardless of SOC. This sug-
gests that battery polarization effects are strong functions of the type, magnitude, and/or
duration of cycling used: an interesting open topic for future investigation.

Figure 7. R0 as a function of u(t)/C-Rate.

Figure 8. Voltage vs. SOC for the full data set.

6.1. Sensitivity Analysis

The accuracy of the proposed battery model depends on the model’s complexity.
This depends, in turn, on the settings of the model, such as the number of RC pairs
modeled and the number of discretizations used for representing OCV and Ro in terms of
SOC and/or input current. A full factorial sensitivity analysis was performed covering
a range of breakpoints for SOC and R0 mapping as well as the number of RC pairs in
the ECM. The objective is to minimize model complexity while maintaining reasonable
accuracy. Table 1 shows a subset of the results from this sensitivity analysis, focusing on
the key insights generated by this analysis. The RMS voltage prediction errors in this table
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pertain to the fast cycling test, with similar insights obtained for the slow cycling data.
The reduction in RMS voltage error by varying the number of SOC breakpoints and RC
pairs was relatively low but followed the expected profile, with increasing complexity
resulting in a decrease in modeling error. However, the mapping R0 as a function of u(t) or
c-rate proved to be most beneficial, with a higher number of discretizations resulting in
roughly a 50% reduction in RMS voltage prediction error. Table 1 lists a summary of RMS
voltage errors for individual parameter studies, holding all else constant.

Table 1. Sensitivity Analysis Results.

Avg. Sensitivity
[mV/Order]

RC Pairs 1 2 3 4 0.375RMS Voltage Error [mV] 12.40 11.50 11.40 10.90
R0(u) Parameters 1 3 5 7 1.25RMS Voltage Error [mV] 18.73 15.12 11.47 9.98
SOC Breakpoints 2 5 10 15 0.158RMS Voltage Error [mV] 11.55 11.47 9.716 9.498

6.2. Model Parameters

In addition to the previously presented SOC and OCV maps, Table 2 details the
estimated ECM parameters. They represent a 2 RC pair ECM with 5 breakpoints for both
R0(u(t)) and SOC. Where R1 and C1 represent the faster and R2 and C2 the slower time
constant of the cells’ response. The value of b is an estimate of current sensor bias and Q
the charge energy of the cell.

Table 2. Estimated ECM Parameters.

R1 [Ohms] R2 [Ohms] C1 [F] C2 [F] b [mA] Q [mAh]

8.760 194.690 0.372 1.658 −6.54× 10−7 4.942

7. Summary and Conclusions

Li-S is a promising conversion-type cathode that offers significant potential energy
density benefits compared to more traditional lithium-ion batteries. As with any new
chemistry, the solid-state Li-S chemistry is better understood through the development of a
simple ECM. All-solid-state Li-S cells were fabricated, mechanically loaded, and electrically
cycled in support of the characterization and system identification of a dual-polarization
ECM. Parameters were measured and estimated from two data sets, low rate constant
C-rate cycles and pulse sets. The method of using least square error and a nested linear
regression with non-linear particle swarm optimization was able to fit measured data well
and provided robust parameter estimates.

Author Contributions: Cell fabrication D.W. (Daiwei Wang) and D.W. (Donghai Wang); Conceptual-
ization,methodology, software, validation, formal analysis, investigation, data curation, T.C., Z.N.,
C.R. and H.K.F.; writing—original draft preparation, T.C. and Z.N.; writing—review and editing,
D.W. (Daiwei Wang), D.W. (Donghai Wang), C.R. and H.K.F. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data sets analyzed during this study are archived and publicly avail-
able at the following link: http://personal.psu.edu/tdc142/files/LiS-SN005-RAW.mat.

Conflicts of Interest: The authors declare no conflict of interest.

http://personal.psu.edu/tdc142/files/LiS-SN005-RAW.mat


Batteries 2022, 8, 269 11 of 12

References
1. Yan, J.; Liu, X.; Li, B. Capacity Fade Analysis of Sulfur Cathodes in Lithium–Sulfur Batteries. Adv. Sci. 2016, 3, 1600101. [CrossRef]

[PubMed]
2. Alzahrani, A.S.; Otaki, M.; Wang, D.; Gao, Y.; Arthur, T.S.; Liu, S.; Wang, D. Confining Sulfur in Porous Carbon by Vapor

Deposition to Achieve High-Performance Cathode for All-Solid-State Lithium–Sulfur Batteries. ACS Energy Lett. 2021, 6, 413–418.
[CrossRef]

3. Zheng, J.; Lv, D.; Gu, M.; Wang, C.; Zhang, J.G.; Liu, J.; Xiao, J. How to Obtain Reproducible Results for Lithium Sulfur Batteries?
J. Electrochem. Soc. 2013, 160, A2288–A2292. [CrossRef]

4. Zhang, Y.; Zhang, X.; Silva, S.R.P.; Ding, B.; Zhang, P.; Shao, G. Lithium–Sulfur Batteries Meet Electrospinning: Recent Advances
and the Key Parameters for High Gravimetric and Volume Energy Density. Adv. Sci. 2022, 9, 2103879. [CrossRef] [PubMed]

5. Thomas Jefferson National Accelerator Facility—Office of Science Education The Element Sulfur, 2022. Available online:
https://education.jlab.org/itselemental/ele016.html (accessed on 6 June 2022).

6. Ohno, S.; Zeier, W.G. Toward Practical Solid-State Lithium–Sulfur Batteries: Challenges and Perspectives. Acc. Mater. Res. 2021,
2, 869–880. [CrossRef]

7. Ji, X.; Nazar, L.F. Advances in Li–S batteries. J. Mater. Chem. 2010, 20, 9821–9826. [CrossRef]
8. Ohno, S.; Rosenbach, C.; Dewald, G.F.; Janek, J.; Zeier, W.G. Linking Solid Electrolyte Degradation to Charge Carrier Transport in

the Thiophosphate-Based Composite Cathode toward Solid-State Lithium-Sulfur Batteries. Adv. Funct. Mater. 2021, 31, 2010620.
[CrossRef]

9. Mikhaylik, Y.V.; Akridge, J.R. Polysulfide Shuttle Study in the Li/S Battery System. J. Electrochem. Soc. 2004, 151, A1969. [CrossRef]
10. Busche, M.R.; Adelhelm, P.; Sommer, H.; Schneider, H.; Leitner, K.; Janek, J. Systematical electrochemical study on the parasitic

shuttle-effect in lithium-sulfur-cells at different temperatures and different rates. J. Power Sources 2014, 259, 289–299. [CrossRef]
11. Zhang, S.S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 2013,

231, 153–162. [CrossRef]
12. Li, S.; Zhang, W.; Zheng, J.; Lv, M.; Song, H.; Du, L. Inhibition of Polysulfide Shuttles in Li–S Batteries: Modified Separators and

Solid-State Electrolytes. Adv. Energy Mater. 2021, 11, 2000779. [CrossRef]
13. Zhang, Y.; Zhang, P.; Zhang, S.; Wang, Z.; Li, N.; Silva, S.R.P.; Shao, G. A flexible metallic TiC nanofiber/vertical graphene 1D/2D

heterostructured as active electrocatalyst for advanced Li–S batteries. InfoMat 2021, 3, 790–803. [CrossRef]
14. Abdulkadiroglu, B.; Bektas, H.; Eroglu, D. How to Model the Cathode Area in Lithium-Sulfur Batteries? ChemElectroChem 2022,

9, e202101553. [CrossRef]
15. Kumaresan, K.; Mikhaylik, Y.; White, R.E. A Mathematical Model for a Lithium–Sulfur Cell. J. Electrochem. Soc. 2008, 155, A576.

[CrossRef]
16. Brieske, D.M.; Hassan, A.; Warnecke, A.; Sauer, D.U. Modeling of the temporal evolution of polysulfide chains within the

lithium-sulfur battery. Energy Storage Mater. 2022, 47, 249–261. [CrossRef]
17. Danner, T.; Latz, A. On the influence of nucleation and growth of S8 and Li2S in lithium-sulfur batteries. Electrochim. Acta 2019,

322, 134719. [CrossRef]
18. Marinescu, M.; Zhang, T.; Offer, G.J. A zero dimensional model of lithium–sulfur batteries during charge and discharge. Phys.

Chem. Chem. Phys. 2016, 18, 584–593. [CrossRef] [PubMed]
19. Xu, C.; Cleary, T.; Li, G.; Wang, D.; Fathy, H. Parameter Identification and Sensitivity Analysis for Zero-Dimensional Physics-Based

Lithium-Sulfur Battery Models. ASME Lett. Dyn. Syst. Control 2021, 1, 041001. [CrossRef]
20. Knap, V.; Stroe, D.I.; Teodorescu, R.; Swierczynski, M.; Stanciu, T. Comparison of parametrization techniques for an electrical

circuit model of Lithium-Sulfur batteries. In Proceedings of the 2015 IEEE 13th International Conference on Industrial Informatics
(INDIN), Cambridge, UK, 22–24 July 2015; pp. 1278–1283. [CrossRef]

21. Deng, Z.; Zhang, Z.; Lai, Y.; Liu, J.; Li, J.; Liu, Y. Electrochemical Impedance Spectroscopy Study of a Lithium/Sulfur Battery:
Modeling and Analysis of Capacity Fading. J. Electrochem. Soc. 2013, 160, 553–558. [CrossRef]

22. Cañas, N.A.; Hirose, K.; Pascucci, B.; Wagner, N.; Friedrich, K.A.; Hiesgen, R. Investigations of lithium–sulfur batteries using
electrochemical impedance spectroscopy. Electrochim. Acta 2013, 97, 42–51. [CrossRef]

23. Jiang, J.; Liang, Y.; Ju, Q.; Zhang, L.; Zhang, W.; Zhang, C. An Equivalent Circuit Model for Lithium-sulfur Batteries. Energy
Procedia 2017, 105, 3533–3538. [CrossRef]

24. Fotouhi, A.; Auger, D.J.; Propp, K.; Longo, S.; Purkayastha, R.; O’Neill, L.; Waluś, S. Lithium–Sulfur Cell Equivalent Circuit
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