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Abstract: The Li-Ion battery state-of-charge estimation is an essential task in a continuous dynamic
automotive industry for large-scale and successful marketing of hybrid electric vehicles. Also, the
state-of-charge of any rechargeable battery, regardless of its chemistry, is an essential condition
parameter for battery management systems of hybrid electric vehicles. In this study, we share
from our accumulated experience in the control system applications field some preliminary results,
especially in modeling, control and state estimation techniques. We investigate the design and
effectiveness of two state-of-charge estimators, namely an extended Kalman filter and a proportional
integral observer, implemented in a real-time MATLAB environment for a particular Li-Ion battery.
Definitely, the aim of this work is to find the most suitable estimator in terms of estimation accuracy
and robustness to changes in initial conditions (i.e., the initial guess value of battery state-of-charge)
and changes in process and measurement noise levels. By a rigorous performance analysis of
MATLAB simulation results, the potential estimator choice is revealed. The performance comparison
can be done visually on similar graphs if the information gathered provides a good insight, otherwise,
it can be done statistically based on the calculus of statistic errors, in terms of root mean square error,
mean absolute error and mean square error.

Keywords: state-of-charge; state estimation; extended Kalman filter; PI observer state estimator;
hybrid electric vehicle; battery management system; Li-Ion battery; equivalent circuit model

1. Introduction

Nowadays, the most advanced battery technologies existing in electric and hybrid electric vehicles
(EVs/HEVs) from the automotive industry are the nickel-metal hydride (NiMH), lithium-ion (Li-Ion)
and nickel-cadmium (NiCad) batteries. However, the Li-Ion battery surpasses NiCad and NiMH
batteries, which are the two other equally strong players on the same market, due to its light weight,
high energy density, long life cycle, relatively low self-discharge rate and low memory effect, as is
mentioned also in [1–4]. Lithium-Ion batteries are used as energy storages in many electric devices,
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ranging from small battery packs used in cell phones or cameras to large battery systems for EVs or
temporary energy storages for photovoltaic systems. Li-Ion batteries are the most suitable existing
technology for EVs because they can output high energy and power per unit of battery mass, allowing
them to be lighter and smaller than other rechargeable batteries. These features also explain why Li-Ion
batteries are already integrated into cell phones, laptops, digital cameras/video cameras, and portable
audio/game players. Also, Li-Ion batteries have a large potential to further increase energy density by
using advanced anode and cathode materials [5]. Li-Ion batteries’ energy density is increasing rapidly.
However, increasing in energy and power density performance are not enough; other improvements
are required regarding the durability, safety and cost, as is mentioned in [5]. The Li-Ion batteries
in HEVs/EVs are required to have reliable durability for deep repeated charging and discharging
cycles in order to preserve longer life. During the deep cycles, the capacity of Li-Ion batteries decrease
rapidly, but EVs will be charged after the battery’s stored energy is almost depleted. The durability test
data obtained in all major Li-Ion HEVs/EVs battery development programs indicate that the battery
operating life is typically only 2–4 years at present. In addition, all Li-Ion EVs batteries exhibit various
degrees of sensitivity when subject to some of the abuse tests intended to simulate battery behavior
and safety under high mechanical, thermal or electrical stresses. Also, the power of Li-Ion batteries is
very sensitive to temperature variations, decreasing drastically in cold weather. Thus, they do not work
well in extreme temperatures, and to overcome this problem a cooling and heating system is required
to cool and to heat the Li-Ion batteries, hence, extending their life [5]. Related to safety, the Li-Ion
batteries are vulnerable to short-circuiting and overcharging compared to NiMH and NiCad batteries.
In the Li-Ion batteries during short circuits, “high electricity flows are created and the battery temperature
increases to several hundred degrees within seconds, heating up neighboring cells and resulting in an entire
battery combustion reaction”, as is stated in [5]. Furthermore, in [5] it is stated also that “when lithium
ion batteries are unintentionally overcharged, the chemical structure of the anode and cathode are destroyed
and some of the lithium ions form snowflake-shaped lithium metal deposits called “dendrites,” which can cause
the battery to short circuit or, in a worse-case scenario, explode and catch fire”. Additionally, the impurities
in the lithium metal can also contaminate the Li-Ion batteries and cause the formation of dendrites,
potentially causing short circuits and explosions. To prevent battery overcharging, Li-Ion batteries have
to be provided in packs with very accurate voltage control systems [5]. Li-Ion battery cells are relatively
maintenance-free, but they do require a battery management system (BMS) and ventilation for cooling
or liquid cooling, since high temperatures will degrade the batteries’ performance and life cycle.
Despite their higher power density and a long life cycle that is about 2.5 times compared to lead-acid
batteries, the Li-Ion batteries have other main drawbacks, namely their high cost, limited availability
for retail sales, more sensitivity to overcharging or over-discharging than any other chemistry, limited
laboratory testing and extrapolation regarding data for life cycle, usable energy and other performance
specs. Related to these aspects, we can underline the high Li-Ion batteries cost, almost four to eight
times greater than that of lead-acid and one to four times that of NiMH, as is mentioned also in [5], but
even with price drops, Li-Ion technology is still slow for most HEVs/EVs conversions. Fortunately,
the cost of Li-Ion batteries is “expected to decrease significantly because the batteries will be increasingly used
for many applications, such as uninterruptible power supply (UPS), forklifts, consumer electronics and backup
power supplies” as is stated in [5]. Thus, as the HEVs/EVs market grows and automotive industry
production “scales up, the manufacturers will be able to enjoy economies of scale” [5]. Moreover, another
essential aspect regarding the Li-Ion battery system is its high cell voltage related to high specific
energy that makes it possible to use a smaller number of cells per battery pack, and thus a reduced
cost and increased reliability. The basic requirements for all the HEVs/EVs applications that can be
seen also as battery selection criteria, are represented by the high energy and power density, capacity,
weight, size, low cost, long life (more than 1000 cycles), battery state-of-charge (SOC), memory effect,
low self-discharging rate, “free” maintenance, and environmental impact. The Li-Ion battery design
may be optimized for power or for capacity, and so the type of cells used, not just the size, must
be selected to suit the application. The HEVs/EVs BMS generally operates in very harsh operating
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environments and the Li-Ion battery must withstand wide temperature ranges (−30 ◦C to +65 ◦C) as
well as shock, vibration and abuse. Moreover, the Li-Ion battery is the single source of power, so it
must be sized to deliver that power. The battery capacity has to be sufficient to achieve the required
range but, since it is not desirable to fully discharge the battery, a margin of about 20% is needed, so
that the depth of discharge (DOD), as it is defined in the next section, will not exceed 80%. A further
margin of about 5% is also required to accept any regenerative braking charge when the battery has
just been charged. More precisely, the Li-Ion battery should be tailored to provide the required capacity
when the maximum SOC that is defined in the next section is 95% and the maximum DOD related to
SOC is 80%. The continuous discharge rate for batteries optimized for capacity is typically about 1 C
although some cells may tolerate pulse currents of up to 3 C or more for short periods. A HEV/EV
Li-Ion battery will usually have one deep discharge per day with some intermediate peaks from regen
braking and a typical Lithium-Ion HEV/EV battery lifetime may be from 500 to 2000 cycles. Low
weight is essential for high capacity automotive HEVs/EVs batteries used in passenger vehicles, so
Li-Ion batteries are the most suitable for these applications. Furthermore, the Li-Ion batteries of the
newest generation are safer and less toxic than the same batteries in competition, related to its great
potential to reduce greenhouse and other exhaust gas emission from transport. Protection circuits
are also essential for all batteries using non-Lead acid chemistries. The upcoming advancement in
Li-Ion batteries is in Lithium-air, and in nanotechnology batteries. The Lithium-air batteries will have
a higher energy density due to oxygen being a lighter cathode and a freely available resource.

Summarizing, there are other battery technologies under investigation in research, but the progress
in this direction is not moving as rapidly as automakers would like. For the projected future, HEVs
and EVs are probably going to be powered by either NiMH or Li-Ion batteries. Like every new
technology, battery prices will be finally lower, but it is going to take time, as right now, global
battery manufacturing capacity is still fairly constrained. Li-Ion battery is obviously a better and more
efficient way to power modern HEVs/EVs, but it is also more expensive. Various types of tailored
improvements with regard to process, cell, and the overall component design along with increased
production scale are expected to moderately but steadily increase performance and reduce cost over
the coming 5 years according to the US National Research Council. These types of advances are also
coupled to decreased material and energy use. Additionally, in a longer time perspective, battery
recycling may offer both economic and environmental benefits.

Due to the diversity and the complexity of the HEV field, we are focused only on aspects
concerning the modelling, design and implementation of two SOC estimators for a particular Li-Ion
battery in MATLAB/SIMULINK simulation environments. The Li-Ion battery is the core component
integrated in the battery management system of HEVs that plays an important role for “improving the
battery performance, prolonging battery life, and ensuring its safety” [2], p. 1. This objective is accomplished
by the BMS through continuously monitoring the main internal parameters of the Li-Ion battery,
amongst them the current, voltage, SOC, and temperature. Finally, for commercial success, the lifetime
of HEV cells must meet or exceed the lifetime of the vehicle. Replacing a battery pack every few
years is not acceptable. In [6] is stated that “cell electro-chemistry and construction plays a dominant role
in longevity, but good BMS algorithms can extend life as well by prohibiting pack use that over-stresses cells,
thus preventing damage”. Furthermore, the SOC is an essential operational condition parameter for BMS
that affects seriously the battery health and its life. Since the SOC cannot be measured directly, its
estimation is a vital operation to prevent the dangerous situations when the battery is overcharged or
over-discharged, and to considerably improve battery performance [2]. As an internal state of a battery,
the SOC is defined as a remaining capacity of the battery (i.e., the available capacity of a battery), as a
percentage of its rated capacity [1], p. 21, [2], p. 1, [5], p. 254. The common SOC estimation strategies are
model-based, and grouped in Kalman filter estimation techniques, namely standard Kalman filter (KF),
extended Kalman filter (EKF), unscented Kalman filter (UKF), ensemble Kalman filter (EnKF), particle
filter (PF), as developed in [6–10], linear (Luenberger) and nonlinear observers, and sliding mode
estimators including also its fuzzy improved version [11]. Hence, in this research article we investigate
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some technical aspects, specifically of Li-Ion battery modeling, designing and implementing in real
time MATLAB R2017a version and Advanced Simulator (ADVISOR) for HEVs [12–16] environments
two appropriate battery SOC estimation techniques. The remainder of this chapter is organized as
follows. In Section 2, the widely-used 2RC-series cell Li-Ion battery electric equivalent model circuit
(EMC) is introduced and state space equations are derived. In Section 3, we developed the design and
the implementation in real time of two SOC estimators, such as: (1) a real time EKF SOC estimator;
(2) a real time PI observer (PIO) SOC estimator. Also, the simulation results and the performance
analysis on the proposed state estimators are carried out in the same section and an improved 3RC
EMC Li-Ion battery model with time variable parameters dependent on the temperature and SOC is
proposed. Section 4 concludes this research article.

2. Li-Ion Battery: Terminology, Electric Model Circuit and Validation Tests, a Case Study

This section is divided into several subsections to introduce the following interesting topics:

(1) Battery selection criteria, identify the main disturbance and the factors that affect the
battery performance

(2) Battery terminology
(3) BMS functions, hardware and software components
(4) SOC direct measurement methods reported in the literature
(5) Analytic battery models reported in the literature
(6) Li-Ion battery model selection
(7) ADVISOR MATLAB platform model validation, a case study

2.1. Li-Ion Battery Model Selection, Disturbances and the Factors Which Affect the Battery Performance

For simulation purposes, a specific setup for second order 2RC EMC Li-Ion battery model
parameters, based on the assumption that they are not dependent on temperature and SOC, is
considered to prove the effectiveness of the proposed SOC estimation strategies. Since in “real life” the
dynamic of the battery is seriously affected by temperature, an improvement is done by considering an
increase in the order of the proposed model by connecting in series a new polarization RC battery cell,
the so called 3RC EMC Li-Ion battery model described in [3,17], but this time the battery parameters are
variable in time and dependent on temperature and updated dynamically based on a thermal model
described in Section 3.1.2. The setup for 3RC EMC Li-Ion battery model parameters is accomplished
from the generic EMC by changing only the values of the model parameters in a state-space equation.
In this paper, for the case study we have chosen the commonly used 2RC series cells Li-Ion battery
EMC as a model-based support, shown in Figure 1, well documented in [2–4,11], and also its improved
version third order 3RC EMC with time varying parameters and dependent on the temperature is
under consideration. Perhaps the first Li-Ion battery model 2RC EMC selection could be criticized by
experts from the field since it is not realistic as long as in real life the parameters of Li-Ion battery, such
as battery internal resistance and the polarization resistances and capacitances are strictly dependent
on the environment temperature. The main reason for this selection was to benefit of the simplicity of
RC second order EMC and its ability to be implemented in real time applications with an acceptable
range of performance. Also, “this choice is due to the early popularity of BMS for portable electronics, where
the approximation of the battery model with the proposed EMC is appropriate”, as is mentioned in [2,11].
This approach has been extended easily to Li-Ion batteries for the HVEs/EVs in the automotive
industry and for many other similar energy storage applications [2,11,15]. The model is used only
for simulation purposes, since we are interested in the “proof of concept” algorithmic considerations
as motivated by the requirements imposed by the environment and the vehicle. Also, we have more
flexibility to prove the effectiveness of the proposed SOC estimation strategies based on this simple
model, in terms of estimation accuracy, speed convergence, robustness to different changes in battery
model parameters (i.e., internal resistance, battery capacity affected by aging degradation and repeated
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charging and discharging cycles), to the current sensor noise level, and the real time implementation
simplicity in a MATLAB simulation environment. The electrical circuit model is relatively accurate to
capture the dynamic circuit characteristics of a battery cell, such as the open-circuit voltage, terminal
voltage, transient response, and self-discharge. However, this model is unable to capture the nonlinear
capacity behaviors, such as the rate capacity effect and recovery effect of the battery due to the use of a
constant capacitance to represent the remaining usable capacity of the battery [18,19]. Nevertheless,
considering the modeling errors, capacity variation, and the additional output sensor noise, the 2RC
EMC Li-Ion battery model whose dynamics is given by the Equations (5) and (6) is not sufficient to
model the entire dynamics of the Li-Ion battery. The disturbance denoted by v(x, u, t) in Section 3.2
describes the nonlinearities, unknown-inputs, and un-model dynamics of the battery and may be a
nonlinear function of states, inputs and time, caused specially by the temperature and measurement
current sensor noise level, as is mentioned in [2].

The Li-Ion batteries have a finite life due to the presence of the unwanted chemical or physical
changes to the active materials of which they are made. These changes are usually irreversible and
they affect the electrical performance of the battery cell [2]. The Li-Ion battery life can usually only be
extended by preventing or reducing the cause of the unwanted parasitic chemical effects which occur
in the battery cells. The Li-Ion batteries’ performance deteriorates over time whether the battery is
used or not, known as “cycle fade”, and “calendar fade” respectively [2].

The main factors that affect the Li-Ion battery dynamics in realistic operating conditions are
summarized with more details in [18]. Amongst these factors, we highlight the following:

• Chemical changes: the battery is an electrochemical device which converts chemical energy into
electrical energy or vice versa by means of controlled chemical reactions between a set of active
chemicals. Typically, the desired chemical reactions inside the battery are usually accompanied by
unwanted, parasitic chemical reactions which consume some of the active chemicals or impede
their reactions. Even if the battery cell’s active chemicals remain unaffected over time, the battery
cells can fail because unwanted chemical or physical changes to the seals keeping the electrolyte
in place.

• Depletion of the active chemicals: under different conditions of pressure, temperature, electric
field and duration of the reaction, the active chemicals in a battery cell may break down or
combine in many different ways.

• Temperature effects: the battery operation has a strongly dependency on temperature, which is
a crucial factor for safety consideration. Elevated temperatures during storage or use seriously
affect the battery life since the chemical reactions inside the battery are driven by temperature.
An increase in battery temperature leads to an increase in chemical reactions speed inside the
battery cells. High temperatures provide an increased performance, but the rate of the unwanted
chemical reactions will increase also affecting the battery life. The temperature affects both the
shelf life and the life cycle of the battery, since the chemical reactions induce failures as a result
of parasitic reactions within the battery cells. The thumb rule is that “for every 10 ◦C increase in
temperature the reaction rate doubles”. Thus, an hour at 35 ◦C is equivalent to two hours at 25 ◦C in
battery life, thus the heat is one of the strongest enemy for the battery; even small increases in
temperature have a great impact on battery performance [18].

• Pressure effects: an increased internal pressure within a battery cell is usually the consequence
of increased temperature. The “excessive currents or a high ambient temperature will cause the
battery cell temperature to rise and the resulting expansion of the active chemicals will in turn cause the
internal pressure in the battery cell to rise. Overcharging also causes a rise in temperature, but more
seriously, overcharging can also cause the release of gases resulting in an even greater build up in the
internal pressure”, as is stated in [18]. An increased pressure tends to magnify the effects of high
temperature by increasing the rate of the chemical actions in the battery cell.

• Depth of discharge (DOD): is related to battery SOC as is defined in next Section 2.2 that at a given
temperature and discharge rate is proportional with the amount of active chemicals transformed
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with each charge and discharge cycle. For almost all chemistries “the number of cycles yielded by a
battery goes up exponentially the shallower the DOD”.

• Charging level: the life cycle of Lithium-Ion batteries can be increased by reducing the charging
cut off voltage, i.e., gives the battery a partial charge instead of fully charging it.

• Charging rate: the battery life is also influenced by the charging rate. Essentially, at high discharge
rates the battery capacity decreases since the transformation of the active chemicals are affected
by the battery current drawn. The result is incomplete or unwanted chemical reactions, and thus,
an associated decrease in capacity. This “may be accompanied by changes in the morphology of the
electrode crystals such as cracking or crystal growth which adversely affect the internal impedance” of the
battery cell, as is stated in [18]. Similar problems occur during battery charging cycles. There is a
limitation as to how quickly the lithium ions can enter into the intercalation layers of the anode.
Since the battery input current increases too much during the charging process, a “lithium plating”
process takes place, and surplus ions are deposited on the anode in the form of lithium metal that
results in an irreversible capacity loss. Conversely, maintaining the higher voltages needed for fast
charging can lead to breakdown of the electrolyte which also results in capacity loss. Thus, with
each battery charge/discharge cycle the accumulated irreversible capacity loss will increase [18].

• Voltage effects: The practical voltage limits are the consequence of the onset of undesirable chemical
reactions which take place beyond the safe operating conditions range. Protection circuits are
“designed to keep the battery cell well within its recommended working range with limits set to
include a safety margin” [18].

• Cell aging effects: the “passage of current through the battery cell and the heating and cooling the cell is
subjected to will cause small changes in the microstructure or morphology of the active chemicals” [18].
A battery “does not have infinite life time due to unwanted chemical reactions, including electrolyte
decomposition, physical damage, and the loss of active materials in the battery” [18]. These are irreversible
changes that usually cause unrecoverable capacity fade, and deteriorate the battery performance,
such as increase of internal resistance and high self-discharge rate [18]. These aging effects of the
battery ultimately will result in battery failure. The aging process is caused by complex operating
conditions affected by the number of cycling, ambient temperature, DOD, and current rate [18].
Also, in [18] are summarized the following aging effects:

# High temperature accelerates the aging of the battery in both cycling and calendar modes;
# Large DOD variance speeds up the aging process;
# Arduous current cycle profile accelerates the aging process.

• Coulombic efficiency (CE): it is not a standard definition for CE, but we can roughly define it as
charge capacity at the end of the discharge cycle with the battery cell fully recharged divided
by charge capacity at the beginning of the charge cycle. The CE is also called faradaic efficiency
or current efficiency and describes the charge efficiency by which electrons are transferred in
batteries. CE can be defined also as the ratio of the total charge extracted from the battery to the
total charge put into the battery over a full cycle. Li-Ion battery has one of the highest CE ratings
in rechargeable batteries class. It offers an efficiency that exceeds 99 percent. This, however, is only
possible when the Li-Ion battery is charged at a moderate input current and at cool temperatures.
Conversely, ultra-fast charging lowers the CE because of losses due to charge acceptance and
heat, so also does a very slow charge in which self-discharge comes into play. The coulombic
efficiency of Li-Ion improves with cycling, some start at 99.5 percent and reached 99.9 percent
within 30 cycles [18]. The consistency on repeat tests is high, reflected in a very stable Li-Ion
battery system. Unlike Li-Ion batteries, the Lead acid batteries reach a CE of about 90 percent,
and nickel-based batteries have a CE lower than 90 percent. With fast charge, NiCad and NiMH
may reach 90 percent but a slow charge reduces this to about 70 percent [18]. Lower charge
acceptance when above 70 percent SOC and self-discharge that increases when the battery gets
warm toward the end of charge are contributing factors for the low CE. Best efficiencies of Li-Ion



Batteries 2018, 4, 19 7 of 39

batteries attain mid-range SOC of 30–70 percent [18]. All battery chemistry systems provide
unique CE values that vary with charge rates and temperature. Also, the age has a considerable
impact on CE. Precise measurements on Coulombic efficiency provides an excellent method of
characterizing the essential aspects of Li-Ion battery cells and performance providing very quick
answers with reasonably small samples. It enables technologies to be ranked by their Coulombic
efficiency and is particularly useful as a lab tool for comparing the effects of alternative materials
on cell performance.

• Loss of electrolyte: any reduction in the volume of the battery cell’s active chemicals will reduce
directly the cell’s electrical capacity.

• Internal resistance: the internal resistance of the battery is affected by the following factors:
conductor resistance, electrolyte resistance, ionic mobility, separator efficiency, reactive rates at
the electrodes, and concentration polarization, temperature effects and changes in SOC. When a
battery fails, it is typically since it has built up enough internal resistance that it can no longer
supply a useful amount of power to an external load, according to the maximum power transfer
between the source and the load, as is stated in [15]. The actual ageing process results in a gradual
reduction in Li-Ion battery capacity over time. When a battery cell reaches its specified lifetime it
does not stop working suddenly, the ageing process continues at the same rate as before so that a
battery cell whose capacity had fallen to 80% after 1000 cycles will probably continue working to
perhaps 2000 cycles when its effective capacity will have fallen to 60% of its original capacity [15].
Moreover, an alternative measure of the battery life cycle is related to the battery cell internal
resistance. In this case the life cycle is defined as the number of cycles the battery can perform
before its internal resistance increases by an agreed amount usually 1.3 times or double its initial
value when is new [15].

• Insulation resistance: it is well described in [15]. Also, in [15] the HEV is considered as a “complex
production of mechanical-electrical integration”, for which the power supply typically being in the
range 100–500 V is obtained by means of several series battery packs. The BMS hardware devices
consisting of high voltage components, the traction battery, electrical motor and energy recycle
device, the battery charger and its auxiliary device deal with a large current and insulation [15],
thus, insulation issues must be under consideration from the design stage. As is stated in [15],
the poor working conditions, such as shaking, corrosion, changes in temperature and humidity,
“could cause fast aging of the power cable and insulation materials, or even brake the insulation,
which would decrease the insulation strength and endanger personnel”. Thus, needs to ensure
safety operating conditions for personnel are required to evaluate the insulation conditions for
entire HEV’s BMS. The national standard (NS) 18384.3-2001, stipulates several safety requirements
for HEVs, especially for insulation resistance state, measurement method, that are shown in [15].
According to NS, the insulation state of an EV is evaluated according to the ground insulation
resistance of the DC positive and negative bus. The definition of traction battery insulation
resistance in NS “is the relative resistance to maximum leakage current (in the worst condition)
where there is a short between the traction battery and ground (electric chassis)”, as is mention
in [15]. Thus, to ensure the insulation security of on-board BMS, it is necessary to detect the
insulation resistance and raise an alarm in time.
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Figure 1. The second order 2RC Li-Ion battery EMC represented in National Instruments Multisim
14.1 editor.

2.2. Li-Ion Battery Terminology

In this subsection, we introduce the same battery terminology from [1] related to BMS specific
terms that characterize the Li-Ion battery architecture and its performance.

From an architecture perspective, a battery cell is a complete battery with two terminals current
leads, a closed compartment with two electrodes (positive (+) and negative (−)), separator, and
electrolyte [1]. For effectiveness purposes, two or more identical battery cells are connected in different
combinations (e.g., in series, parallel or in series and parallel), to form a battery module. Moreover,
according to the battery specification design, a certain number of modules are connected to form a
battery pack that is placed in a single compartment for thermal management. An EV might have
more than one battery packs placed in an assigned location of the car. According to the common
assessment standards applied in the BMS field, a battery cell is considered fully charged when its
terminal voltage reaches the maximum voltage limit value after being charged a small current level.
If the battery terminal voltage value is greater than this limit, a dangerous over-charging operating
condition takes place. Similarly, a battery cell is considered fully discharged when its terminal voltage
reaches the minimum voltage limit value after being drained at small current levels. If the battery
terminal voltage value is smaller than this limit, a dangerous over-discharging operating condition
affects the battery functionality and its life. The capacity of a battery is one of the most important
battery selection parameters that is measured in Ampere-hours (Ah), defined as the total charge that
can be discharged from a fully charged battery under specified conditions. The rated Ah capacity is
the nominal capacity of a fully charged new battery under the conditions predefined by the catalogue
specifications of the battery, e.g., the nominal condition could be defined as room temperature, as is
mentioned in [1]. In describing batteries, discharge current is often expressed as a C-rate in order
to normalize against battery capacity, which is often very different between batteries. A C-rate is a
measure of the rate at which a battery is discharged relative to its maximum capacity. A 1 C rate
means that the discharge current will discharge the entire battery in 1 hour. For a battery with a
capacity of 100 Ampere-hours, this equates to a discharge current of 100 Amps. A 5 C rate for this
battery would be 500 Amps, and a 0.5 C rate would be 50 Amps. The power density of the battery is
another important criterion for battery selection that is defined as the peak power per unit volume of a
battery (W/l). It is related to the significant impact of battery’s internal resistance on the battery model
dynamics, defined as an overall equivalent resistance within the battery, changing its value during the
charging and discharging battery cycles, and also may vary as the operating condition changes. In [1],
according to the U.S. Advanced Battery Consortium (USABC)’s definition, the peak power is related to
an open circuit voltage (OCV) squared value divided to the value of the battery internal resistance
R. The maximum power value of the battery is defined at the condition when the terminal voltage
reaches 2/3 of its OCV.

The SOC of the battery is an essential internal parameter of BMS that provides an important
feedback about the state of health of the battery (SOH) and its safe operation. SOC is defined as



Batteries 2018, 4, 19 9 of 39

battery available capacity expressed as a percentage of its rated capacity, or more precisely, the SOC
is the remaining capacity of a battery affected by its operating conditions such as load current and
temperature [1–4,6,10–15]:

SOC =
Remaining capacity

Rated capacity
(1)

The SOC for a fully charged battery is 100% and for an empty battery is 0%, defined for a
discharging cycle, when discharging battery current is positive, as:

SOC(t) = 100(1− η

Cnom

t∫
0

i(τ)dτ) (%), i(τ) ≥ 0 (2)

where η is the coulombic efficiency of the charging (almost 100%) or discharging (around 86% or
greater) battery cycle, and Cnom represents the nominal battery capacity.

The relation (2) is also equivalent to the following first order differential equation that will be
useful for SOC state estimation in this research paper:

d
dt
(SOC(t)) = −100

η × i(t)
Cnom

, i(t) ≥ 0 (3)

The SOC is a critical condition parameter for battery management system (BMS), often affected
by its operating conditions such as load current and temperature; consequently, an accurate estimation
of SOC is very important, since it is the key issue for the healthy and safe operation of batteries.

Related to SOC, the depth of discharge (DOD) is a SOC derived parameter used to indicate the
percentage of the total battery capacity that has been discharged at time t, defined as [1]:

DOD(t) = 100(1− SOC(t)) (%) (4)

In conjunction with DOD and SOC as internal battery parameters, the battery’s state of health
(SOH) is defined as the ratio of the maximum charge capacity of an aged battery to the maximum
charge capacity when this battery was new. The battery life cycle (LC) is given by the number of
discharging–charging cycles that the battery can withstand at a specific DOD (normally 80%) before it
fails to meet the desired performance criteria [1]. The actual operating life of the battery is affected by
the charging and discharging rates, DOD, and by the temperature. The higher the DOD is the shorter
will be the life cycle. To attain a higher life cycle, a larger battery is required to be used for a lower
DOD during normal operating conditions.

2.3. Battery Management System: Functions, Hardware and Software Components

The Battery Management System (BMS) is an integrated battery structure consisting of
measurement sensors, controllers, serial communication, and computation hardware with software
algorithms on-board implemented to assess the maximum charging/discharging cycles current and
the duration from the estimation of SOC and SOH of the battery pack. Furthermore, a BMS is an
essential interface between the battery and the HEV, very useful to improve the battery performance
and to optimize vehicle operation “in a safe and reliable manner”, as is mentioned in [14]. Thus, it is
necessary for the HEV automotive industry to develop comprehensive and mature BMSs. The BMS
hardware and software components and the safety circuitry incorporated within the battery packs
play an important role to monitor and control, to compute and to show continually the safety state, the
SOC, SOH, as well as the longevity of the battery.

Related to the battery life, one of the most dangerous situations is the ignition of a Li-Ion battery
during overcharging operating conditions, due to the volatility, flammability and entropy changes.
Moreover, the repeated over-discharging cycles significantly reduce the battery cell capacity due to
irreversible chemical reactions. Consequently, the need to constantly monitor and control the Li-Ion
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battery internal states and parameters validates once more the integration of BMS inside the EVs
architecture. Whenever any abnormal conditions happen, such as self-discharge leakage current
through the insulation resistance of the battery, well-known as ground insulation resistances of the
negative and positive bus of BMS Rn and Rp, respectively. In addition, any time when an over-voltage
or overheating operating conditions are identified, the BMS should notify the user in a very short time,
and also performs the preset correction procedures [14].

Summarizing, a comprehensive and mature BMS must be equipped with the most suitable
hardware and software components of the newest generation, integrated in EVs/HEVs structure to
achieve the following functions [14]: (1) real time monitoring of battery states by a performing
data acquisition system (DAQS) of external signals (i.e., voltage, current, cell temperature etc.);
(2) ensure user safety protection, and extend the battery life; (3) the ability to estimate and monitor
the battery internal parameters and states (i.e., the internal and insulation battery resistances,
polarization voltage, maximum available capacity, SOC, SOH, etc.) sustained by on-board integration of
intelligent algorithms (e.g., genetic, fuzzy logic, neural networks and expert systems based on artificial
intelligence); (4) the ability to prevent the abnormal operating conditions, such as an over-charge
or over-discharge of the battery; (5) the ability to perform fault diagnosis, detection and isolation
(FDI); (6)ensure an efficient battery energy utilization, thermal management and SOC cell balancing;
(7) delivery of battery status and authentication to a user interface; (8) the ability to communicate with
vehicle controller and all other components [14]. In order to achieve these goals, many researchers
from BMS’ HEVs/EVs control systems community investigate extensively new battery models, the
most suitable SOC estimation techniques, as well as the consistency evaluation and battery cells SOC
balancing, such as stated in [14,15].

2.4. Li-Ion Battery SOC Measurement Methods Reported in the Literature

In the absence of a measurement battery SOC sensor we are focused to identify some of direct
SOC measurement methods, such as those summarized in [3,7], as follows:

2.4.1. Laboratory Tests and Chemistry Dependent Methods

From this category are mentioned the following three cell modeling methods:

• A laboratory method for determining SOC consists of completely discharge a cell, recording
discharged ampere-hours, to determine its remaining available capacity. This method “is the most
accurate SOC measurement technique, but is impractical in HEV as the battery energy is wasted by the
test, and the test cannot dynamically estimate SOC”, as is stated in [7].

• Chemistry-dependent methods for other chemistries, e.g., lead-acid batteries, are all inappropriate
since our application is using Li-Ion battery.

• Open-circuit voltage (OCV) measurements. “If the battery cell is allowed to rest for a long period, its
terminal voltage decays to OCV that may be used to infer SOC via a lookup table” [7]. However, long
periods of battery inactivity sometimes hours must occur before the terminal voltage approaches
OCV. But, the method may not be used for dynamic SOC estimation due to the fact that “long
periods of battery inactivity, sometimes hours, must occur before the terminal voltage approaches OCV”, as
is stated in [7], and also “this method includes the dependence of OCV on temperature, and presence of
terminal voltage hysteresis, especially at low temperatures” [7].

2.4.2. Electro-Chemical Methods

This approach consists of modeling the cell electrical dynamics at the molecular level, taking
into consideration the various processes that occur within the cell. An “accurate terminal voltage
prediction may be achieved by these models”, as is stated in [7], but “it would be difficult to measure
all the required physical parameters on a cell-by-cell basis in a high-volume consumer product”.
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2.4.3. Impedance Spectroscopy

Applying this method measures the cell impedances over a wide range of AC frequencies at
different SOCs, and the model parameter values are found applying the well-known least-squares
errors (LSE) fitting method to measure the impedance values. Then, the battery SOC “may be indirectly
inferred by measuring present cell impedance and correlating them with known impedances at various
SOC levels” [7].

2.4.4. Equivalent Electric Circuit Models

In this method, a high-valued capacitor or voltage source is used to represent the battery OCV,
connected in series with the internal resistance of the battery, and one, two or three RC parallel
polarization cells, such as the second order 2RC EMC battery model proposed in the case study, for
which the battery cell dynamics are described in the next Section 2.6. From the OCV estimate, SOC
may be inferred via a table lookup. Both linear- and nonlinear circuit models may be used to model the
dynamics of the Li-Ion battery cell. The setting parameters values of these equivalent circuit models
(i.e., SOC, the internal resistance, and the polarization resistances and capacitances) can be selected for
a particular configuration as constant values or they are dependent of temperature (i.e., battery cell
SOC) and SOC (resistances and capacitances), respectively, as is shown in [2,7,17,19–21].

2.4.5. Coulomb Counting

This method consists of counting the amount of charge that flows in and out of the battery,
according to the Equation (2) or (3). The method involves the SOC estimation directly, in open-loop
which is prone to current measurement errors, or in closed-loop that can be much more accurate [7].
Similar to voltage measurements, “coulomb counting has intuitive appeal and it is easy to implement
(especially with today’s µ-controllers)”, as mentioned in [17]. The value decreases as the battery’s
SOH also decreases. If the battery is not fully discharged after being maximally charged, then a proper
calculation is difficult and the Coulomb counting method degrades considerable in accuracy. This is
one of the main flaws since in the most cases is very rare to fully charge and fully discharge a battery,
thus a significant drift in the Coulomb countering method is difficult to avoid [17]. As the signal drifts,
the efficacy of coulomb counting decreases. Another drawback of the Coulomb counting method is
that it becomes less effective when the battery self-discharges or is subject to temperature changes,
but fortunately these losses in precision owing to temperature fluctuations and battery aging are of
minor consequence when compared to the significant loss in precision that can accompany a drift
in the signal, as is stated in [17]. As for example, a drifting signal can produce a 100% discrepancy
between the measured and actual amounts of energy in the battery, compared to other issues that
may affect the precision of coulomb counting by less than 1% per month [17]. Furthermore, in [3], it is
stated that the Coulomb counting calculation is based on a predefined calibration point that may not
always be available, and not all of the current discharged from the battery in Equations (2) and (3) can
be taken into account because of losses. These drawbacks can be overcome by having an accurate but
expensive sensor, and by having a predefined calibration point. The error in Coulomb counting can
be also maintained at a low value by defining a correction factor and defining a re-calibration point.
In conclusion, the Coulomb counting method provides a higher accuracy than other SOC calculation
methods. It is easy and reliable if the current measurement is accurate and if the re-calibration point
is available.

2.4.6. Artificial Neural Networks (ANN)

This method can establish a nonlinear input/output relationship for non-linear complex systems,
thus SOC and SOH can readily be obtained with ANNs, as is mentioned in [3]. An ANN consists of
two or more layers of neurons (i.e., input-hidden-output neurons) that are interconnected together to
form a nonlinear relationship between the network’s input and outputs, thus, it mimics the human
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brain and needs to be trained based on specific algorithms reported in the literature [3]. However, the
ANNs have a limitation since they require a large amount of data to be trained to cover all operating
conditions and situations.

2.4.7. Model Based State Estimation Techniques

Any state estimation technique like EKF, UKF, PF, Luenberguer and nonlinear observers,
sliding mode observers, fuzzy logic estimation algorithms, can be used to accurately estimate the
system’s observable states. In the case of Li-Ion batteries, one of the system’s states is the SOC.
The above-mentioned estimation methods require a model of the dynamic system. The SOC model-based
estimation accuracy is shown for an EKF real time state estimator applied to different Li-Ion battery
models reported in [3,7], also applied in our case study, performs with an estimation error of less than 5%.

2.5. Linear and Nonlinear Analytic Li-Ion Battery Models in State Space Representation Reported in Literature

In this section we briefly review some linear and nonlinear analytic battery models of different
chemistries reported in the literature and developed over time for various purposes, such as
battery design, performance estimation, prediction for real-time power management, and circuit
simulation [19]. In general, the existing battery models can be classified into five categories:
electrochemical models, computational intelligence-based models, analytical models, stochastic models,
and electrical circuit models, as is mentioned in [19,20].

2.5.1. Electrochemical Models

The electrochemical models or distributed physics-based models are the most accurate models,
namely an accurate terminal voltage prediction may be achieved by these models, but they require
detailed knowledge of the battery chemical processes, which makes them difficult to be configured [7,20].
These models can capture the electrochemical reactions using partial differential equations (PDE)
“that link physical parameters to internal electrochemical dynamics of the battery cell allowing
trade off analysis and high accuracy”, as is stated in [3]. A well-known early model with a high
accuracy of 2% was originally developed by Doyle, Fuller and Newman [3]. Since these models use
PDE with typically numerous unknown parameters, they are “significantly more complicated and
computationally expensive than others, making their use in real-time applications for BMS almost
impractical” [3].

2.5.2. Computational Intelligence Based Models

The computational intelligence-based models describe the nonlinear relationships between SOC,
battery terminal voltage, input current, and battery internal temperature. The artificial neural networks
(ANN) based models support vector regression models, and mixed models have been used to estimate
the battery nonlinear behaviors; also, a recurrent neural network (RNN) has been used to build an
SOC observer estimator and battery terminal voltage estimator, as is mentioned in [19].

2.5.3. Analytical Models

The analytical models are simplified electrochemical models, namely the Pucker’s law, kinetic
battery model and diffusion model, as are described in [19], that can capture nonlinear capacity effects
and predict runtime of the batteries with reduced order of equations. These models perform well for
SOC tracking and runtime prediction under specific discharge profiles [19].

2.5.4. Stochastic Models

The stochastic models focus on modeling the recovery effect and describes battery behavior as a
Markov process with probabilities in terms of parameters that are related to the physical characteristics
of an electrochemical cell [19]. The stochastic battery model mentioned in [19] gives a good qualitative
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description for the behavior of a Li-Ion battery under pulsed discharge, for which the recovery effect is
modeled as a decreasing exponential function of the SOC and discharge capacity.

2.5.5. Electric Circuit Models

The simplest linear Li-Ion polymer (LiPb) battery model is implemented in [6], p. 259 to implement
the EKF algorithm to estimate the battery SOC using an electric circuit consisting of a parallel RC cell
connected in series with the battery internal resistance. In [7] are presented for same LiPB battery
other electric circuit models, typically consisting of a high-valued capacitor or voltage source used to
represent the OCV, in series with the cell’s internal resistance and additional more dynamic effects such
as terminal voltage relaxation. Furthermore, from the OCV estimate, SOC may be inferred via table
lookup [7]. Both linear and nonlinear circuit models may be used to implement the battery dynamics.
The following battery models are proposed in [7], pp. 266–274:

• model only with SOC as state: is the simplest model capable to estimate the battery terminal
voltage in a limited way, but was improved later by adding to the model multiple states

• a combined model that has SOC as a state and predicts the terminal battery voltage as a
combination of three nonlinear models, separately or all together, the second one being adopted
in our case study [3,7]:

# Shepherd model:

y(k) = E0 − Ri(k)− K1

SOC(k)
(5)

# Unnewehr universal model:

y(k) = E0 − Ri(k)− K2SOC(k) (6)

# Nernst model:

y(k) = E0 − Ri(k) + K3 ln(SOC(k)) + K4 ln(|1− SOC(k)|) (7)

where SOC(k) denotes the battery state in discrete time (Ts is the sampling time), representing the
discrete time equivalent of SOC(t) described by a first order differential equation given by (3):

SOC(k + 1) = SOC(k)− ηTs

Cnom
i(k) (8)

In all these models, y(k) is the discrete time cell terminal voltage, E0 is a constant voltage source,
R is the cell internal resistance with a slight difference between its values for charging (input battery
current i(k) < 0) and discharging cycles (i(k) > 0), as well as at different SOC levels if desired, K1 is
the polarization resistance and K2, K3, K4 are constants chosen to make the model fit the data well.
A “combined model” that performs better than any of the individual models alone, especially the
Shepherd model (criticized in the literature for algebraic loops issues that may lead to an unstable
computation algorithm), is proposed in [3,7] that is adopted later in this section with additional states
for our case study:

SOC(k + 1) = SOC(k)− ηTs
Cnom

i(k)
y(k) = E0 − Ri(k) + K1

1
SOC(k) − K2SOC(k) + K3 ln(SOC(k)) + K4 ln(|1− SOC(k)|) (9)

and the OCV(k) as function of SOC(k) is given by:

OCV(k) = E0 − K2SOC(k) + K1
1

SOC(k)
+ K3 ln(SOC(k)) + K4 ln(|1− SOC(k)|) (10)
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that is similar to those used in our model, replacing E0 in (10) by a constant K0.
The unknown quantities in the combined model may be estimated using a system identification

procedure. This model has the advantage of being “linear in the parameters” [7], i.e., the
unknowns occur linearly in the output equation. Using a set of N cell input–output three-tuples
(y(k), i(k), SOC(k)) all these parameters may be solved for in closed form using a result from
least-squares estimation (LSE), as is suggested in [7].

• The zero-state hysteresis model, conceived to compensate partially the hysteresis effect, one of the
main drawback of a simple model. The cell voltage lags the predicted voltage in some sense [7];
more precisely, it may also be defined as a characteristic of a system in which a change in the
direction of the independent variable leads to the dependent variable failing to retrace the path it
passed in the forward direction [7]. This model adds no additional states for hysteresis, so it is
named the “zero-state hysteresis model”.

• The one-state hysteresis model is an improvement over the simple model where the slow transition
in the level of the hysteresis from charging and discharging cycles may be modeled by adding a
“hysteresis state”.

• The enhanced self-correcting (ESC) model is conceived to model the “relaxation effect”,
implemented as a low-pass filter on input current i(k), since the cell model must accurately
predict its behavior in a dynamic HEV environment [7].

• Adding temperature dependence to the model, as is done briefly in [7] that shows how to
incorporate temperature dependence into the models. According to [7] a very simple method,
can use a table of different models, where each model had parameters optimized for a specific
temperature. The second method used in [7] performs a joint optimization over the entire
temperature range, where every parameter is represented by a continuous fourth order polynomial
of temperature to force nearby models to have similar parameter values. The cell data were
collected from UDDS tests can be provided by ADVISOR MATLAB platform described in
Section 2.7, and the optimization method performed at 16 controlled temperatures from −30 to
45 ◦C, in increments of 5 ◦C. This second method did not result in modeling errors as low as when
individually optimized; the generalization performance was much better [7].

2.6. Li-Ion Battery Equivalent Model Circuit in State Space Representation

2.6.1. Continuous Time State Space Representation

First, we need to precise that in our case study application is modelled only the cell dynamics for
the purpose of SOC estimation in an HEV battery pack. The equivalent electric circuit model of the
proposed Li-Ion battery shown in Figure 1 is easy to be implemented in a state space representation by
a set of three first order differential equations, based on the direct application of the voltage Kirchhoff’s
law to a single mesh of the electric circuit, and by assigning the states, one for each memory RC
cell, and the third one to the state-of-charge of the battery defined in Equation (4). The state-space
equivalent model is combined with the output-states-input equation suggested in [2–4,7,10–15] to
provide the Li-Ion battery terminal voltage, such that the whole model has the ability to capture the
entire dynamics of the battery and easy to be implemented in real time, and lastly is useful as a support
to build the proposed state estimation algorithms:

dx1
dt = − 1

T1
x1 +

1
C1

u
dx2
dt = − 1

T2
x2 +

1
C2

u
dx3
dt = − η

Cnom
u

y = OCV(x3)− x1 − x2 − Ru

(11)

where x1 = vC1(t), x2 = vC2(t), and x3 = SOC(t) represent the states attached to each RC polarization
voltage cell, and the state-of-charge of the battery respectively, u = i(t) denotes the input DC
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instantaneous current that flows through battery, and y = v(t) designates the battery output DC
instantaneous voltage. Also, T1 = R1C1[s], T2 = R2C2[s] represent the time constants of the polarization
RC cells, and the OCV (t) is similar to (10) adapted to the state-space representation, given by:

OCV(x3(t)) = h(x3(t)) = K0 − K1
1

x3(t)
− K2x3(t) + K3 ln(x3(t)) + K4 ln(|1− x3(t)|) (12)

For simulation purpose and adopting a “proof-algorithm concept” approach to validate
the proposed combined Li-Ion battery model, and also to prove the effectiveness in real time
implementation MATLAB environment of both SOC estimators developed in the next section, the
nominal values for Li-Ion battery EMC parameters and OCV(t) coefficients are set to the same values
that are carefully chosen for model validation in [3] and shown in Table 1.

In Equation (12) the OCV(t) is a nonlinear function of SOC(t), i.e., of state x3, similar as in [3,6,7,10],
increasing considerable the accuracy of the Li-Ion battery EMC combined model, and proving that is
amongst the most accurate formulations seen in literature from EVs/HVs field.

The nominal values of OCV(t) parameters (K0, K1, K2, K3, K4) are chosen to fit the model to the
manufacture’s data by using a least squares curve fitting estimation method, as is suggested in [3,6,7],
where the OCV curve is assumed to be the average of the charge and discharge curves taken at low
direct currents (dc) rates from fully charged to fully discharged battery that minimize considerable the
Li-Ion battery cell dynamics.

Table 1. The parameters and the coefficients of Li-Ion battery equivalent combined model.

Item Parameters/Coefficients Symbol Value Unit Measure

1 Li-Ion battery EMC parameters:

1.1
The battery internal ohmic resistance
(slightly different for charging and
discharging cycle)

R 0.0022 Ω (ohm)

1.2 The first cell polarization resistance R1 0.00077 Ω
1.3 The second cell polarization resistance R2 0.0011 Ω
1.4 The first cell polarization capacitance C1 14,475.24 F (farad)
1.5 The second cell polarization resistance C2 98,246.01 F

2 Li-Ion battery characteristics:

2.1 The value of the battery nominal capacity Cnom 6 Ah (Amperes
hours)

2.2 The voltage nominal value of the battery Vnom 3.6 V (volt)

2.3

Coulombic efficiency:

- for charging cycle
- for discharging cycle

η
0.98
0.86

3 The OCV coefficients:

K0 4.23
K1 0.0000386
K2 0.24
K3 0.22
K4 −0.04

2.6.2. Discrete Time State-Space Representation

An equivalent compact discrete-time equation in matrix form, as an alternative to the continuous
time description (11), is given by:

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Du(k) + Ψ(x3(k))

x(k) = [x1(k) x2(k) x3(k)]
T , A =

 1− Ts
T1

0 0
0 1− Ts

T2
0

0 0 1

, B =


Ts
C1
Ts
C2

− ηTs
Cnom

,

C = [−1− 1− K2], D = −R

(13)
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Ψ(x3(k)) = K0 − K1
1

x3(k)
+ K3 ln(x3(k)) + K4 ln(|1− x3(k)|) (14)

where Ts is the sampling time, t = kTs, k ∈ Z, x(k) = x(kTs), y(k) = y(kTs), u(k) = u(kTs).
The nonlinear function Ψ(x3(k)) is linearized in the next Section 3.1 around an operating point

to develop the first proposed real-time SOC estimator in EKF version, well documented in [2,6,7].
To analyze the behavior of the proposed Li-Ion battery EMC combined model for different driving
conditions such as urban, suburban and highway, two different charging and discharging current
profiles tests are introduced in Section 2.7.

2.7. Li-Ion Battery Equivalent Circuit Model Validation in ADVISOR MATLAB Platform, a Case Study

To provide a diversity of current profiles to cover almost all realistic driving conditions required
in Li-Ion HEV’s battery simulations, and also for model validation purpose, an ADVISOR MATLAB
platform is introduced in this section. It is very common in automotive industry, especially in all
HEVs design as is suggested in [2–4,13]. This simulator was created in November 1994 by US National
Renewable Energy Laboratory (NREL), and after it was continually improved until the most recent
version 2003-00, with a new release r0116 in April 24th 2013, as is mentioned also in [13]. ADVISOR
MATLAB platform allows system-level analysis and trade-off studies of advanced vehicles [16].
The NREL’s ADVISOR predicts battery and vehicle performance for conventional (e.g., non-electrified
vehicles on the road today), hybrid, electric, and fuel cell vehicles as they vary with drive cycle [13].
In order to cover the majority of cases met in real life, ADVISOR’s battery models must be robust
and accurately for different battery chemistries including lithium ion, nickel-metal hydride, and lead
acid. Also, they must have the ability to predict the battery’s voltage, current, temperature and
SOC, interfacing well with MATLAB/Simulink platform. The following battery models available in
ADVISOR MATLAB platform are reported:

• an internal resistance model (Rint)
• a resistance–capacitance model (RC)
• a partnership for a new generation of vehicles (PNGV) capacitance model (PNGV model)
• a neural network (nnet) lead acid model (PbA nnet)
• a fundamental lead acid battery model (PbA fund)

The Li-Ion battery selected model is validated by comparing the results of the tests in terms of
SOC estimates using a NREL’ Li-Ion battery with an internal resistance (Rint) model integrated in
ADVISOR MATLAB platform, as is shown in [10,12,13,16]. The proposed Li-Ion battery EMC model of
6Ah capacity and nominal voltage of 3.6 V, manufactured by the company SAFT America, is matching
with high accuracy the NREL’ Li-Ion battery model in terms of SOC estimation, as can be seen in
our preliminary results disseminated in [10]. Also, for simulation purpose and comparison of the
experimental tests results, the 2RC EMC Li-Ion battery model shown in Figure 1 is incorporated in a
BMS’ HEV and its SOC performance is compared to those obtained by a Rint Lithium battery model
integrated in a particular structure of a hypothetical small car SMcar with the following characteristics:
(1) manual 5 speeds transmission; (2) powertrain drive series transmission; (3) 700-W constant electric
load; (4) MC-AC75 Westinghouse 75-kW (continuous) AC induction motor/inverter. This small town
car is selected as an input vehicle in ADVISOR MATLAB platform under standard initial conditions,
modeled in Simulink in Figure 2, according to an ADVISOR page setup shown in Figure 3. Amongst
different driving speed cycles for a large collection of cars provided by the ADVISOR US Environmental
Protection Agency (EPA) we use in our case study the Urban Dynamometer Driving Schedule (UDDS)
speed profile, as is shown in Figures 4 and 5. The driving UDDS cycle profiles for car speed (mph)
and for corresponding Lithium battery discharging current [A] are represented separately in the same
ADVISOR MATLAB platform, as is shown in the first and the fourth corresponding graphs from
Figure 5.
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More precisely, in Figure 5 are shown the performance results obtained in MATLAB environment
for a driving city highway test split in two phases, namely a standard federal test procedure cycle at
75 F (FTP-75) for exhaust car emissions, followed by the highway fuel economy test (HWFET) cycle for
a particular car selection.

Figure 2. The Simulink block diagram of a hypothetical small town car SMcar.

Figure 3. The setup ADVISOR page of the input HEV SMcar.
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Figure 4. UDDS driving speed cycle of the input HEV SMcar.

Figure 5. The performance results for a driving FTP-75 cycle followed by HWFET cycle for a HEV
SMcar in MATLAB environment. In the first top graph, we show the UDDS speed cycle profile, in
the second top graph, we show the estimated value of Li-Ion SAFT battery SOC, in the third graph,
we show the gas emissions, in the last bottom graph, we show the discharging current UDDS FTP-75
cycle test.
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The FTP-75 driving cycle uses an UDDS cycle of total length of 2457 s with three separate phases:

• a cold-start phase (505 s) known as bag 1
• a hot-transient (870 s) known as bag 2
• a hot-start (505 s) known as bag 3

The driven distance is approximately 11 miles. The HWFET driving cycle is used to simulate the
highway driving and estimate typical highway fuel economy. The official test consists of warm-up
followed by a test phase. The driver follows the same traces in warm-up and test phases In ADVISOR
the warm-up phase is replaced by a starting the vehicle with hot initial conditions. A top speed of
59.9 mph is reached with an average speed of 47.6 mph.

The validation of the proposed 2RC EMC Li-Ion battery model by extensive experimental tests
performed on ADVISOR MATLAB platform is an essential battery model design step to establish its
credibility. In Figure 6 are shown in the same graph the SOC curves corresponding to the proposed
EMC Li-Ion battery model (blue color) and ADVISOR MATLAB platform estimate (red color). The SOC
simulations performed for the same initial conditions (SOCini = 70%) reveal a high accuracy of the
proposed Li-Ion battery EMC model compared to ADVISOR NREL Rint model. This important result
validates without doubt the proposed EMC model and is encouraging to be used as a model support
for building robust, accurate and reliable real-time SOC estimators, as those developed in the next
Section 3. In Figure 7 is shown the 2RC EMC Li-Ion battery terminal voltage to a discharging UDDS
current profile during the FTP-75 test.

Figure 6. The 2RC EMC Li-Ion battery SOC versus ADVISOR SOC estimate in MATLAB
simulation environment.

Figure 7. The 2RC EMC Li-Ion battery terminal voltage for a discharging current UDDS cycle
FTP-75 test.
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In the United States, the “FTP-75” is a transient test cycle used for emission certification testing
of cars and light duty trucks. The optional Standard Air Conditioning “SC03” Supplemental Federal
Test Procedure (SFTP) has been introduced to represent the engine load and emissions associated with
the use of air conditioning units in vehicles certified over the FTP-75 test cycle. The total simulated
length is 1370 s for a single cycle, but in ADVISOR simulator has the facility to increase the length
by a certain number of the cycles. EPA fuel economy (FE) calculation methods use test results from
individual phases of certain drive cycles which are not required to have battery charge balance on
HEVs, as is mentioned in [17]. In Figure 8 is shown the Li-Ion battery OCV (top) and its corresponding
SOC (bottom) during a constant 1 C discharging rate, i.e., according to its definition in Section 2.2, for
our case study of a battery of 6 Ampere-hours nominal capacity is equivalent to a 6 A discharging
current flow inside the battery during a complete cycle of 3500 s length.

Figure 8. The Li-Ion battery 2RC EMC OCV curve during a complete discharging cycle at 1 C rate (top)
and the corresponding Li-Ion battery SOC (bottom).

In Figure 9 is shown the UDDS cycle discharging current profile used in FTP-75 test.

Figure 9. The discharging current UDDS cycle profile used in FTP-75 test.

The Li-Ion battery 2RC EMC model simulations are performed in SIMULINK simulation
environment using a continuous time 2RC EMC Li-Ion battery SIMULINK model, as is shown in
Figure 10. The battery SIMULINK model is used as support for building in next Section 3.2 the second
proposed real time SOC estimator under PI Observer version.
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Figure 10. The SIMULINK model of 2RC EMC Li-Ion Battery.

The detailed SIMULINK 2RC EMC Li-Ion battery model block diagram is shown in Figure 11.

Figure 11. The detailed Simulink model of 2RC EMC Li-Ion battery.

The Li-Ion battery 2RC EMC OCV as a function of SOC for an UDDS cycle charging current
profile test is shown in Figure 12. The Li-Ion battery 2RC EMC SOC versus ADVISOR estimate on
MATLAB/SIMULINK platform are shown on the same graph in Figure 13.

Figure 12. Li-Ion battery OCV versus SOC for a UDDS cycle charging current profile test.
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Figure 13. The 2RC EMC Li-Ion battery SOC versus ADVISOR SOC estimate.

The simulation results obtained for the same initial conditions, i.e., SOCini = 70%, and for an
input UDDS cycle charging current profile test are shown in Figure 13 that reveal a high accuracy,
a good convergence, and thus validate again without doubts the proposed 2RC EMC Li-Ion battery.
The terminal voltage as the balancing cells criterion is widely used in commercial HEVs since it can
be easily measured and implemented in all kinds of balancing circuits [2]. The EMC Li-Ion battery
terminal voltage is shown in Figure 14, and the entire range of charging Li-Ion battery SOC from 0 to
100% that requires three consecutive UDDS charging cycles is shown in Figure 15.

Figure 14. The 2RC EMC Li-Ion battery terminal voltage for an UDDS cycle charging current profile test.

Figure 15. The charging Li-Ion battery SOC cycle for almost three UDDS driving cycles.
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The corresponding battery terminal output voltage for the same three consecutive UDDS driving
cycles charging current profile is shown in Figure 16.

Figure 16. The 2RC EMC Li-Ion battery terminal voltage for three UDDS cycles charging current
profile test.

The UDDS driving cycle charging current profile test is shown in Figure 17.

Figure 17. The UDDS driving cycle charging current profile test.

3. Extended Kalman Filter and Proportional Integral Observer Real Time SOC Estimators

In this section, we develop two real time SOC estimators based on 2RC second order EMC Li-Ion
battery model, validated already in the second section for both charging and discharging current
UDDS driving cycles for a case study well detailed in the previous section. The MATLAB simulation
results for each real time Li-Ion battery SOC estimator are also shown in this section. At the end
of the section a comparison of the performance results obtained by the both SOC estimators will be
completed and the most suitable real time SOC estimator will be selected.

3.1. Real Time Extended Kalman Filter SOC Estimator Design

Technically, the Kalman filter uses the entire observed input and output data to find the minimum
mean squared error (MSE) between the estimation values of the system states and the true values of
2RC EMC Li-Ion battery states [2]. Basically, the KF takes advantage of the prior input current u(t) and
output terminal battery voltage y(t) to obtain the Kalman gain, K. The Kalman gain K is calculated
iteratively to feedback the correction of the differences between the estimated values of system states
and their true values provided by the 2RC EMC Li-Ion battery model [2].

As was mentioned in previous section the Coulomb counting is a typical approach to estimate the
Li-Ion battery SOC due to its implementation simplicity, explained in detail in previous Section 2.4.5 [2,6,7].
The main drawback of this approach is the difficulty to guess the initial condition value of SOC, thus
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its estimation error increases considerable over time. Essentially, a viable solution to increase the SOC
estimation accuracy is to take the battery OCV for SOC calibration but is hard to measure the OCV in
real time and the small OCV error may lead to a significant SOC difference, as is stated in [2,7].

The most suitable approach that combines the advantages of the Coulomb counting method and
the battery OCV based SOC estimation method is to design an EKF SOC real time estimator, similar to
those developed in [6,7]. Additionally, an adaptive improvement version of EKF, known as AEKF real
time SOC estimator is developed in detail in [2]. To obtain optimal SOC estimation results for EKF
estimator gain the process w(k) and measurement output v(k) white uncorrelated noises of zero mean
and covariance matrices Q(k) and R(k) respectively are considered [2,6,7], i.e.,

w(k) ∼ (0, Q(k)), v(k) ∼ (0, R(k))
E(w(k)w(j)T) = Q(k)δkj, E(v(k)v(j)T) = R(k)δkj

δkj = {
0, k 6= j
1, k = j

}
(15)

Also, in a battery pack the parameters are extracted once and used in the later estimations that
lead to accumulated modelling error. This is the reason that a fading memory factor α is used in the
mentioned AEKF estimator design “to increase the adaptiveness for the modelling errors” and “serves to
increase the uncertainty of the state estimation and to give more credence to the measurement” [2].

When process errors and measurement output noises are considered, the discrete-time state space
equation of the EMC Li-Ion battery dynamic model (13) and (14) can be generalized as:

x(k + 1) = f (k, x(k), u(k)) + w(k)
y(k) = g(k, x(k), u(k)) + v(k)

(16)

where x(k) = [x1(k) x2(k) x3(k)]
T is a row battery state vector.

The EKF algorithm steps suggested by [2,6,7] are summarized as follows.
Step 1: Linearization, the 2RC EMC Li-Ion battery nonlinear dynamics is linearized around the

most recent estimation state value x̂(k|k) and x̂(k|k− 1) respectively, considered as an operating point,
and the Jacobian matrices of the linearization are given by

A(k) = ∂ f (k,x(k),u(k))
∂x(k) |x̂(k|k), B(k) = ∂ f (k,x(k),u(k))

∂u(k) |x̂(k|k)
C(k) = ∂g(k,x(k),u(k))

∂x(k) |x̂(k|k−1)
(17)

Step 2: Initialization, the initial estimation value of the 2RC EMC Li-Ion battery state vector
x(0) is estimated as a Gaussian random vector with mean E{x(0)} and state covariance matrix
P̂(0) = E{(x(0)− x̂(0))(x(0)− x̂(0))T}, i.e., a random vector with a normal Gaussian distribution of
mean x̂(0) and covariance matrix P̂(0), x(0) � N(E{x(0)}, P̂(0)).

Step3: Prediction phase (time update), the predicted value of the state vector is calculated based
on the previous state estimate and state matrix covariance:

x̂(k + 1|k) = A(k)x̂(k|k) + B(k)u(k)
P̂(k + 1|k) = A(k)P̂(k|k)A(k)T + Q(k)

(18)

Step 4: Kalman gain computation, the Kalman filter gain is calculated as is follows:

K(k) = P̂(k + 1|k)H(k)T(H(k)P̂(k + 1|k)H(k)T + R(k))
−1

(19)

Step 5: Correction phase (measurement update), if a discrete time measurement is available then
the estimated 2RC EMC Li-Ion battery state can be updated according to following equations:
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x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k)(y(k)− g(x̂(k + 1|k), u(k), k)
P̂(k + 1|k + 1) = (I − K(k)H(k))P̂(k + 1|k) (20)

We remark the recursive predictor-corrector structure of the EKF estimator that allows the time
and measurement updates at each iteration. The EKF SOC estimator is easy to be implemented in real
time and has only three parameters to be tuned, namely the noise covariance matrices Q(k) and R(k),
and the initial value of the state covariance matrix P̂(0) = P̂(0|0). The initial parameter values of the
EKF estimator can be obtained based on designer’s empirical experience. Furthermore, to simplify
the tuning parameters procedure we can chose the time constant noise covariance positive definite
diagonal matrices Q and R, based on a trial and error procedure. For our case study, we initialize the
filter parameters by setting the following values:

x(0) = [0.01 0.01 0.9]T , R(0) = [0.02], Q(0) =

 0.0002 0 0
0 0.0002 0
0 0 0.05

, P(0) =

 0.1 0 0
0 0.1 0
0 0 0.1


x(0) = [0.01 0.01 0.3]T , xEMC(0) = [0.01 0.01 0.7]T , SOCADVISOR = 0.7

(21)

3.1.1. Real Time EKF SOC Estimator Implementation on MATLAB Platform, Simulation Results and
Performance Analysis

The simulation results of real time implementation of 2RC EKF SOC estimator in MATLAB
simulation environment are shown in Figures 18–22. We analyze the EKF estimator performance in
terms of robustness, convergence speed, accuracy and real-time implementation simplicity.

A. EKF estimator robustness

The robustness will be tested for:

• changes (increase or decrease) in SOC initial values
• simultaneous changes in SOC initial value and measurement current sensor noise level
• simultaneous changes in SOC initial values and changes in internal resistance of Li-Ion battery

2RC EMC (two time increase of room temperature resistance value given in Table 1) due to the
effects mentioned in Section 2.1, especially the changes in temperature effects

• simultaneous changes in SOC initial value and the nominal value of the battery nominal capacity
due to aging and/or temperature effects

A1 Robustness to changes in SOC initial values

Figure 18 shows the robustness of the EKF SOC estimator to an increase in initial SOC value
(guess value) from 70 to 90%.

Figure 18. Robustness of EKF estimator for an increase in SOC initial condition value from 70 to 90%.

Figure 19 shows the robustness of the EKF SOC estimator to a decrease in initial SOC value (guess
value) from 70 to 30%.
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Figure 19. Robustness of EKF estimator to a decrease in SOC initial value.

A2 Robustness to simultaneous changes in SOC initial value and measurements current sensor
noise level

Figure 20 shows the simulation results of EKF estimator robustness test to simultaneous changes
in SOC initial value from 70 to 30% and measurement current sensor noise level with zero mean and
standard deviation σ2 = 0.002.

Figure 20. The robustness of EKF estimator to simultaneous changes in SOC initial value and in
measurements current sensor noise level.

A3 Robustness to simultaneous changes in SOC initial value and changes in internal Li-Ion
battery resistance

Figure 21 shows the MATLAB simulation results for the robustness test of EKF estimator to
simultaneous changes in SOC initial value from 70 to 30% and an increase by 100% (two times) of the
nominal value of the battery capacity due to aging and/or temperature effects.

Figure 21. The robustness of EKF SOC estimator to simultaneous changes in SOC initial value and two
times increase in internal battery resistance of the Li-Ion battery.

A4 Robustness to simultaneous changes in SOC initial value and 50% decrease in nominal
capacity value of Li-Ion battery due to aging and/or temperature effects
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The MATLAB simulation results for this case are shown in Figure 22.

Figure 22. The robustness of EKF SOC estimator to simultaneous changes in SOC initial value and 50%
decrease in the nominal value of Li-Ion battery capacitance.

B EKF estimator convergence speed

The performance analysis can be done visually by examination of the last five graphs presented
above and related directly to the EKF SOC estimator. Almost in all these five graphs, the EKF SOC
estimate reaches the EMC SOC true value after 400 s, thus, showing a fast convergence speed.

C SOC estimation accuracy

The simulation results shown in the last five graphs reveal a high SOC estimation accuracy after
the EKF SOC estimate reaches the 2RC EMC SOC true value. Only Figure 20 shows that if the minimum
threshold of the noise level is exceeded, i.e., the standard deviation is greater than 0.002, the EKF SOC
estimate is biased with respect to 2RC EMC SOC true value.

D Implementation simplicity of EKF estimator in real time MATLAB simulation environment

The experience accumulated until now in modeling, identification, estimation and control design,
as well as all preliminary results obtained in this field, similar to those disseminated in [10], encourage
us to believe that the EKF estimator due to its predictor-corrector structure is a recursive algorithm
that is very simple to be implemented in real time and is computationally efficient. Additionally, the
proposed 2RC EMC model is very simple and also easy to be implemented in real time. Furthermore,
MATLAB platform has a lot of real time features needed for real time implementation of the proposed
EKF state estimator.

3.1.2. Temperature Effects on Li-Ion Battery Model Parameters and on Real Time EKF SOC Estimator
Implementation, Simulation Results and Performance Analysis on MATLAB Platform

In Section 2.1 we have identified all disturbances and the main factors that affect the Li-Ion battery
dynamics in a realistic operating conditions environment. Thus, in “real life” the dynamics of the
battery are seriously affected by these factors, reflected in changes of battery model parameters in
time, and especially dependent on SOC and on the temperature. In this subsection, we consider the
temperature effects on Li-Ion battery model parameters and on the EFK SOC estimator design and
real time implementation, as is detailed in [18,22]. The simulation results performed in a real time
MATLAB simulation environment and a brief performance analysis will be done in this subsection.
Moreover, an improvement can be also done by considering a 3RC EMC Li-Ion battery model that
has a third RC polarization cell connected in series with the OCV source, the internal resistance of the
battery and other two RC polarization cells, as is introduced in [3,21]. The discrete time state space
model that describes the dynamics of the improved Li-Ion battery is introduced in a similar way as is
given in [3,18,22] and also described in the Equations (13) and (14):



Batteries 2018, 4, 19 28 of 39

x(k + 1) = A(k)x(k) + B(k)u(k)
y(k) = C(k)x(k) + D(k)u(k) + Ψ(k, x4(k))

x(k) =
[

x1(k) x2(k) x3(k) x4(k)
]
, A =


1− Ts

T1(k)
0 0 0

0 1− Ts
T2(k)

0 0

0 0 1− Ts
T3(k)

0

0 0 0 1

, B =


Ts

C1(k)
Ts

C2(k)
Ts

C3(k)

− ηTs
Cnom


C = [−1− 1− 1K2 ], D = −R (k)

(22)

Ψ(k, x4(k)) = K0 − K1
1

x4(k)
+ K3 ln(x4(k)) + K4 ln(|1− x4(k)|), x4(k) = SOC(k) (23)

where Ts is the sampling time, t = kTs, k ∈ Z, x(k) = x(kTs), y(k) = y(kTs), u(k) = u(kTs) and the
polarization time constants are given by T1(k) = R1(k)C1(k), T2(k) = R2(k)C2(k), T3(k) = R3(k)C3(k).

The third order 3RC EMC Li-Ion model parameters have the same significance as those defined
in Table 1, but in the extended version, i.e., fourth state space of dimensionality n = 4, the internal
resistance of the battery R(k), the polarization resistances R1(k), R2(k), R3(k), and the polarization
capacitances C1(k), C2(k), and C3(k) are variable parameters and depend on the temperature (T(k))
and on SOC(k). In addition, the values of these parameters differ between charging and discharging
cycles, thus, the cell’s voltage behavior will be described by two sets of parameters, one for charging
and one for discharging, as developed in [18]. Since the difference is not significant in our case
study, we simplify the model by considering equal values for the charging and discharging cycles,
as for 2RC EMC model case. The battery’s parameters are variable with respect to the temperature,
the SOC and the current direction, making the overall Li-Ion battery model nonlinear. As is stated
in [18], experimental data and curve fitting techniques are used to find empirical equations relating the
parameters with the operating conditions. The new Li-Ion battery model can be simplified such that
instead of using the nonlinear characteristics describing the parameter values, the expressions of three
order 3RC EMC battery model parameters are simplified to lower degree equations in order to reduce
the computational complexity as well as to study the robustness of the proposed EKF estimator to
modeling uncertainties, as is done in [18]. The simplifying model procedure is well explained in [18]
following the steps:

• A simplification is done by separately studying each parameter and its variation with respect to
SOC(k) and T.

• The nonlinear equation for the specified parameter is used to generate data for a range of SOC
and sometimes for different temperatures (depending on the case).

• These data will be introduced to a curve fitting procedure where an expression of lower order has
to be found.

• The output of the high order equations model and the output of the lower order equations model
are compared.

For simulation purposes, we combine this procedure with the new modeling approach introduced
in [22] based on the internal impedance measurements mentioned in Section 2.4.3, that dynamically
update the model based on cell temperature and SOC variations, thus, the dynamic battery behavior
may be more accurately predicted. This is possible since the internal battery impedance is inversely
proportional to its temperature. The effects of SOC variation is only taken into account to update the
OCV parameter. Also, in this new approach all three RC polarization cells parameters are not updated
for SOC variations since they are minimally affected at a frequency of interest in HEVs, as is stated
in [22]. To build the third order 3RC EMC Li-Ion battery model, the designer can follow the design
procedure steps detailed in [22]:

• Step 1. Initiate a battery discharging cycle at a nominal discharging current based on a given SOC
interval step to obtain the effect of SOC on OCV parameter
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• Step 2. Measure the internal impedance:

Z(jω) = R + (R1||
1

jωC1
) + (R2||

1
jωC2

) + (R3||
1

jωC3
), ω = 2π f (24)

The extracted values from the internal impedance Z(jω) for RC polarization battery cell
parameters, i.e., the resistances R, R1, R2, R3, and the capacitances C1, C2, and C3 are obtained at
various temperature conditions through sinusoidally perturbing the frequency of the discharging
current while measuring the battery terminal voltage.

• Step 3. Apply a curve fitting method to obtain the resistive and capacitive RC battery
polarization cell component values based on the measured internal impedance at the various
temperature conditions.

• Step 4. Update the battery model parameters dynamically based on the collected data and
self-heating, described by the following thermal model equation [22]:

mCp
dTcell

dt
=

V1

R1
+

V2

R2
+

V3

R3
− hConvScell(Tcell − TAmbient) (25)

where m is the battery mass (kg), Cp is the specific heat (J/(kg·K)), Vi|i=1,3 are the RC polarization
cells voltages, hConv is the heat transfer coefficient (W/(m2·K)), Scell is cell surface area (m2), Tcell
is the cell temperature (K) and TAmbient is the ambiental temperature (K). This thermal model is
easy to be modeled in SIMULINK. In [22], p. 50, Table 3.1 are given the values of the extracted
model parameters for four different temperatures: 5 ◦C, 10 ◦C, 15 ◦C, 20 ◦C, shown below in
Table 2 also:

The collected data can be considered as four different 3RC EMC combined models set to the same
values for the coefficients K0, K1, K2, K3, K4 that appear in the Equation (23) and given in Table 1.
The MATLAB simulation results reveal the superiority of the 3RC EMC Li-Ion battery EKF SOC
estimator compared to 2RC EMC Li-Ion Battery EKF SOC estimator developed in Sections 3.1 and 3.1.1.
It converges much faster, is robust to all model parameters affected by the SOC and temperature, and
is very accurate. Also, by comparing the SOCs true values with their EKF and ADVISOR estimates
we validate all these four 3RC EMC Li-Ion battery models. These simulation results obtained in a
MATLAB simulation environment are shown in the following four figures, Figures 23–26.

Table 2. Extracted Li-Ion 3RC EMC model parameters.

Li-Ion Battery Parameter Temperature (◦C) Unit

5 10 15 20 mΩ
R 8 8.1 7.5 7.6
R1 4.3 4.1 1.9 1.0 mΩ
R2 5.5 3.5 2.5 1.8 mΩ
R3 10 7.5 5.1 3.2 mΩ
C1 0.4 0.4 0.3 0.3 F
C2 4.3 4.1 4.1 4 F
C3 49.8 35.3 3.9 35.1 F



Batteries 2018, 4, 19 30 of 39

Figure 23. The 3RC EMC SOC model versus EKF SOC and ADVISOR SOC estimates for T = 5 ◦C.

Figure 24. The 3RC EMC SOC model versus EKF SOC and ADVISOR SOC estimates for T = 10 ◦C.

Figure 25. The 3RC EMC SOC model versus EKF SOC and ADVISOR SOC estimates for T = 15 ◦C.
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Figure 26. The 3RC EMC SOC model versus EKF SOC and ADVISOR SOC estimates for T = 20 ◦C.

3.2. Real-Time PI Observer SOC Estimator

Using an additional integrator, the proportional integral observer (PIO) is reported in the literature
to be a state estimator more robust with respect to modeling uncertainties, as is stated also in [2].
Since in reality, few modeling errors exist in the proposed 2RC EMC Li-Ion battery model, the PIO
is considered capable to improve the accuracy and estimation speed of SOC estimation [2]. Thus, a
PIO SOC real-time estimator is proposed in this section, and its corresponding SIMULINK model is
shown as a block diagram in Figure 27. The EMC Li-Ion battery dynamics are described in state-space
representation in a continuous time domain specified in Equations (11) and (12), implemented in
real-time on SIMULINK, as is shown in Figure 28. In Figure 29, one can see the SIMULINK model of
the integrated structure 2RC EMC Li-Ion battery observer estimator. The SIMULINK model of the
PI Observer block is shown in Figure 30. Nevertheless, considering the modeling errors, capacity
variation, and the additional output sensor noise, the 2RC EMC Li-Ion battery model given by (11)
and (12) is not sufficient to model the entire dynamics of the Li-Ion battery.

The nonlinear part should be added to the 2RC EMC Li-Ion battery model, which could be
described as follows:

dx(t)
dt = Ax(t) + Bu(t) + Ev(x, u, t)

y(t) = Cx(t) + Du(t) + ψ(x(t))
(26)

where E describes the influence of the nonlinearities included in the 2RC EMC Li-Ion battery states’
dynamics, and the disturbance v(x, u, t) describes the nonlinearities, unknown-inputs, and un-model
dynamics of the battery and may be a nonlinear function of states, inputs and time, caused specially
by the temperature and sensor noise, as is mentioned in [2]. Fortunately, for special applications from
HEVs fields the variation rate of the temperature could be very slow, and thus dv(x,u,t)

dt = 0. Moreover,
the operation temperature range for the Li-Ion battery is limited for the consideration of life cycle
and safety operation. Consequently, as is stated in [2] the disturbance nonlinear function “v(x, u, t)
should also be in a small range due to the influence of temperature”. For a strict temperature control in HEVs
applications, “the temperature would be stable after a short time, thus lim

t→∞
v(x, u, t) exists for the influence of

temperature”. In addition, “sensor failure could also be considered to be slow changing, and thus the assumption
dv(x,u,t)

dt = 0 could be reasonable”, as is mentioned also in [2]. Due to a small change rate, “the sensor drift
could be neglected for a certain drive cycle from EVs/HEVs ADVISOR collection, as it changes very little for
one-day drive of a particular vehicle, thus it is reasonable to assume that lim

t→∞
v(x, u, t) = 0 for the influence of

current sensor”, as is stated in [2].
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As mentioned above, in Figure 30 you can see the SIMULINK block of PIO, designed according
to the definition of double integrator PIO given in [2], and its dynamics are described by the following
set of first order differential equations [2]:

dx̂(t)
dt = Ax̂(t) + Bu(t) + Kp(y(t)− ŷ(t)) + Ki2 w(t)

dw(t)
dt = Ki1(y(t)− ŷ(t))

(27)

where x̂(t), w(t) are the estimated Li-Ion battery state vector, and a new scalar variable that penalizes
the accumulation, i.e., by integration operation, of the error (y(t)− ŷ(t)) between the 2RC EMC Li-Ion
battery terminal output voltage y(t) and its estimated value by PIO real-time estimator. The vectors
Kp ∈ R3×1, Ki1 ∈ R1×1 and Ki2 ∈ R3×1 represent the proportional and integral gains, respectively.
Their tuning values will be set by assuming as in [2] that the following matrix pair is observable:

(

[
A E
0 0

]
, [ C 0 ]), (28)

that is equivalent to:

rank

{[
A Ki2
C 0

]}
= n + r = 3 + 1 = 4 (29)

where n, r are the 2RC EMC Li-Ion battery model dimension, i.e., n = 3 (states), and the Li-Ion battery
terminal voltage dimension, i.e., r = 1, respectively. Through a poles assignment procedure [2], and
performing some matrix manipulations in Equation (29) we obtain the most suitable tuning values for
each of PIO real-time estimator parameters, such as:

Ki2 =

 0.00028749
−0.0028
0.00001

, E = Ki2 , Ki1 = 0.00001,

Kp =

 0.00001
0.0001
0.008


(30)

Remark 1: The elements of vector Kp ∈ R3×1 and the value of the scalar gain Ki1 are tuned by trial
and error procedure, similar the one used to tune PI controller parameters, until you get the best SOC
estimation performance.

Figure 27. The overall architecture of the PI Observer design.
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Figure 28. The Simulink model of the measurements’ generator block.

Figure 29. The architecture of Simulink models for 2RC EMC Li-Ion battery and estimator.

Figure 30. The Simulink model of PI Observer.

The Simulink model of the disturbance and noise generator is shown in Figure 31.
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Figure 31. The Simulink model of the disturbance and noise generator.

3.3. Real-Time PIO SOC Estimator SIMULINK Simulation Results

The simulation results of PIO real-time estimator are shown in Figures 32–39.
These results are split into two distinct groups, the first one contains the SIMULINK simulation

results that prove the PIO estimator robustness to changes in initial SOC value from 70 to 40% and to
one disturbance representing a slow nonlinear function v(x,u,t), as shown in Figures 32–36 The second
contains the SIMULINK simulation results that also prove the robustness of 2RC EMC PIO real time
estimator to the same changes in initial SOC value mentioned above, and in addition, the robustness
to a Gaussian white noise of zero mean and standard deviation, σ = 0.001 shown in Figures 37–39.
The SIMULINK simulation results reveal a good convergence, very good accuracy after approximately
1000 s, and the convergence speed being slow compared to both 2RC and 3RC EMC EKF SOC real-time
estimators. The PIO real-time estimator is robust to changes in initial SOC value, and to the slow
varying disturbance as a nonlinear function or current sensor noise level.

Figure 32. The 2RC EMC Li-Ion Battery SOC versus PIO SOC real-time estimator.

Figure 33. The 2RC EMC Li-Ion battery terminal voltage versus PIO estimate.



Batteries 2018, 4, 19 35 of 39

Figure 34. The slow disturbance nonlinear function components.

Figure 35. The robustness of 2RC EMC Li-Ion battery PIO SOC estimator to the changes in SOC initial
value from 70 to 40%.

Figure 36. The 2RC EMC Li-Ion battery terminal voltage versus its PIO estimate, and the estimator
robustness to a change in SOC initial value from 70 to 40%.
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Figure 37. The robustness of 2RC EMC Li-Ion battery PIO SOC estimator to simultaneous changes in
SOC initial value and to the sensor white noise level of zero mea and standard deviation σ = 0.001.

Figure 38. The robustness of 2RC EMC Li-Ion battery PIO estimator, to simultaneous change in SOC
initial value and the measurement output white noise level of zero mean and standard deviation σ = 0.001.

Summarizing this section, we can say that it is not really necessary to build a benchmark based
on the performance assessment in terms of error statistics, such as root mean square error (RMSE),
mean absolute error (MAE), and mean square error (MSE) [10] as long as it is much simpler to perform
a visual examination of MATLAB and SIMULINK simulations performance results of both proposed
SOC estimators on similar graphs, and you can see that the EKF estimator performs better than PIO in
terms of simplicity, robustness, estimation accuracy, and convergence speed. This is an improved 3RC
EMC Li-Ion battery model. So, the most suitable real time estimator for this kind of HEVs applications
is the EKF SOC estimator.

Figure 39. The measurement output white noise level of zero mean and standard deviation σ = 0.001.
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4. Conclusions

In this research article, we propose two suitable models for a particular HEV Li-Ion battery,
the first one is of high simplicity and accuracy, easy to be implemented in real time and provides
a beneficial support to build two real-time SOC estimators, namely, EKF and PIO SOC estimators.
To have a good insight into the realistic battery life environment, a new improved 3RC EMC Li-Ion
battery model with time varying parameters and dependent on SOC and temperature, dynamically
updated based on a thermal model, is investigated. This improved model selection is a good support
to prove the robustness of the proposed EKF SOC estimator to the model parameter changes from all
four models extracted at different temperatures, as is shown in Section 3.1.2. The robustness is also
investigated for:

• changes (increase or decrease) in SOC initial values
• simultaneous changes in SOC initial value and measurement current sensor noise level
• simultaneous changes in SOC initial value and changes in internal resistance of Li-Ion battery

due to the effects mentioned in Section 2.1, especially the temperature effects
• simultaneous changes in SOC initial value and the nominal value of the battery capacity due to

aging and/or temperature effects

By a rigorous performance analysis of MATLAB and SIMULINK simulation results for both
proposed real time SOC estimators in terms of convergence speed, robustness, SOC estimation accuracy,
battery terminal voltage prediction and real time implementation simplicity, in our opinion the EKF
SOC estimator is the most suitable real time estimator for this kind of HEVs applications compared to
PIO SOC estimator. For sure, in other HEVs applications, perhaps the PIO SOC real time estimator
could perform better than the EKF SOC estimator, especially considering its main drawback of
required model linearization, so an important limitation in accurately capturing the entire dynamics
of the battery. Many other topics remain open for future investigations, such as accurate online SOC
estimation that needs reliable cell current measurements. This is difficult for the battery pack in the
balancing process due to the existence of balancing current and this challenge is not solved in the
literature. In the future work, we are interested to develop real time adaptive and fuzzy logic SOC
estimation strategies for batteries of different chemistries, for which the battery models will be further
improved by integrating the effect of degradation, temperature and SOC effects. Regarding the level
of the battery pack performance, we are interested in improving it by considering mismatches among
the battery cells and the non-uniformity of the temperature distribution in the cell (balancing cells),
modules and battery pack. However, this can further complicate the calculations that should be done
by the BMS in real time.
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Abbreviations

NiCad nickel cadmium
NiMH nickel metal hydride
Li-Ion lithium-ion
EV electric vehicle
HEV hybrid electric vehicle
BMS battery management system
EMC equivalent model circuit
ADVISOR advanced vehicle simulator
EPA environmental protection agency
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UDDS urban dynamometer driving schedule
FTP-75 federal test procedure at 75 F
FE fuel economy
HWFET highway fuel economy test
OCV open-circuit voltage
EKF extended Kalman filter
PIO proportional-integral observer
SOH state of health
DOD depth of discharge
NREL national renewable energy laboratory
UKF unscented Kalman filter
EnKF ensemble Kalman filter
PF particle filter
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