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Abstract: Sodium–metal chloride batteries are suitable alternatives in battery energy storage systems
(BESSs), since they are widely known as a type of high-safety battery. To accurately analyze the cath-
ode microstructure of sodium–metal chloride batteries, in this study, we demonstrate the improved
tubular-type simple test cell. This improved tubular-type simple test cell was supplemented from the
setbacks of our previous test cell, such as a leak, Ni current collector wavering, and sodium wicking.
Through testing of the improved test cells, we focus on cathode microstructure analysis, owing to
the elimination of the external failure factors mentioned above. The group of improved test cells
have a lower capacity gap of 9.5% in the 1st cycle than the capacity gap of previous test cells (37.2%).
This result indicates the advancement of reproducibility. Moreover, the improved test cell has a long
life of approximately 7200 h by changing the previous test cell structure. In particular, it is expected
that this improved tubular simple test cell can advance the research of tubular-type sodium–metal
chloride batteries in a small and academic laboratory.

Keywords: energy storage systems; sodium–nickel chloride batteries; tubular-type cell; simple
test cell

1. Introduction

Secondary batteries are widely used in various forms, ranging from mobile devices to
electric cars and energy storage systems (ESSs). The increased usage of batteries provides
convenience in modern society, but the risk of battery explosion is also increased. In
particular, the explosion of a large ESS-scale battery is entirely different from that of a
small-sized battery. One of the prevention methods of battery explosion is the safety
design in a battery system that is actively studied presently [1–3]. However, in addition
to safety design, the selection of a safe battery, such as a sodium–metal chloride battery
(Na/MCl2 battery), is another excellent prevention method against battery explosion [4,5].
The Na/MCl2 battery has high energy efficiency, no sensitivity to the external environment
because it is operated at a high temperature of approximately 300 ◦C, and a perfectly
sealed cell structure. Furthermore, the crack recovery mechanism on the ceramic separator
surface in a Na/MCl2 battery is an exceptional advantage for safety, dissimilar to other
secondary batteries [6]. Despite these advantages, Na/MCl2 battery research is difficult in
a small and academic laboratory. In the cathode and anode, metal (Ni, Fe, among others),
NaCl, NaAlCl4, and Na are included, and all of these are highly sensitive in the general
atmosphere. Consequently, many types of exclusive equipment are necessary to assemble a
hermetically sealed cell.

To easily and accurately verify cathode microstructure behavior in the tube-type cell,
a simple test cell must be designed. Similar studies, such as planar-type simple test cell,
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were published, however, a simple test cell design for tubular-type Na/MCl2 battery was
not reported until now. In recent studies on tube-type cells, commercial Na/MCl2 batteries
were used instead of the test cells [7–12]. Contrastingly, a planar-type test cell was recently
published and actively applied in research [13–22]. However, a design of the cathode
microstructure of the planar-type cell is difficult to apply to a tube-type cell. Therefore, a
tube-type simple test cell has to be designed and developed to activate a tubular Na/MCl2
battery test in small and academic laboratory research.

2. Materials and Methods
2.1. Preparation of Cathode Materials

The cathode granule used in a Na/NiCl2 cell contained Ni (99.7%, 2.5 µm, standard
grade, Vale, Singapore) and NaCl (98%, Sigma Aldrich, Burlington, MA, USA) powders.
Ni and NaCl powders were mixed with low-energy ball milling without balls for 2 h. After
mixing, the Ni–NaCl granules were made by a roller compactor (Seong-jin machine Co.,
Gyeonggi-do, Korea). Moreover, in the cathode, the 2nd electrolyte (NaAlCl4) and sulfur
(reagent grade, —100-mech, Sigma Aldrich, Burlington, MA, USA) were added, and the
sulfur was used to remove an oxidation layer on the surface of the metal particles [23].
The 2nd electrolyte was synthesized using NaCl and AlCl3 (99.985%, Alfa Aesar, Ward
Hill, MA, USA) powders at 300 ◦C for 1 h. In the Na/(Ni, Fe)Cl2 cell, Ni and Fe (99.5%,
6.5 µm, BASF, Ludwigshafen, Germany) powders were mixed with a Turbula-type T2C
shaker mixer (Willy A. Bachofen AG, Uster, Switzerland) for 2 h to reinforce the connection
between the metal particles. Except for the Ni–Fe mixing process, all other preparation
steps are same as that of the Na/NiCl2 cell. The cathode materials were verified using a
scanning electron microscope (SEM, IT-300; JEOL Co., Tokyo, Japan) and X-ray diffraction
(XRD, D/Max-2500, Rigaku, Tokyo, Japan).

2.2. Design and Fabrication of the Tubular Type Simple Test Cell

Our simple test cell was developed continuously, and the design of the previous test
cell was mentioned before in our studies [24,25]. Figure 1a shows the previous test cell
structure that was used in our preceding research. Al foil and Ni foam were wrapped on the
BASE surface. It is difficult to control the winkles on the BASE surface in Al foil wrapping
since this process is performed by hand. These wrinkles could be the cause of sodium
wicking that is one of the problems in previous test cell. Inclusive of sodium wicking,
there were three specific problems in our previous test cell structure, with a leak and Ni
current collector wavering. Therefore, in this research, we focused on a supplementation of
previous test cell problems. As shown in Figures 1b and 2, the improved simple test cell
consists of β”-alumina solid electrolyte (BASE; Ionotec, Berkeley, UK), Ni current collector,
cell case, cathode, and Na metal in the anode. The outside surface of the BASE tube was
coated with carbon paste (Research Institute of Industrial Science and Technology (RIST),
Pohang-si, Korea) to improve the wettability of Na melt to the BASE surface [14]. The
C-coated BASE tube was heat-treated at 230 ◦C for 30 min to remove a polymer and water
contained in the carbon paste (Figure 1b). Ni current collector was settled in the BASE
tube and the inside of the BASE, the tube was filled with cathode granules and NaAlCl4.
The bottom of the Ni current collector had stands for keeping the position in middle of
the BASE tube. The melted sodium metal was filled in the Ni cell case before test learning.
At the end of filling additional Na metal in the Ni case (anode), the prepared BASE tube
was assembled in the Ni case. In our simple test cell, a Teflon cap and a hose clamp were
applied for closing the package instead of the hermetic seal in commercial cells. The Teflon
cap naturally closes the opening space due to expansion at an operation temperature of
300 ◦C. Moreover, Teflon is chemically stable on NaAlCl4.
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2.3. Electrochemical Test Setup

Previous test cells (PTC-1, 2, and 3) and improved test cells (ITC-1, 2, and 3) were
tested inside the air-filled glove box that had sustained oxygen and moisture concentration
of less than 1.0 ppm. The operation temperature was set up at 300 ◦C. These cells were
cycled using VMP3 (Bio-Logic SAS, Seyssinet-pariset, Grenoble, France) between 2.4 V
and 2.7 V, and the C-rates of previous test cells (PTC-1, 2, and 3) and improved test cells
(ITC-1, 2 and 3) were set to C/24 and C/8, respectively. In the cases of PTC-4 and ITC-4
cells, a few cycles were started for stabilization before the constant capacity test. At the end
of stabilization cycles, the charge process was started with a constant current method of
2.67 V, and then applied constant voltage method to the capacity of 200 mAh g−1. In
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contrast, the discharge process was conducted with only the constant current method set to
capacity of 200 mAh g−1 and no cut-off voltage set-up. A limit for operation time was not
set-up separately for PTC-4 and ITC-4 cells, however, ITC-4 cell was stopped due to the
black-out after operating for approximately 7200 h.

3. Results and Discussion

We divided two test groups into previous test cells (PTC-1, 2, 3, and 4) and improved
test cells (ITC-1, 2, 3, and 4). Condition details are noted in Table 1. Figure 3a,b show the
cathode microstructure in the Na/NiCl2 cell. In the case of Ni particles, the primary particle
size is approximately under 1 µm and they form a chain structure that has a thickness of
2.5 µm. NaCl particle size is 150–300 µm, which is significantly larger than Ni. Therefore,
Ni particles are located on the surface of the NaCl particle. Figure 3c,d indicate cathode
microstructure in Na/(Ni, Fe)Cl2 cells. The difference from the Na/NiCl2 cell is that Ni–Fe
composite is used for the cathode metal. As seen in Figure 3c,d, Fe particles are located
in the Ni network. The most important point in Ni–Fe composite is the selection of an
appropriate particle size. Therefore, Fe particles larger than Ni particles are selected to
obtain the effect of high connectivity as an electron path [24]. Figure 3e shows the XRD
pattern of raw powders and cathode materials in the two test groups. The cathode materials
are divided into charged state and discharged state. At the charged state in Na(Ni, Fe)Cl2
cell, the NiCl2 peak indicates low intensity compared to the FeCl2 peak, since most of Cl−

ions are almost reacted with Fe particles first. Ni particles are reacted with the residual Cl−

ions due to their higher electrochemical potential [24]. Therefore, it can be described that
the Ni–Fe composite cathode microstructure is made as we intended.

Table 1. Initial charge capacity of previous test cells and improved test cells, and maximum charge
capacity gap of each group.

Cell Name Cell Type Charge Capacity
(%, the 1st Cycle)

Maximum
Capacity Gap (%)

PTC-1

Na/NiCl2

Previous test cell
(Ni foil type)

87.3

37.2PTC-2 62.8

PTC-3 100

ITC-1 Improved test cell
(Ni case type)

93.6

9.5ITC-2 100

ITC-3 90.5
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Figure 3. Cathode microstructure analysis. (a,b) SEM image and EDS mapping data of cathode
material in Na/NiCl2 cell (PTC-1 to 3 and ITC-1 to 3); (c,d) SEM image and EDS mapping data of
cathode material in Na/(Ni, Fe)Cl2 cell. (PTC-4 and ITC-4); (e) X-ray diffraction (XRD) spectra of raw
powder and cathode materials in two test groups.
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Figure 4a,b show the voltage SOC profiles of the 1st cycle of previous test cells and
improved test cells. The cells of PTC-1, 2, and 3 have the same composition of cathode materials
as mentioned above, however, these cells have a large difference in the initial capacity of
approximately 37.2%. This is caused by issues in the previous test cell structure. First, a Ni rod
in the previous simple test cell was not fixed tightly except for the bottom side. The Ni rod could
crush the elaborately designed cathode structure. Second, the Teflon cap was simply located on
the top side. In this case, a seal of the cathode was not appropriate; therefore, a different amount
of NaAlCl4 was evaporated in each test. The quantity of evaporated NaAlCl4 is different in
each cell due to irregular closed levels. Hence, a large distribution of initial charge capacity was
obtained despite the same cathode composition in the previous test cell group. By contrast, as
shown in Figure 1, the structure of the improved test cell solves the problems of the previous
test cell. A Teflon cap was tightly fixed by a hose clamp and perfectly closed the entrance
of the cathode by using the characteristic that Teflon expands at an operation temperature of
300 ◦C. Moreover, a tightly fixed Teflon cap also held the Ni rod from wavering. Accordingly,
the cells of ITC-1, 2, and 3 have a narrower capacity gap of 9.5% than that of previous test
cells. As with the other group of previous test cells, all the improved test cells have the same
cathode composition and test conditions. This narrower capacity gap means that the effect of
test cell structure on the experimental result is reduced. Particularly, the electrochemical result
of cathode microstructure analysis is more accurate by reducing the influence of other factors.
PTC-1 to 3 and ITC-1 to 3 cells were tested under same electrochemical setup such as cut-off
voltage and current. Nonetheless, the charging start voltage in the improved test cell is over
2.4 V, higher than the charging start voltage in the previous test cell. This high charging start
voltage is due to the additional sodium metal in the anode Ni case. However, no problems have
occurred in our research up to now because, for a section to reach approximately 2.60 V, which
is the Ni charging voltage, is extremely minimal in terms of the whole charging reaction.
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Figure 4. Electrochemical properties of test cells. (a,b) Voltage charge capacity profile of previous
test cells and improved test cells for reproducibility analysis; (c,d) cycling performance of PTC-4
and ITC-4; (e) charge capacity ((n + 1)th cycle) divided by discharge capacity (nth cycle) profile;
(f) discharge capacity (nth cycle) divided by charge capacity (nth cycle) profile.

To precisely compare the previous test cell and improved test cell, a cycle life test
was conducted using two types of Na/(Ni, Fe)Cl2 batteries, as indicated in Figure 4c
and Table 2. In this test, a charge–discharge capacity was set up at 200 mAh g−1, and
the capacity was chosen because it is almost 80% of the 1st cycle charge capacity of the
PTC-4 and ITC-4 cells. The charge process applied a constant current method to the charge
capacity of 200 mAh g−1 and a cut-off voltage of 2.67 V. If the charge capacity at the cut-off
voltage of 2.67 V does not reach 200 mAh g−1, the constant current method is switched
to a constant voltage for attaining the charge capacity. In the discharge process, a test
condition of a constant current method to the discharge capacity of 200 mAh g−1 without
cut-off voltage is set-up. Figure 4c shows the cycling performance of previous test cells
and improved test cells. As mentioned above, the structural problems of previous test
cells indicate a poor cycle life. The capacity of the PTC-4 cell decreases from the 23rd
cycle and loses capacity maintenance. Capacity decrease can be caused by two points:
an electron path disconnection in the cathode microstructure or sodium wicking. The
disconnection problem can be detected from charge capacity divided by discharge capacity
profile (charge/discharge), as shown in Figure 4e. The charge/discharge profile shows
a ratio of (n + 1)th cycle charge capacity compared to the (n)th cycle discharge capacity.
During a discharge process, NiCl2 and FeCl2 layers on the cathode metal particles are
removed. However, when the cell has the poor microstructure of low-connectivity cathode,
an electron path is also disconnected, along with the removal of metal chloride layers [25].
This disconnection occurs in isolated Ni or Fe particles that are unable to participate in the
charge–discharge reaction. Namely, the charge/discharge profile indicates the stability of
the cathode microstructure. A discharge/charge profile is also used to verify the test cell
problem under the limited condition using our test cell in a sodium–metal chloride cell. The
discharge/charge profile shows the ratio of the (n)th cycle discharge capacity compared
with the (n)th cycle charge capacity. During a charge process in the sodium–metal chloride
cell, NiCl2 and FeCl2 are formed on the Ni and Fe surface in the cathode, and sodium ions
from NaCl migrate to the anode and settles. At this time, the problem of our previous test
cell appears, whereby sodium metal is trapped on the BASE surface of the anode side, as
shown in Figure 5c. The BASE surface of the anode side in our previous test cell is wrapped
with an Al foil, and sodium wicking may occur due to the capillary effect in the vertical
wrinkles of the Al foil. Trapped sodium metal on the BASE surface causes a loss in total
capacity, because the residual Na metal cannot return to the cathode during the discharge
reaction. In an ideal situation, there should be no residual sodium metal on the BASE
surface and Al foil. (Figure 5a,b).
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Table 2. Comparison of cycle life between PTC-4 and ITC-4.

Cell Name Cell Type Maintained Range of 200 mAh g−1

PTC-4
Na/(Ni, Fe)Cl2

Previous test cell To 23 cycles
ITC-4 Improved test cell To 554 cycles
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Figure 5. Photos of the previous test cell after cycling test, (a,b) no residual sodium metal on the
BASE surface and Al foil; (c) the residual sodium metal (red circle) on the BASE surface after cycling
test due to the capillary effect in the vertical wrinkles of the Al foil.

As seen in Figure 4e, charge/discharge profile of PTC-4 cell shows a value near 100%
or over 100% in whole cycles. According to the above two cases, this charge/discharge
profile of the PTC-4 cell suggests that the cathode microstructure of the PTC-4 cell is
well-maintained during cycle life test. To be precise, the sodium wicking problem is
expected to be the most important of the two causes of capacity decrease in the PTC-4 cell.
However, the discharge/charge profile of the PTC-4 cell shows a value under 100% after
the 17th cycle. This value means that the residual sodium is constantly trapped with each
charge process. After the trapped sodium metal is clearly revealed, the charge–discharge
capacity of the PTC-4 cell gradually decreases from the target capacity of 200 mAh g−1.
Although the PTC-4 cell has a stable cathode microstructure, the cycle life test of the
PTC-4 cell fails due to the problems of the previous test cell structure. On the contrary,
the ITC-4 cell has a stable cathode microstructure, and also none of the problems of the
test cell structure. In the case of an improved test cell, an Ni case was applied with the
sodium reservoir that is an important part for cathode microstructure analysis, due to
the elimination of another failure case (trapped sodium) during a discharge reaction.
As seen in Figure 6, despite the ITC-4 cell having a simple test cell structure, this cell
was operated approximately 7200 h prior. This result shows that cycle life test is also
possible using the improved simple test cell when the cathode microstructure is stable.
By using the improved test cell in this study, it seems possible to actively develop cathode
microstructure for tubular-type Na/MCl2 batteries.
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4. Conclusions

We designed an improved simple tubular test cell to analyze the cathode microstruc-
ture of sodium–metal chloride batteries by improving our previous test cell. The previous
test cell has a low reproducibility and some problems with long duration cycle tests. The
low reproducibility is occasioned by an imperfectly sealed structure and non-fixed Ni
current collector that influences cathode materials directly. Moreover, residual sodium
appears on the BASE surface by wicking to a narrow vertical wrinkle of Al foil. The residual
sodium gradually increases with a repetitive charge–discharge process and causes a loss
in total capacity. On the contrary, the improved test cell eliminates the leak and Ni rod
(cathode current collector) wavering by using a Teflon cap and a hose clamp. Additionally,
an Ni case is applied to the improved test cell, and then additional sodium metal is added
in the Ni case to construct a sodium reservoir. By combining the improvements, factors
that could affect the cell performance, except for cathode microstructure, are removed.
The three improved cells obtain a capacity gap of 9.5%, and this value means that the
reproducibility is improved compared to the capacity gap of the three previous test cells
(37.2%). Furthermore, life cycle tests of the Na/(Ni, Fe)Cl2 battery successfully finish after
approximately 7200 h by using the improved test cell. Through the improvement of this
tubular test cell, it is expected that sodium–metal chloride batteries can be studied more
actively in a small and academic laboratory.
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