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Abstract: High-entropy materials (HEMs) constitute a revolutionary class of materials that have
garnered significant attention in the field of materials science, exhibiting extraordinary properties
in the realm of energy storage. These equimolar multielemental compounds have demonstrated
increased charge capacities, enhanced ionic conductivities, and a prolonged cycle life, attributed to
their structural stability. In the anode, transitioning from the traditional graphite (372 mAh g−1)
to an HEM anode can increase capacity and enhance cycling stability. For cathodes, lithium iron
phosphate (LFP) and nickel manganese cobalt (NMC) can be replaced with new cathodes made
from HEMs, leading to greater energy storage. HEMs play a significant role in electrolytes, where
they can be utilized as solid electrolytes, such as in ceramics and polymers, or as new high-entropy
liquid electrolytes, resulting in longer cycling life, higher ionic conductivities, and stability over wide
temperature ranges. The incorporation of HEMs in metal–air batteries offers methods to mitigate
the formation of unwanted byproducts, such as Zn(OH)4 and Li2CO3, when used with atmospheric
air, resulting in improved cycling life and electrochemical stability. This review examines the basic
characteristics of HEMs, with a focus on the various applications of HEMs for use as different
components in lithium-ion batteries. The electrochemical performance of these materials is examined,
highlighting improvements such as specific capacity, stability, and a longer cycle life. The utilization
of HEMs in new anodes, cathodes, separators, and electrolytes offers a promising path towards future
energy storage solutions with higher energy densities, improved safety, and a longer cycling life.

Keywords: high-entropy materials; lithium-ion batteries; anodes; cathodes; electrolytes; lithium–
sulfur; metal–air

1. Introduction

In recent years, the development and improvement of battery technologies have
become paramount, as they underpin the evolution of various industries, ranging from
consumer electronics to electric vehicles and renewable energy storage. Lithium-ion batter-
ies (LIBs) have stood as the cornerstone of rechargeable energy storage systems for several
years, with the specific energy of a commercial battery pack increasing from 80 Wh kg−1 in
1991 to over 360 Wh kg−1 in 2023 [1]. The success of LIBs is largely attributed to their high
energy density, reliability, and versatile applicability. However, as the electrification of all
sectors of the economy continues, there is an increasing need for advanced battery materials
that can push the boundaries and provide higher energy storage beyond the current yearly
incremental growth. In view of this, recent trends have seen increased research in the area
of high-entropy materials (HEMs). HEMs are a relatively new class of materials with a
unique set of properties that cover a wide range of applications such as high-strength mate-
rials, corrosion resistance, catalysis, energy storage, and biomedical applications. These
materials are multielement compounds with an equimolar composition that form stable
single solid solutions [2]. In energy storage applications, HEMs have shown promise in
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anodes, electrolytes, cathodes, and catalysis due to their high capacities, from multi-metal
ions, enhanced ionic conductivities, and their high structural stability leading to increased
cycle life. Therefore, the present review starts by covering the main concepts and properties
of high-entropy materials, along with a discussion of how these materials are generally
characterized. The main focus is on the current state of battery components, such as anodes,
cathodes, electrolytes, separators, and catalysts, and how HEMs can be used to improve
the performance of these components. It is observed that previous reviews have focused
on energy storage across a broad array of applications, such as catalysis, hydrogen storage,
supercapacitors, oxygen evolution reactions, and rechargeable batteries [3,4]. Nevertheless,
a focused review of the implications of using HEMs in various components of batteries has
not been discussed before. The inclusion of HEMs in new battery components is beneficial
due to their enhanced capacities and higher stabilities, which can lead to improved charge
storage and cycle life of batteries. In the anode, graphite has long served as the workhorse
due to its high stability. Nevertheless, graphite’s limited theoretical capacity has propelled
research into alternative materials with higher energy storage capabilities. High-entropy
anodes benefit from their improved structural stability, which reduces the material stress
during charge/discharge and thereby extends the cycle life of the battery. Simultaneously,
the storage capacity is also extended far beyond the limits of a graphite anode. Several
cathode chemistries have evolved over the years, such as lithium iron phosphate (LFP),
nickel manganese cobalt oxide (NMC), and lithium cobalt oxide (LCO), and are commonly
used in LIBs. New advances in high-entropy synthesis have led to the potential of high-
entropy materials replacing these cathode compositions due to their enhanced structural
stabilities leading to an improvement in the cycle life and energy density. Additionally,
incorporating multiple elements in the cathode composition reduces the percentage of
expensive elements, such as cobalt and nickel, thus enabling the creation of cost-effective
cathodes. The critical elements, which generally have increased costs, can be substituted
with more cost-effective alternatives. High-entropy materials, combined with polymers
or as standalone ceramic materials, can also be used as new electrolytes with applications
beyond LIBs such as in sodium ion batteries or lithium–sulfur batteries. These electrolytes
aim at increasing the ionic conductivity while maintaining the electrode/electrolyte inter-
face for use in new solid-state batteries. The world of energy storage is at the precipice of
transformation, driven by innovations in anode materials, cathode chemistries, and solid
electrolytes. Incorporating HEMs into future battery components will decrease the overall
cost per unit of energy (USD/mAh) through increased capacities and other performance
enhancements. With the recent development of cost-effective synthesis methods, such as
ball milling, microwave, electrochemical, aerosol, and co-precipitation methods, scalable
synthesis methods have emerged, which can be adapted to industrial levels of output. The
summary below aims to identify some of the recent advances and provide possible future
research paths.

2. Basics of High-Entropy Materials
2.1. Background and Basic Equations

Throughout recorded history, individuals have melded metals to enhance various
physical attributes in them like strength, durability, ductility, conductivity, and luster. The
exploration of alloys can be traced back to ancient times, approximately 2500 BCE, when
the fusion of copper and tin gave rise to the creation of bronze. Noteworthy alloys such
as bronze, brass, and steel share a common characteristic—they are comprised of a pre-
dominant element (copper for bronze and brass, iron for steel) that is blended with trace
amounts of other elements like tin in bronze or carbon in steel. The modest proportions
of additional elements in most alloys are emblematic of conventional alloying practices
and are typically controlled during the synthesis process. Traditionally, during alloying,
the added elements substitute an atom of the predominant element at the lattice position.
Many contemporary alloys consist of a primary element, with supplementary elements
incorporated at lower concentrations. For example, in the case of 6061 aluminums, Al
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constitutes 98.56%, with Mg and Si as the next highest concentrations. High-entropy alloys
(HEAs), in contrast, exhibit a near-equimolar composition, comprising five or more ele-
ments, with no single element dominating the composition. This positions the composition
toward the center of the phase diagram, departing from the conventional placement at the
periphery that is seen for traditional alloys. The absence of any one element as the majority
in the composition stands out as a key distinction between traditional alloy systems and
high-entropy materials (HEMs).

An alternative method for discerning between traditional and high-entropy systems
lies in their crystal structure. In traditional alloys’ unit cell, the predominant element is
typically encircled by either similar predominant elements or by single atoms of elements
that are present in lower concentrations. Conversely, a high-entropy unit cell with an
equimolar composition of five elements in the crystal structure will likely have its closest
neighboring atoms be dissimilar atoms. This results from the random and equal distribution
of all atoms throughout the structure. The arrangement of atoms in a traditional alloy and
an HEM alloy can be seen below in Figure 1. In Figure 1A, the majority atom (gray balls)
makes up a large percentage of the composition and is surrounded by small quantities of
other elements (differently colored balls). In Figure 1B, there is no element that makes up
the majority of the composition, and all atoms are randomly distributed in the structure.
The stochastic arrangement of atoms significantly boosts entropy in HEAs, contributing to
the creation of distinctive material properties.
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Figure 1. Schematic of unit cells. (A) Traditional unit cell. (B) HEM unit cell. Reprinted with
permission from ref. [5]. Copyright© 2017 Elsevier (Amsterdam, The Netherlands).

Further, the formation of phase diagrams and crystal structures is influenced by the
thermodynamic conditions in a system, as determined by two primary equations: the Gibbs
free energy (Equation (1)) and the Boltzmann entropy equation (Equation (2)) [2]. The Gibbs
free energy (∆Gmix) consolidates the enthalpy (∆Hmix), temperature (T), and entropy (∆Smix)
into a single parameter, serving as a key indicator for predicting spontaneous reactions
and the formation of stable solutions. A reaction is likely to occur spontaneously when the
Gibbs free energy is negative, achieved through negative enthalpy (typical for traditional
materials) or a sufficiently large entropy term that drives the total Gibbs energy below
zero [2]. The Boltzmann equation establishes a connection between the system entropy and
the potential microstates. In materials with high entropy, the increases are attributed to the
random alignment of atoms. Equation (2) illustrates the configurational entropy for both
cation and anion positions, with R presenting the gas constant, S1 being cation sites, S2
being anion sites, and Xi and Xj representing the molar composition of each element [2].
In conventional alloys with a dominant element and several minor elements, the system’s
entropy remains low. Conversely, in the creation of HEMs with equimolar compositions,
the entropy term can be maximized, facilitating the formation of stable solid solutions.
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∆Gmix = ∆Hmix − T∆Smix (1)

Scon f ig = −R
[(

∑N
i=1 Xi ln Xi

)
S1

+
(
∑M

j=1 Xj ln Xj

)
S2

]
(2)

In the case of an equimolar composition, the Boltzmann equation is simplified to
Equation (3), where R represents the gas constant and N is the count of equimolar ele-
ments [2]. Defining a specific threshold for high entropy can vary slightly, but is generally
considered to be achieved when the entropy attains a minimum value of 1.5R, necessitating
the presence of five or more equimolar elements.

Scon f ig = R [ln N] (3)

The determination of whether a material will attain a state of high entropy is governed
by the system’s thermodynamics, as influenced by the Gibbs free energy and the Boltzmann
equation. Traditional alloying techniques often fall short in meeting this criterion for
high entropy. Consequently, novel synthesis techniques must be developed to enable the
attainment of this elevated level of mixing.

2.2. Four Core Effects

High-entropy materials are characterized and defined by four key concepts: the high-
entropy effect, lattice distortion effect, sluggish diffusion effect, and the cocktail effect [2,5–7].
These fundamental factors collectively contribute to shaping the distinctive features of
HEMs. Figure 2 highlights the four core effects that are attributed to high-entropy materials.
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The primary characteristic and foundational aspect of HEMs is the high-entropy
effect. The elevation in entropy is a consequence of the heightened configurational entropy
within the system, as previously mentioned. While various types of entropy exist, such as
vibrational, electronic, and magnetic, it is the configurational entropy that takes precedence,
exerting a dominating influence [5]. This rise in configurational entropy surpasses the
enthalpy term in the Gibbs free energy equation (refer to Equation (1)), leading to a
reduction in the free energy of the structure and consequently enhancing the system’s
stability for HEM formation [2]. The augmented configurational entropy facilitates the
creation of stable solid solutions [6].

The second phenomenon is the lattice distortion effect, stemming from the disparate
sizes of atoms within the crystal structure [2,5]. In a typical alloy’s crystal arrangement, the
introduction of minor atoms induces local strains, resulting in a subtle lattice distortions.
In the case of HEMs, a notable degree of strain is evident in the crystal lattice due to the
diverse sizes of each element that is distributed randomly throughout the structure. These
lattice distortions contribute to a reduced intensity in the X-ray diffraction peaks and can
be associated with the lower thermal conductivities observed in HEMs due to increased
scattering. Additionally, this heightened strain can contribute to the reinforcement and
fortification of HEMs [6].

The third impact is characterized by a delayed diffusion process, arising from the
lattice distortions that impeded the motion of atoms within the structure [2]. Each atom
within the crystal lattice finds itself encircled by diverse neighboring elements. The central
atom, positioned at a specific site, experiences substantial interaction with the surrounding
atoms, leading to varied bonding energies between them [7]. Consequently, this variance
in bonding energies contributes to an elevation in activation energies within the HEMs,
heightening the challenge of facilitating substitutional diffusion.

The phenomenon known as the cocktail effect characterizes the distinctive attributes
of HEMs. In conventional alloys, supplementary elements are often introduced to enhance
properties, such as corrosion resistance or hardness, typically interacting solely with the
primary element. In contrast, the incorporation of additional elements in HEMs results in
interactions not only with a primary element but also with multiple neighboring elements.
This heightened level of interaction, stemming from the extensive mixing in the structure,
gives rise to HEM properties that surpass the cumulative qualities of their individual
components. The blending of multiple elements yields unforeseen properties that a single
element alone cannot provide [8]. The interplay among diverse elements introduces an
element of unpredictability, resulting in HEMs possessing distinctive physical properties.

The specific properties that are found in HEMs are contingent upon the synthesis pro-
cess employed. Varied synthesis techniques yield different HEMs, including high-entropy
alloys, oxides, carbides, etc., each exhibiting diverse characteristics such as strength, con-
ductivity, and thermal and magnetic properties. The development towards high-entropy
materials, as depicted in Figure 3, has spanned many years and has been propelled by
an overall increase in chemical complexity. The complexity has increased as new ele-
ments represented the majority element and additional elements were included in minor
concentrations in the compositions, increasing the overall entropy of the system.
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2.3. Characterization of High-Entropy Materials

Several methods are available to determine whether a high-entropy material has been
successfully produced. Phase identification can be achieved through either X-ray diffraction
(XRD) or selected area electron diffraction (SAED). Many HEMs that are formed through
common HEM synthesis techniques exhibit simple crystal structures, such as rock salt,
FCC, BCC, Cubic, and spinel structures. These structures can easily be identified by XRD
and SAED patterns [10–12]. Basic crystal structures become apparent when a single-phase
solution is formed, distinguishing it from a material with different phases, which is not a
characteristic of an HEM [4]. However, relying solely on XRD and SAED is insufficient for
confirming the successful synthesis of an HEM.

Microscopy techniques, such as scanning electron microscopy (SEM) and transmission
electron microscopy (TEM), along with high-resolution TEM (HR-TEM) when nanopar-
ticles are involved, are necessary to study the morphology of a material. In conjunction
with the microscopy, energy-dispersive X-ray spectroscopy (EDX) is used to quantify the
homogenous distribution of elements within a particle [4,13]. A well-formed HEM particle
should exhibit homogeneous distribution of all elements at the atomic scale, which can be
observed with EDX mapping techniques.

Some elemental compositions, like those involving lithium, are not easily studied using
EDX techniques. The use of lithium in HEMs is common, especially in battery applications.
The most precise method for determining material composition is through the use of
inductively coupled plasma–optical emission spectroscopy (ICP-OES). This method helps to
acquire the exact distribution of elements in the material. When lithium is included in a high-
entropy material, performing ICP-OES becomes necessary, as many synthesis techniques
involve elevated temperatures, and there is a concern that temperatures exceeding 800 ◦C
during the synthesis can result in lithium evaporation [4].

3. Components of High-Entropy Batteries
3.1. Anodes

Graphite has been used as a common anode material in Li-ion batteries for several
years. Its intercalation mechanism makes it very stable, but it suffers from a low theoretical
capacity of 372 mAh g−1 [4]. Transition metal oxides (TMOs) have been widely studied as
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active materials for new LIBs, offering large theoretical capacities compared to conventional
graphite anodes [2]. Materials such as CoxOy, ZnO, CuO, MnxOy, Fe3O4, and Fe2O3 are
attracting attention due to their high capacity and low price [14]. For instance, iron oxides
are attractive candidates for anodes due to their natural abundance, non-toxicity, and low
cost. For example, Fe2O3 has the following reaction mechanism and exhibits a theoretical
specific capacity of 1006 mAh g−1 [15]:

Fe2O3 + 6Li+ + 6e−
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Manganese oxides, such as MnO and Mn2O3, are abundant on the Earth; have a
low potential (1.03 and 1.43 V), low polarization, and high theoretical capacity (756 and
1018 mAh g−1); and are environmentally friendly [15]. Other TMOs, such as NiO and CuO,
have also been studied for potential anode applications. A summary of the theoretical
capacities of these TMOs can be found in Table 1.

Table 1. Summary of the characteristics of various transition metal oxides for lithium-ion batteries [16].

Material Voltage (V) Specific Capacity (mAh g−1) Gravimetric Energy
Density (Wh kg−1)

MnO 1.03 756 779
FeO 1.61 746 1201
CoO 1.80 715 1287
NiO 1.95 718 1400
CuO 2.25 674 1517

Mn2O3 1.43 1018 1455
Fe2O3 1.63 1007 1641
Cr2O3 1.09 1058 1153

Although these TMOs have higher theoretical specific capacities, their crystal struc-
tures undergo significant volume changes during cycling, leading to rapid capacity de-
cay [2,15]. This limitation restricts their applications for long-term stable and efficient
batteries.

Recently, entropy-stabilized metal oxides have been suggested as a replacement for
graphite anodes due to their excellent Li-ion conductivity and stabilized crystal struc-
tures [2]. A recent study on (Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)O with a rock salt structure demon-
strated an initial discharge capacity of 980 mAh g−1 [14]. The composition of this material
can be modified to create a medium-entropy oxide (MEO) anode by selectively removing
individual elements from the structure. It was observed that removing a single element
affected the electrochemical behavior and long-term cycling of the entire material [17]. This
improvement in cycle stability was attributed to the increased structural stability of the
HEM. The structure remains highly stable with cycling, as Cu and Co are electrochemically
active and participate in the conversion reaction, while others such as Mg contribute to
maintaining the structural integrity [2]. Ni and Zn are also used to increase the energy
density of the material, while Zn benefits from a low lithiation/delithiation potential,
delivering a high output voltage and energy density [18,19]. Guo et al. showed that
modifications to high-entropy oxides can result in a long cycling life (1000 cycles) while
maintaining a high capacity of 460 mAh g−1 at charging rates of 1000 mA g−1 [20]. At
lower charging rates of 100 mA g−1, the capacity exceeds 950 mAh g−1 after 200 cycles,
proving the high structural stability of high-entropy materials when used as anodes [20].
Lök
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resulted in the creation of a greater number of oxygen vacancies within the structure [21].
This increase in oxygen vacancies led to a higher discharge capacity, reaching a maximum
of 1930 mAh g−1 at 35% Li inclusion [21]. Table 2 below shows a summary of a select
number of high-entropy anodes and their cycling characteristics. Figure 4 illustrates the
cycle life of several such high-entropy anodes. The various anodes are a combination of
elements from Table 1 and highlight their increased capacities over traditional graphite
anodes while maintaining the capacity for a large number of cycles at high charging rates.
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Zn)0.65Li0.35O (F) (FeCoNiCrMn)3O4. Reprinted with permission from refs. [20–25]. Copyright© 2022
Elsevier; Copyright© 2022 American Chemical Society (Washington, DC, USA); Copyright© 2019
Elsevier; Copyright© 2020 Elsevier; Copyright© 2021 Springer Nature; Copyright© 2021 American
Chemical Society.



Batteries 2024, 10, 96 9 of 22

Table 2. Various high-entropy materials employed as potential battery anodes.

Composition Cycles Initial Capacity
(mAh g−1)

Final Capacity
(mAh g−1)

Current
Density Ref.

Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O 300 ≈1500 ≈935 0.1 A g−1 [22]
MgCoNiZnCuO-GO 1000 460 460 1.0 A g−1 [20]

(MgCoNiZi)0.65Li0.35O 100 ≈680 610 1.0 A g−1 [21]
(FeCoNiCrMn)3O4 300 ≈660 402 0.5 A g−1 [23]

(Al0.2CoCrFeMnNi)0.58O4−δ 500 2234 536 0.2 A g−1 [24]
(CoCrFeMnNi)3O4 50 1133 980 0.1 A g−1 [25]

Silicon is another potential anode due to its extremely high theoretical capacity of
4212 mAh g−1. However, its poor cyclability due to a significant volume expansion (~300%)
when alloyed with Li restricts its widespread application. This volume expansion can
also lead to the rupture of the solid electrolyte interface (SEI) layer that is formed on the
surface of the Si anode, causing it to reform with each cycle, resulting in the consumption of
Li ions [4]. To address this issue, Si is combined with other elements to create a high-entropy
alloy (HEA) that has the potential to retain a high capacity and stabilized crystal structure
and restrict the volume expansion. Alloys of Si49Cu42Ag7Sn2, while not high-entropy
materials, have shown stable capacities around 1000 mAh g−1 and provide insight into
possible future high-entropy alloy compositions [26]. Several other common elements alloy
with lithium, such as Al, Zn, Ga, Ge, Ag, Sn, Sb, and Bi, and could be used to replace
current graphite anodes with stable electrochemical performance [27].

Rock-salt-based structures have been the most commonly studied crystal structure for
new battery anodes. However, other crystal structures, such as the spinel, may also prove
useful as a Li-ion battery anode. The spinel structure offers three-dimensional Li+ diffusion
channels and a random distribution of cations at two Wychoff sites [28]. This increased
number of diffusion channels allows for higher ionic conductivities, which can accelerate
the reversible redox reaction and result in faster charging times and higher capacities.

Battery degradation in graphite anodes is the result of induced stress during lithiation
leading to cracking on the electrode surface. Thus, the high structural stability of HEMs
can better withstand the lithium insertion with enhanced cycle stability and energy density
compared to conventional graphite anodes.

3.2. Cathodes

Over the years, several cathode chemistries have been utilized in LIBs. Conventional
cathode materials are typically classified into three categories based on their structure;
layered oxides (LCO, NMC), spinel oxides (LMO), and polyanion (LFP) [29,30]. Figure 5
gives a summary of some common cathode chemistries and a potential HEM cathode,
highlighting their performances and costs.

The most popular structures for cathode chemistries are layered oxides and polyanion
structured materials. Lithium cobalt oxide (LCO) is one of the original cathode materials
that are primarily used in consumer electronics. However, it is not practical for EVs due
to the structural instability caused by delithiation and its high cost resulting from the
significant use of cobalt [31]. Nickel manganese cobalt oxide (NMC), a class of layered
oxide cathodes, is extensively researched in lithium-ion systems due to their higher spe-
cific capacities compared to polyanion materials like lithium iron phosphate (LFP) [31].
NMC cathodes typically have a capacity of around 200 mAh g−1, depending on their
composition. Spinel and layered oxides exhibit good electronic conductivities and high
energy densities [30]. Layered oxides are preferred over the spinel structure, as the latter
is challenging to stabilize using conventional synthesis techniques due to its highly oxi-
dized M3+/4+ states [30]. One common spinel structured cathode composition is LiMn2O4,
but it suffers from Mn dissolution and experiences capacity fade, particularly at elevated
temperatures [30].
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On the other hand, LFP is a polyanion-structured cathode material with a flat dis-
charge plateau and a capacity ranging from 150 to 170 mAh g−1 [32]. It also offers several
advantages over layered oxides, such as high thermal stability, improved safety, and cost-
effectiveness. The strong covalent bonding of oxygen to P, S, or Si in the PO4 tetrahedral
unit enables LFP to exhibit a long cycle life and greater electrochemical stability, making
it ideal for repeated charging applications [30,31]. Unfortunately, LFP suffers from poor
electronic conductivity and often requires additives like conductive carbon, leading to
increased manufacturing costs [30]. Due to earth-abundant iron and a long cycle life,
LFP may provide better long-term benefits for applications such as EVs and grid energy
storage [30,31].

Recent research has shown that high-entropy cathodes can offer a potential replace-
ment for current cathode materials by incorporating various elemental compositions, avoid-
ing toxic or rare elements, and providing increased structural stability through high-entropy
stabilization, resulting in improved and unexpected electrochemical performances [33].
HEM cathodes are expected to have fast charging rates, high energy densities, high stability,
and high levels of safety. Furthermore, high-entropy materials can now be synthesized
relatively easily in both layered oxides and spinel structures, allowing for a wider range
of electrochemical performances. Initial attempts at synthesis have been achieved by
introducing fluorine and lithium to high-entropy oxide materials. Compositions such
as Lix(Co0.2Mg0.2Cu0.2Ni0.2Zn0.2)OFx have been synthesized by initially producing the
HEO (CoMgCuNiZn)O and ball-milling it with LiF precursors [3,34]. This composition
has demonstrated enhanced cycling stability and coulombic efficiency owing to high-
entropy stabilization [3,34]. The oxyfluoride transformation has changed the HEO from a
conversion-type lithiation mechanism to an insertion-type, thereby increasing the working
potential of the material to 3.4 V, compared to an HEO without fluorination of having a
potential of 1.0 V [4,35]. Zhao et al. showed that high-entropy materials can be used to
stabilize sodium cathode chemistries and were able to maintain a high capacity at charging
rates of up to 3 C for 500 cycles, resulting in a capacity retention of 83% [36]. These new
types of cathodes provide increased stability, higher site energies for lithium accommoda-
tion, and improved energy storage capacity [4]. Table 3 below shows a summary of a select
number of high-entropy cathodes and their cycling characteristics. And Figure 6 highlights
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the charge and discharge cycling of several different compositions of high-entropy cathodes
and show that various compositions of HEMs can extend the cycle life while also increasing
the specific capacity of the cathode.

Table 3. Various high-entropy materials employed as potential battery cathodes.

Composition Cycles Initial Capacity
(mAh g−1)

Final Capacity
(mAh g−1)

Rate or Current
Density Ref.

Lix(CoCuMgNiZn)OFx 300 168 120 C/10 [35]
NaNi0.12Cu0.12Mg0.12Fe0.15

Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2
200 110 87 C/2 [36]

Li0.8Na0.2(NaCoMnAlFe)O2 20 80 62 – [37]
Li(MnCoCrTiNb)OF 20 307 225 20 mA g−1 [38]

(CoMgCuNiZn)O 200 1191 664 C/10 [39]
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from ref. [36]. Copyright© 2020 John Wiley and Sons (Hoboken, NJ, USA). (C) (CoMgCuNiZn)O.
Reprinted with permission from ref. [39]. Copyright© 2019 Elsevier. (D) Li0.8Na0.2(NaCoMnAlFe)O2.
Reprinted with permission from ref. [37]. (E) Li(MnCoCrTiNb)OF. Reprinted with permission from
ref. [38]. Copyright© 2020 Spring Nature (Berlin/Heidelberg, Germany).

In addition to new layered and spinel oxide structures for lithium-ion batteries, high-
entropy cathodes have also found their application in sodium-ion batteries (NIBs). NIBs
have gained much attention in recent times due to their low cost and abundant sodium
sources [14]. However, several challenges such as poor structural stability, sluggish ion
diffusion, and low operating voltages remain challenges for NIBs [40]. Two commonly
employed cathode materials in NIBs are transition metal oxides (TMOs) and polyanionic
compounds (PACs). While TMOs have higher theoretical capacities, they often suffer from
poor cycling stability of the lattice and low working voltages [41,42]. In contrast, PACs have
more structural robustness despite having lower capacities and also exhibit higher working
voltages [43]. Cathodes for NIBs are synthesized in a similar way to LIBs. An HEO can be
combined with NaF to create a new cathode, such as Nay(Co0.2Cu0.2Mg0.2Ni0.2Zn0.2)OCl,
which may lead to long-lasting NIBs with better cyclability [2,29]. High-entropy PACs,
such as Na3V1.9(CaMgAlCrMn)0.1(PO4)2F3, have demonstrated increased voltage, greater
energy density, and superior cycling and provide another avenue for new cathodes [40].

3.3. Electrolytes

Lithium-ion batteries are considered the foundation of rechargeable batteries for both
portable and electric vehicle applications. Future sodium-ion batteries (NIBs) and current
LIBs require electrolytes with high ionic conductivities. Liquid electrolytes have ionic
conductivities in the order of 10−3–10−2 S cm−1 [44]. However, liquid electrolytes present
several issues, such as lithium dendrite growth, the high flammability of the solvents,
and thermal hazards [45]. Physical damage and internal electrical damage caused by
short circuits can increase the thermal hazards. Additionally, when liquid electrolyte
battery packs are made smaller in size through improved manufacturing techniques in
an effort to enhance their energy density, the risk of thermal hazards and the possibility
of thermal runaway increases. Materials with high Li+ and Na+ conductivities are crucial
for advanced electrolytes to provide long cycling and high reversibility [14]. Therefore,
the ideal requirements for future electrolytes include suppression of dendritic growth,
enhanced endurance due to changes in the volume of the electrodes during cycling, reduced
reactivity of the electrolyte with Li electrodes, improved safety, and improved flexibility
and manufacturability [46]. Such an electrolyte should have a high ionic conductivity,
electrochemical and interfacial stability, as well as good mechanical strength during cycling
and for the ease of manufacturing. The classical electrolytes can be classified into three
types: polymer electrolytes, ceramic electrolytes, and liquid electrolytes. Each of these are
detailed briefly below.

3.3.1. Polymer Electrolytes

One material that meets several of the requirements for next-generation electrolytes
is polymers, with polyethylene oxide (PEO) being the most studied. PEO offers many
advantages over other polymers, such as strong electron-donating ether oxygen groups,
good thermal stability, and high mechanical toughness [47]. There are three different
mechanisms for ion diffusion in solid polymer electrolytes (SPEs): the vacancy mechanism
(when an ion moves from its original site to an adjacent vacancy), the interstitial mechanism
(when the ions hop from one interstitial site to an adjacent interstitial site), and the knock-
out mechanism (where an ion hops to an interstitial site, leaving a vacancy in the original
site, where a second ion can then move to the vacant site) [29]. The main challenges with
PEO-based SPEs is their high crystallinity at room temperatures, which leads to low ionic
conductivity and low salt solubility in the amorphous region at elevated temperatures [46].
Additives have been used as fillers in the PEO matrix to increase the ionic conductivity
and reduce crystallinity and to further improve the electrochemical performance. Unary
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ceramic additives, such as TiO2 and Al2O3, both active and inactive, have been employed as
additives in SPEs previously, but their doping amount is usually limited to under 20 wt.%
due to undesired phases in the polymer causing adverse electrochemical and mechanical
properties at higher doping amounts [29,47].

To overcome the limits of unary materials, HEMs have been proposed as fillers for
SPEs. High-entropy oxides offer one possibility for SPE additives, as several compo-
sitions of HEOs have shown promise, with room-temperature ionic conductivities ex-
ceeding >10−3 S cm−1 [14,29]. Adding highly ionic conductive fillers aims to enhance
the underlying conductivity of the polymers and increase their overall electrochemical
performance. Ritter et al. demonstrated that through careful selection of elements in a
medium-entropy additive, specific properties of the electrolyte, such as a significant in-
crease in the potential voltage window and an enhanced lithium transfer number, could
be improved [48]. Therefore, due to their high ionic conductivities and chemically stable
structures, high-entropy oxides are excellent candidates for use as fillers in SPE.

3.3.2. Ceramic Electrolytes

Ceramic electrolytes have been one of the most studied materials to replace liquid elec-
trolytes in solid-state batteries. High-entropy oxides, such as (MgCoNiCuZn)1−x−yGayAxO
and (MgCoNiCuZn)1−xAxO (with A referring to a number of alkali metals such as Li, Na,
and K), have shown promise, as they exhibit high ionic conductivities (>10−3 S cm−1) at
room temperature [14,29]. The high ionic conductivities are attributed to oxygen vacancies
that are created through intrinsic charge compensation when Li, Na, or K is added to the
material. The choice of elements and crystal structure significantly influences the final
ionic conductivity. While elements such as Co, Ni, Cu, and Zn can actively participate in
redox reactions, inactive elements such as Al, Ti, and Mg enhance the chemical stability
window [29]. Furthermore, controlling the concentration of the charge-carrying species (Li,
Na, or K) is crucial to create fast ion migration channels in the structure. Bérardan et al.
were able to synthesis a variety of high-entropy oxides for both Li+ and Na+ ion conduction,
demonstrating large ionic conductivities (>10−3 S cm−1) through the manipulation of oxy-
gen vacancies in the structure [49]. This highlights that the ionic conduction occurs through
oxygen vacancies in certain high-entropy oxides. Due to their high ionic conductivities
and chemically stable structures, high-entropy oxides are excellent candidates for use as
ceramic electrolytes.

3.3.3. Liquid Electrolytes

The concept of high entropy has been extended for use in liquid electrolyte systems
to enhance overall device performance. One of the popular and commercially used liquid
electrolytes is 1.0 M LiPF6 salt in a 50:50 blend of EC/DMC solvent. Low temperatures
pose challenges for many liquid electrolytes, as their performance deteriorates when
the temperature drops. Ethylene carbonate plays a pivotal role in modern electrolyte
systems, but when temperatures dip below freezing, a decrease in ionic conductivity due
to heightened viscosity is observed, along with precipitate formation on the electrode
surface, leading to increased interfacial resistance [50]. For solid HEMs, the entropy of
mixing helps stabilize the structure and provides many performance benefits. Similarly,
the mixing entropy of the liquid electrolyte can be enhanced by using multiple metal
salts and multiple solvents in the electrolyte. In the case of lithium-based electrolytes,
an HEM liquid electrolyte involves the use of multiple Li salts that are well dispersed
and mixed in the solvent. For example, the ionic conductivity of LiPF6 can be further
enhanced by additives such as LiNO3, LiFSI, LiTFSI, LiDFOB, and LiBETI [51,52]. The
use of additional salts results in a wider diversity in the solvation structure and leads to
higher lithium-ion mobility [52]. Excess entropy scaling, which is employed to determine
the dynamic properties of liquids, such as diffusion constants and heat conductivities,
indicates that as the entropy increases, the diffusivity and ionic conductivity increase [52].
This further enhances the overall electrochemical performance and stability. The solvation



Batteries 2024, 10, 96 14 of 22

structure in liquid electrolytes plays a significant role in charge transfer and solid electrolyte
interface (SEI) formation. An interesting side effect caused by the higher solvation structure
entropy is a reduction in the electrolyte’s melting point, which in turn improves the low-
temperature performance [51]. Similar to using multiple Li salts, transitioning from a 50:50
blend of EC:DMC to a mixture of multiple solvents provides additional enhancements [50].
These enhancements include lowering the electrolyte’s freezing point and increasing the
battery retention and capacity (~80 mAh g−1 for decimal solvent vs. ~8 mAh g−1 for binary
solvent). This results in an increase in the ionic conductivity at temperatures as low as
−60 ◦C, reported to further improve the low-temperature performance of the LIB compared
to binary and ternary solvent mixes [50]. The multicomponent basis of HEMs can also be
utilized in other battery compositions. For instance, one study demonstrated that adding
multiple metal salts (magnesium bis(trifluoromethane sulfonyl)imide (Mg(TFSI)2) and
lithium triflate (LiOTf)) and various solvents (1,2-dimethoxyethane (DME) and trimethyl
phosphate) to the electrolyte composition improved the interfacial layer in magnesium
batteries, resulting in improved electrochemical performance [53]. Figure 7 below depicts
the cycling profiles of several distinct high-entropy electrolytes, which encompass ceramics,
polymers, and liquid systems. The cycling profiles show that by including HEMs, the
long-term cycling stability can be greatly enhanced, resulting in a higher capacity over
a larger number of cycles. This increase in long-term cycling is mainly attributed to the
structural stability that is provided by the multiple salts and solvents that are now present
in the electrolytes.
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3.4. High-Entropy Materials for Lithium–Sulfur Batteries

High-entropy materials have also been investigated for their potential as separators
in lithium–sulfur (Li-S) batteries. Lithium–sulfur batteries are of particular interest due
to their cost-effectiveness, sulfur abundance, high theoretical capacity (1675 mAh g−1),
and high energy density (2600 Wh kg−1), making them promising candidates for next-
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generation energy storage systems [14,56]. However, lithium–sulfur batteries have long
suffered from capacity fading during cycling, which is primarily attributed to the migration
of polysulfides within the electrodes [57,58]. Introducing separators between the sulfur
electrodes and the electrolytes aims to reduce the capacity fade in Li-S batteries. One
strategy to mitigate the polysulfide migration involves the use of metal oxides in the cathode
to physically immobilize and confine the polysulfides [59,60]. Zhou et al. demonstrated that
by incorporating MgCrMnFeCoNiO nanoparticles into the sulfur electrode, benefits such as
accommodating active species and withstanding volume changes during charge/discharge
cycles were achieved [61]. This resulted in a stable capacity of 1100 mAh g−1 at 0.5 C for
1200 cycles [61]. When the HEM material was not included in the sulfur cathode, there
was a stark decrease in both capacity (312.3 mAh g−1) and cycling life (325 cycles) [61].
Raza et al. studied the effects of a sulfur electrode and the addition of cathodes containing
a low-entropy oxide, medium-entropy oxide, and high-entropy oxide cathode [62]. The
high-entropy additive showed an overall higher initial capacity of 1233 mAh g−1, while
those of the medium-entropy (980 mAh g−1) and low-entropy (908 mAh g−1) additive and
sulfur only (966 mAh g−1) were all reduced [62]. Additionally, the high-entropy additive
demonstrated a significantly lower capacity decay rate per cycle (~0.043%) compared to the
other cathodes (~0.36%), maintaining a cycle life of 800 cycles at 0.5 C [62]. The addition of
HEMs increases the long-term cycling stability by confining the movement of polysulfides
while also increasing the capacity of the Li-S batteries. High-entropy oxides offer further
improvements over binary oxides due to the synergistic immobilization effect that is
created by the presence of multiple metal ions [14]. Figure 8 highlights the cycling profiles
of high-entropy materials used in Li-S batteries, with a summary of their electrochemical
performances being found in Table 4. Not only do HEOs enhance the overall structural
stability of the cathode, they also increase the number of active sites that can contain
polysulfides, thereby improving the overall battery performance.
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Figure 8. Cycling life of high-entropy lithium–sulfur batteries. (A) Cycling performance of MgCrMn-
FeCoNi cells at a current density of 0.5 C. (B) Cycling stability at 1 C of S/HE-LSMO, S/HE-LMO and
S/LMO composites. (C) Cycling stability of Li-KB/S and Li-HEO/CNFs/KB/S at 0.5 C. (D) Com-
parison of long-term cycling stability of HEO850/S/KB, MEO850/S/KB, LEO850/S/KB, and S/KB
cells at 0.5 C. Reprinted with permission from refs. [61–64]. Copyright© 2022 Elsevier. Copyright©
2023 John Wiley & Sons Australia, Ltd. (Melbourne, VIC, Australia). Copyright© 2023 Elsevier.
Copyright© 2023 Royal Society of Chemistry.
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Table 4. Various high-entropy materials used in lithium–sulfur batteries.

Composition Cycles Initial Capacity
(mAh g−1)

Final Capacity
(mAh g−1) Rate Sulfur Loading

(mg cm−2) Ref.

(MgCrMnFeCoNi)O/Sulfur/
Carbon black/PVDF 1200 1397 1100 0.5 C 4.5 [61]

(Cu0.7Ni0.6Fe0.6Sn0.5Mn0.4)O4/CNF 400 907 435 1 C 1.1 [63]
La0.8Sr0.2(Cr0.2Mn0.2Fe0.2Co0.2Ni0.2)O3/

Sulfur/PVDF/CNF 500 1038 714 1 C 1.3–1.5 [64]

(Ni0.2Co0.2Cu0.2Mg0.2Zn0.2)O/Sulfur/
Ketjen Black 800 1244 784 0.5 C 1.2 [62]

3.5. High-Entropy Catalysts in Metal–Air Batteries

High-entropy materials have been a subject of study for several years in the field of
catalysis. Catalysts play a crucial role in various industrial processes, and HEMs have
shown promising results in several reactions, including methanol oxidation, ethanol oxi-
dation, oxygen reduction, hydrogen evolution reaction, and water splitting [2,14,65]. In
many of these reactions, HEMs can provide increased chemical stability, reduced costs by
reduction of precious metals, corrosion resistance, and high temperature stability [2,65].
Metal–air batteries, such as lithium–air and zinc–air batteries, encounter similar cycling
issues to Li-S systems, as mentioned above. During cycling, the oxygen evolution reaction
can generate byproducts like Zn(OH)4 for zinc–air batteries and LiOH and Li2CO3 for
lithium–air batteries [66,67]. High-entropy materials possess a substantial number of sur-
face active sites that can be utilized to mitigate the formation of unwanted chemical species
during the charge/discharge cycles, thereby enhancing the performance of these battery
types [66]. These side reactions become more challenging when operating in real-world
conditions, using atmospheric air instead of pure O2, as atmospheric air contains other
components such as H2O, CO2, and N2 [67]. Yu et al. demonstrated how the addition of
different elements, such as Mo and V, to a base quinary AlNiCoFeCr system improved the
oxygen evolution reaction (OER) activity. However, when further elements such as Cu, Nb,
or Ti were added and the total number of elements increased, the OER activity began to
decrease [68]. Moreover, altering the ratios of Ni, Co, Fe, and Cr resulted in a varied OER
performance. Increasing the Ni or Cr concentration had little effect on the OER performance,
whereas an increase in the Fe concentration clearly decreased the OER performance [68].
The choice of elements and their atomic ratios in an HEM can significantly impact its final
activity and needs to be carefully designed to achieve optimal results. Figure 9 highlights
the discharge curves of several metal–air batteries, with a summary of their performance in
Table 5, showcasing the overall improvement in energy density when HEMs are used over
more traditional Pt. Due to the structural complexity of high-entropy materials, finding a
suitable catalyst to improve metal–air batteries’ performance remains an ongoing endeavor
and a scope for future research.

Table 5. Various high-entropy materials used in metal–air batteries.

Composition Rate
(mA cm−2) Open Circuit Voltage (V) Energy Density (Wh kg−1) Ref.

AlNiCoRuMoCrFeTi 20 1.51 923.7 [69]
PtPdAuAgCuIrRu on
AlNiCoFeCrMoTiO 20 1.53 897.6 [70]

AlNiCoFeCrMoV/CoNC 20 1.50 950.0 [68]
PdNiVAuMnIrFeCuCoMoPtRu 20 1.50 952.0 [71]

Pt/C-IrO2 20 1.46 812.8 [70]
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4. Challenges and Perspectives

There is a double-edged sword when it comes to high-entropy materials. On the
one hand, there is a vast array of available compositions, with an innumerable number
of properties that are yet to be discovered. At the same time, analyzing these various
compositions can be an exhaustive task, often resulting in a trial-and-error approach
to material design. New approaches may be needed to truly harness the potential of
high-entropy materials. As the database of high-entropy materials grows, it could lead
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to more computer-based algorithms, such as artificial intelligence (AI), being used to
study and predict future possible compositions. Also, an increase in the deployment of
Density Functional Theory (DFT)-based methods can result in demand-driven material
design. Fundamentally, for HEMs in general, but also as they relate to batteries, there is
a need for more tailored design of HEMs for specific needs or properties. This requires a
better understanding of how each individual element interacts with other elements in the
material. More studies that explore this interaction will go a long way toward tailoring
future materials.

Additionally, the scalability of HEM manufacturing still requires further exploration.
While several methods have the potential to greatly expand production, such as ball
milling, electrochemical, microwave, and aerosol synthesis methods, these methods have
mainly been used for small-batch and research studies. For high-entropy materials to make
a significant difference in future battery components, production volumes will need to
expand by orders of magnitude. Finding an efficient and cost-effective method of large-scale
production will be required for further exploitation of high-entropy materials in batteries.

5. Conclusions and Future Directions

The ongoing quest for high-energy Li-ion batteries has resulted in incremental changes
to current anodes, cathodes, and electrolyte compositions. In cathodes, high-entropy
materials can create new layered structures that enhance long-term cycling. High-entropy
anodes can offer highly specific capacitance along with a long cycle life, while reducing the
dependency on hard-to-mine elements such as lithium and cobalt. HEMs incorporated into
electrolytes can lead to improved interfaces, higher ionic conductivities, increased cycling
life, and increased stability. High-entropy catalysts can play a role in the migration of
polysulfides in Li-S and metal–air batteries, leading to longer cycling with less degradation
of the battery. With this scope of various performance improvements, HEMs can be
employed in other battery chemistries as well, such as sodium, sulfur, silicon, and lithium–
metal batteries, which can further boost energy densities and create safe and long-lasting
batteries. The challenge of producing HEMs in sufficient quantities to impact future
large-scale applications has been addressed by several researchers, who have developed
synthesis techniques that can be scaled to industrial levels. It is now possible to manufacture
HEMs with a diverse range of elements and crystal structures and through various high-
yield synthesis methods. The key to utilizing these materials in future batteries lies in
their seamless integration into current battery manufacturing processes. This integration
requires synthesis techniques that consistently yield high-quality HEMs at a low cost, along
with the capability to incorporate these materials into existing anodes, cathodes, separators,
and electrolytes. There are still several paths of research that need to be explored to fully
implement high-entropy materials into energy storage applications:

(1) More studies are required to understand the underlying mechanisms that result in
the performance increases that were observed in the current studies. The increased
performance is generally associated with the “cocktail effect” that is linked to all
high-entropy materials.

(2) Additional research is needed to understand how various elements react with each
other, and understanding their roles in the system is necessary to better design future
HEMs. For instance, the inclusion of Mg plays a role in stabilizing the structure,
while other elements such as Ni, Co, and Mn have roles in increased capacity. Studies
can incorporate machine learning to better determine possible future compositions
based on electrochemical targets such as specific capacity, ionic conductivity, or
cycle life. Additional studies are required to better understand how each individual
element contributes to the improved electrochemical performance of the system from
a fundamental perspective. Studies focusing on bond lengths, angles, and other
structural relationships may yield insights into how the structural stability of the
HEMs enhances their performance or how differing elements and their bond lengths
affect the ionic conductivity.
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(3) Overall efficiency improvements to the various battery components when HEMs are
utilized are still needed. Further studies of different crystal structures, especially ones
that include multiple Wyckoff sites, are essential due to the availability of several high-
entropy crystal structures. A better understanding of factors such as the synthesis
technique, particle sizes, and morphology is required to ascertain their role in the
electrochemical performance. Now that several synthesis paths are possible for a
given composition, the role of these various synthesis paths should be studied to
determine if any parameters affect battery performance. Additionally, the inclusion of
HEMs as additives in other systems should be examined, as seen in cases like HEMs
being used in Li-S cathodes.

(4) Further consideration needs to be given to the future scalability of HEMs. As these
materials gain popularity for various applications, attention must be directed towards
determining the optimal approach for scaling this new class of materials to industrial
production levels. The synthesis of HEMS should prioritize being cost-effective, rapid,
high-quality, and yielding high quantities. This approach will enable the exploitation
of their properties in future battery materials.
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