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Abstract: The selective separation of lithium from spent ternary positive materials is achieved through
hydrogen reduction followed by water leaching. Almost 98% of the Li is transformed into soluble
LiOH·H2O, while the Ni, Co and Mn species are all transformed into insoluble metals or their oxides,
so the recovery of Ni, Co and Mn at this stage is challenging. The traditional acid leaching process
has drawbacks such as high oxidant consumption, the low recovery of valuable metals and high
production costs. Thus, sulfation roasting followed by water leaching was studied in this project. The
leaching levels of Ni, Co, Mn and Al reached 87.13%, 99.87%, 96.21% and 94.95%, respectively, with
1.4 times the theoretical amount of sulfuric acid used at 180 ◦C for 120 min. To avoid the adverse
effects of Mn and Al on the quality of the Ni and Co sulfate products, Mn2+ was first separated and
precipitated via the KMnO4 oxidation–precipitation method, and >98% of the Mn was removed and
precipitated within 30 min with a Kp/Kt (ratio of actual usage to theoretical usage of KMnO4) of
1.0 at pH = 2.0 and 25 ◦C. After removal of the Mn, the solvent extraction method was adopted by
using P204 as an extractant to separate Al. More than 98% of the Al was extracted in 30 min with 20%
(v/v) P204 + 10% (v/v) TBP with an A/O ratio of 1:1 at 30 ◦C. This optimized process for extracting
lithium residues improved the hydrogen reduction process of waste lithium batteries and will enable
industrialization of the developed processes.

Keywords: spent lithium batteries; hydrogen reduction; sulfation roasting; lithium; aluminum re-
moval

1. Introduction

Lithium batteries are characterized by high energy ratios, high voltages, efficient
reversibility, safety and stability. Lithium batteries are rapidly becoming indispensable
power sources for smart devices, electric vehicles and other products due to their excellent
performance [1,2]. However, on average, the maximum charge and discharge cycles of
lithium batteries are 1000 [3,4]. This means that many lithium batteries will become obsolete
as they reach the end of their useful life. It is expected that the end-of-life powers of the
lithium batteries in China will reach 134.5 Gwh by 2025 [5–7]. As spent lithium batteries
contain large amounts of heavy metals and toxic electrolytes, this could potentially bring
great harm to the environment [8]. Therefore, the recovery of valuable metals from spent
lithium-ion batteries has attracted significant attention in academia and industry [9].

At present, the main methods for treating waste lithium batteries include the py-
rometallurgical method [10], hydrometallurgical method [11,12], and the combined process
of pyrometallurgy and hydrometallurgy. However, there are many shortcomings in the
pyrometallurgical process used in treating spent lithium batteries, such as low lithium
recovery rates, high energy consumption [13] and secondary pollution from waste gases
and residues [14]. Therefore, the utilization of waste lithium batteries in China is mainly
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based on hydrometallurgical processes [15]. The conventional hydrometallurgical process
includes sulfuric acid reduction leaching; iron precipitation; nickel, cobalt and manganese
extraction and separation; and lithium salt concentration and precipitation [16]. Although
the operations of this process are relatively simple, the processing time is long. It is particu-
larly difficult to accomplish selective leaching of lithium, and lithium is lost in each process.
The total yield of lithium is only 60–80% [17].

Considering the drawbacks of single hydrometallurgical or pyrometallurgical pro-
cesses in recycling lithium-ion batteries, combined pyro-hydrometallurgical processes
have gained increasing attention in industry, such as carbon reduction roasting–low-acid
leaching, sulfation roasting–water leaching, and nitration roasting–water leaching. The
“sulfation roasting–water leaching”, “nitrification roasting–water leaching” and “carbon
reduction roasting–low-acid leaching” processes selectively convert most of the Li (90%)
into water-soluble nitrate, sulfate or carbonate salts through reduction roasting, while the
other elements remain as insoluble oxides or metals [18–21]. The selective extraction of
Li can be achieved through water leaching. However, the roasting process used in the
treatment of spent lithium batteries generates NO, CO, CO2, NO2, SO2 and other pollutants.
In addition, the roasting kinetics are relatively slow, and the lithium in the cathode can
only be completely converted into nitrate, sulfate or carbonate salt when the roasting time
is more than 2 h [22,23]. Therefore, in response to the many deficiencies of the combined
method described above, a green and environmentally friendly hydrogen reduction pro-
cess was developed by our research group [24]. This technology first utilized hydrogen
reduction to convert the Li in spent lithium batteries into LiOH, which is very soluble in
water, and then, selectively extracted the lithium via water leaching. Previous exploratory
experiments showed that almost 98% of the Li in spent lithium batteries was selectively
transformed within 15 min at 500 ◦C when the hydrogen reduction process was used [25].
More importantly, the temperature of hydrogen reduction roasting is significantly lower
than carbon reduction roasting (650 ◦C) and sulfate roasting (975 ◦C), and the energy
consumption is significantly reduced. The advantage of this technology is that no harmful
gases are generated during the reduction roasting process, and lithium separation can be
achieved without consuming any acid or alkali [26]. Another advantage of this technology
is that battery-grade LiOH·H2O can be obtained without complicated separation and pu-
rification steps. Overall, hydrogen reduction roasting for transformational recovery is a
simple, efficient and environmentally friendly method with great potential for industrial
application [27].

When adopting hydrogen a reduction roasting process, lithium is selectively extracted
and separated through water leaching. However, Ni, Co and Mn compounds are all
converted to the corresponding insoluble metals or their oxides. It is difficult to recover
the roasting reduction products, and Ni, Co and Mn are important raw materials for the
production of lithium batteries. Therefore, the recovery of Ni, Co and Mn from priority
lithium extraction residue is challenging and important. The traditional treatment uses
sulfuric acid leaching and hydrogen peroxide as the oxidant, but the leaching efficiency of
Li is low, and a large amount of oxidant is introduced. To ensure the integrity of hydrogen
reduction in processing spent lithium batteries, a sulfation roasting–water leaching process
was developed for the recovery of Ni, Co and Mn from priority lithium extraction residues.
To prepare high-purity nickel sulfate and cobalt sulfate, Mn2+ was selectively precipitated
by potassium permanganate (KMnO4) as MnO2 or Mn2O3, and a solvent extraction process
was used with P204 (di(2-ethylhexyl) phosphate) as the extractant to achieve selective
separation of Al.
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2. Experimental Section
2.1. Materials and Characterization

The spent ternary battery material was pretreated (disassembled, sieved, milled), and
then, most of the Li was transformed into soluble LiOH·H2O through hydrogen reduction
roasting. Almost all of the Li in the roasted material was separated from other impurities
through water leaching. The raw material for these experiments came from a priority
lithium extraction residue after hydrogen reduction roasting. Ni, Co and Mn compounds
were converted to the corresponding metals or oxides. They were then subjected to chemical
composition analyses, an XRD phase analysis and a SEM–EDS analysis. The chemical
composition of the priority lithium extraction residue is presented in Table 1, and the main
metals present were Ni, Co and Mn. The contents of Ni, Co, Mn and Al were 11.00%,
17.44%, 4.40% and 4.48%, respectively. Characterization of the LIB waste by XRD is shown
in Figure 1, which revealed that Ni and Co were mainly present as metals, and Mn and Al
were present as MnO and Al2O3, respectively. Characterization of the LIB waste with an
elemental distribution map, as shown in Figure 2, revealed that the Ni and Co distribution
areas overlapped each other, and the Al, Cu and Ca elements were all dispersed. The
average particle size of the priority lithium extraction residue was 41.6 µm. Figure 3 and
Table 2 present the SEM–EDS results for different spots, which confirm the presence of Ni,
Co and MnO as well as the main phases in the priority lithium extraction residue.

Table 1. Chemical components of the priority lithium extraction residue.

Elements Ni Co Mn Al Cu Fe

wt.% 11.00 17.44 4.40 4.88 11.29 0.58
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Table 2. SEM-EDS analysis results of the spots shown in Figure 3.

Spectrum O Mn Co Ni Al Fe Cu

1 50.66 45.91 1.47 0.27 0.20 0.38 1.24
2 7.68 3.47 84.74 1.34 0.32 0.15 2.30
3 7.37 4.07 4.26 81.28 0.27 0.14 2.61
4 7.77 2.00 84.01 1.76 0.00 0.00 4.47
5 36.45 7.95 30.10 16.71 2.33 0.00 6.45

2.2. Experimental Procedures

Priority lithium residues came from the hydrogen reduction roasting–water leaching
process. The conditions of the hydrogen reduction roasting process were T = 500 ◦C,
t = 15 min and a hydrogen flow rate of 200 mL/min. After hydrogen reduction roasting,
water leaching was performed with a liquid-to-solid ratio of 20:1 for 30 min at a temperature
of 30 ◦C [24]. After liquid–solid separation, the priority leaching residue was obtained.

Sulfation roasting process: the solid was weighed in a crucible with an electronic
balance (JA1003N, Shanghai Jingketianmei Scientific Instrument Co., Ltd., Shanghai, China),
and the Ni, Co, Mn and Al contents were determined after a complete reaction with sulfuric
acid (18.4 mol/L) to produce the corresponding sulphates. Concentrated sulfuric acid
was added and mixed quickly for powder maturation. After maturation, the crucible
was weighed, and then, placed in a muffle furnace (KSL-1200X, Hefei Kejing Material
Technology Co., Ltd., Hefei, China.). The temperature controller was programmed for a
5–6 ◦C/min rise. When the temperature rose to the predetermined temperature, it was held
there, the reaction began, and then, the crucible was cooled when the reaction was over.
When the temperature dropped to room temperature, the crucible was weighed again after
roasting. Thus, the increase in the mass of the material was calculated after roasting, and
the content of each element in the roasted product was calculated. The elemental contents
of the roasted product were calculated with Equation (1).

The conditions for the water leaching experiment were a L/S (liquid-to-solid ratio) of
10:1 mL/g, a leaching time of 120 min and a leaching temperature of 25 ◦C. The experiments
were carried out in a thermostatted water bath shaker (SHZ-88, Shanghai Jinghai Instrument
Co., Ltd., Shanghai, China) with an oscillation frequency of 250 rpm and an oscillation
amplitude of 20 mm. The analyses and calculations included determinations of the leaching
rates with ICP (Perkin Elmer Optima 7100 DV, Waltham, MA, USA) measurements of the
metal concentrations in the leachate and the transformations and XRD (PANalytical X’Pert
Pro Powder, Almelo, The Netherlands) and SEM-EDS (MIRA 3 LMH, TESCAN Brno, S.r.o,
Brno, Czech Republic) analyses of the morphological changes occurring during sulfation
roasting. The ionic leaching rates were calculated with Equation (2), and ion leaching refers
to the ion content of the leachate as a percentage of the ion content of the roast product.

w =
m0 × w0

m1
× 100% (1)

E =
C × V
m × w

× 100% (2)

where m0 (g) and m1 (g) are the mass of the material before and after roasting, respectively,
w0 (%) is the content of the element in the material before roasting, C (g/L) represents the
concentrations of the metal ions in the leaching solution, V (L) is the volume of the leaching
solution and m (g) is the mass of the roasted product.

To selectively separate Mn, a KMnO4 solid was added to the leaching solution in a
100 mL glass beaker equipped with a magnetic stirrer at 25 ◦C for 30 min. Ni, Co, Mn
and Al precipitation was investigated with different amounts of KMnO4 and pH. The
concentration of each metal ion in the leaching solution was measured via ICP, and the
precipitation yield was calculated.
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The solvent extraction experiments were carried out by mechanically shaking the
organic and aqueous phases in separating funnels. The shaking speed and temperature
were set and controlled with a digital water bath oscillator (Shanghai Lichen Instrument
Technology Co., Ltd., Shanghai, China). The metal extraction experiments were performed
with separatory funnels (125 mL) by mixing the organic phase and the aqueous solution
for 30 min at 25 ◦C. The Al, Ni and Co extractions were investigated with P204 as the
extractant with different organic/aqueous phase (O/A) ratios and saponification amounts.
The concentration of each metal ion in the extract solution was measured via ICP, and the
extraction rate was calculated.

3. Results and Discussion
3.1. Sulfation Roasting
3.1.1. Experimental Principles

This study used the “sulfation roasting–water leaching” process and converted the
valuable metals in the priority lithium extraction product to the corresponding sulphates
by roasting with sulfuric acid. The sulphates were leached into solution via water leaching.
The main reactions that occurred during the process are shown in Equations (3)–(6).

2Ni + 2H2SO4 + O2 → 2NiSO4 + 2H2O (3)

2Co + 2H2SO4 + O2 → 2CoSO4 + 2H2O (4)

MnO + H2SO4 → MnSO4 + H2O (5)

Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O (6)

All thermodynamic data used for the plots were obtained from HSC Chemical 6.0
software. The reactions were those outlined in Equations (3)–(6), and the Gibbs free energies
as a function of temperature were plotted for these reactions, as shown in Figure 4. The
thermodynamic calculations showed that Co reacted more readily with sulfuric acid than
the other metals to form soluble sulphates, which led to higher extraction efficiency for Co
relative to the other metals.
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The predominant region diagrams for the Me (Ni, Co and Mn)-S-O system at 200 ◦C
and 250 ◦C are shown in Figure 5 and were drawn using FactSage8.1 [28]. The results
showed that Ni, Co and Mn could be transformed into the corresponding sulphates with
high oxidation and sulfidation potentials. Conversely, with low oxidation potentials,
these metals would be converted into their corresponding oxides or sulfides. In addition,
the temperature had a significant impact on the distribution area of the sulphates. As
the roasting temperature increased, the predominant region for the sulfates obviously
diminished. This made it difficult to separate and recycle Ni, Co and Mn. Therefore, the
sulfation roasting process should be carried out at the right temperatures.
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Figure 5. Diagrams showing the predominant regions for the Me (Ni, Co and Mn)–S–O system at
(a) 200 ◦C and (b) 250 ◦C.

3.1.2. Effect of the Roasting Temperature

The effects of the roasting temperature on the extractions of Ni, Co, Mn and Al are
presented in Figure 6. These results suggest that the roasting temperature had a significant
effect on the transformations of Ni, Co, Mn and Al. The yield from Ni extraction increased
from 60.02% to 73.45% when the temperature was increased from 140 ◦C to 180 ◦C, while the
conversion rates for Co, Mn and Al reached 92.95%, 89.76% and 93.62%, respectively. This
is clearly illustrated in Figure 7, which shows that the main phases of the roasting products
were sulphates, but the nickel metal phase still caused a decrease in the Ni extraction
efficiency. When the roasting temperature was increased to 220 ◦C, the diffraction peaks for
NiSO4·H2O, CoSO4·H2O, MnSO4·H2O and Al2(SO4)3·xH2O were still present, diffraction
peaks for Al2(SO4)3 were also observed, and the diffraction peak for Al2(SO4)3·xH2O
gradually decreased. This indicated that at this temperature, some of the Al(HSO4)3
decomposed to form Al2(SO4)3·xH2O, and Al2(SO4)3·xH2O lost its waters of crystallization
and was converted to anhydrous Al2(SO4)3. Figure 8 shows that C, Ni and Al2O3 were
the main mineral phases formed at 140 ◦C after water leaching, which indicated that the
metal extraction yields were low because the reaction temperature was not high enough. A
further increase in the roasting temperature to 180–220 ◦C resulted in only minor changes
in the Ni, Co, Mn and Al extraction yields.

3.1.3. Effect of Roasting Time

The effect of roasting time on the extraction of Ni, Co, Mn and Al is presented in
Figure 9. Roasting time had little effect on metal leaching. The leaching of Ni, Co, Mn
and Al stabilized after a slow rise. When the roasting time was increased from 30 min
to 60 min, the Ni extraction efficiency increased from 63.69 to 69.75%; conversely, the
extraction efficiencies of Co, Mn and Al increased slowly—Co: 89.60% to 93.30%; Mn:
87.28% to 90.01%; and Al: 80% to 86.28%, respectively. Further increases in roasting
time beyond 60 min only resulted in slight increases in the levels of Ni, Co, Mn and Al
extraction. This is clearly illustrated in Figure 10, which shows that the main phases within
the calcine after 30 min were Ni, NiSO4·H2O, CoSO4·H2O, MnSO4·H2O, Al(HSO4)3 and



Batteries 2024, 10, 28 8 of 17

Al2(SO4)3·xH2O. When the roasting time was increased to 150 min, the diffraction peaks for
Al(HSO4)3 disappeared, and diffraction peaks for Al2(SO4)3 appeared. This showed that
as the roasting time was increased, Al(HSO4)3 decomposed to form Al2(SO4)3. Figure 11
shows that C and Ni were the main mineral phases following water leaching. This explains
the low extraction efficiency for Ni.
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Figure 6. Effect of roasting temperature on the leaching efficiency for each element (Dp/Dt = 1.2, t = 120 min).
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Figure 7. X-ray diffraction patterns for the roasting products formed at different roasting temperatures
in the sulfate roasting (Dp/Dt = 1.2, t = 120 min).
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Figure 8. X-ray diffraction patterns for the water leaching residues formed at different roasting
temperatures (t = 120 min, L/S = 10 mL/g).
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Figure 9. Effect of roasting time on leaching of each element (Dp/Dt = 1.2, T = 180 ◦C).
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Figure 10. X-ray diffraction patterns of the roasted products after different roasting times in the
sulfate roasting (Dp/Dt = 1.2, T = 180 ◦C).
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Figure 11. X-ray diffraction patterns of the water leaching residue after different roasting times
(t = 120 min, L/S = 10 mL/g).
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3.1.4. Effect of the Sulfuric Acid Amount

The effects of the sulfuric acid amount on the extractions of Ni, Co, Mn and Al are
presented in Figure 12. The amount of sulfuric acid used had a significant effect on metal
leaching. The efficiency for Ni extraction increased from 59.98% to 87.13% when the Dp/Dt
(ratio of actual usage to theoretical usage of sulfuric acid) was increased from 1:1 to 1.4:1,
and the extraction efficiencies for Co, Mn and Al increased substantially—Co: 82.92% to
99.87%; Mn: 83.06% to 96.20%; and Al: 84.63% to 94.94%, respectively. This is clearly
illustrated in Figure 13, which shows that the main phases in the roasting product were
NiSO4·H2O, CoSO4·H2O, MnSO4·H2O and Al2(SO4)3·xH2O. Sulfates are soluble in water and
were introduced into the solution by water leaching, which explains the increased amounts
of Ni, Co, Mn and Al extracted. When the sulfuric acid ratio was 1.1, Al existed mainly as
Al2(SO4)3·xH2O, and when the sulfuric acid ratio was 1.2, Al existed as Al2(SO4)3·H2O and
Al(HSO4)3. The increased sulfuric acid dosage contributed to the formation of Al(HSO4)3.
Figure 14 shows that C, Ni and CoO were the main mineral phases after extraction with 1.1:1
sulfuric acid, which indicated that small amounts of Co and Ni failed to react completely
when the sulfuric acid content was insufficient, and some of the Co reacted with oxygen in
the air to form CoO. This explains the low extraction efficiencies for metal leaching. Further
analyses of the leaching residue morphologies with SEM (Figure 15) verified that there were
scaly crystals on the surface of the roasted product, and as the amount of sulfuric acid was
increased, both scaly and fluffy crystals were found, and the number of crystals increased.
This was consistent with the morphology of the sulfate.
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Figure 12. Effect of the sulfuric acid content on leaching of each element (T = 180 ◦C, t = 120 min).
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Figure 13. X-ray diffraction patterns for the roasted products with different sulfuric acid contents in
the sulfate roasting (T = 180 ◦C, t = 120 min).
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Figure 14. X-ray diffraction patterns for the water leaching residue obtained with different sulfuric
acid amounts (t = 120 min, L/S = 10 mL/g).
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Figure 15. SEM images of the roasted product obtained with different sulfuric acid proportions:
(a) Dp/Dt = 1.1; (b) Dp/Dt = 1.4.

3.2. Selective Separation of Mn

The resultant solution was subjected to oxidative MnO2 precipitation with KMnO4.
The main reaction is shown in Equation (7).

3Mn2+ + 2MnO4
− + 2H2O → 5MnO2 + 4H+ (7)

Kp was the actual amount of KMnO4, and Kt was the theoretical amount of KMnO4.
The effect of the KMnO4 amount on the extraction of Co and Mn is presented in Figure 16a.
The amount of Mn precipitated increased from 50.76% to 98.12% when the amount of
KMnO4 was increased from 0.5 to 1.0, and the precipitation of Co remained nearly constant
at 1%. When the amount of KMnO4 was increased from 1.0 to 1.5, the precipitation of Mn
changed little, while the amount of Co precipitated increased to 4.00%. This is because the
Co ions were oxidized to form a Co3O4 precipitate [29]. Figure 17 and Table 3 present the
SEM–EDS results for different spots, which confirm the presence of MnO2 as well as the
main phases in the residues. Based on the above results, the optimal amount of KMnO4
was approximately 1.0.
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Figure 17. SEM-EDS image of the MnO2 product.

The effect of pH on the extraction of Co and Mn is presented in Figure 16b. The
efficiency of Mn precipitation increased from 85.06% to 98.12% when the pH was increased
from 1.0 to 2.0, and the rate of Co precipitation remained nearly constant at 1%. When the
pH was increased from 2.0 to 3.0, the efficiency for Mn precipitation decreased from 94.00%
to 87.43%, and the amount of Co remained nearly constant at 1%. This was ascribed to
incomplete oxidation of Mn(II) to Mn(IV) and generation of the intermediate manganese
product MnO(OH) [30]. Based on the above results, the optimal pH was approximately 2.0.

3.3. Removal of Al from the Water Leaching Solution

The effect of saponification rate on Al leaching is presented in Figure 18a. The ex-
traction efficiency for Al initially increased substantially from 29.85% to 98.17% as the
saponification rate was increased from 0% to 60%. Based on these results, the optimal
saponification rate for the extraction of Al was approximately 60%. This is because the ex-
tractant P204 is an acidic extractant, and the extraction mechanism involves Al3+ extraction
into the organic phase after reacting with the P-O-H in P204, and as the extraction proceeds,
the displaced H+ reduces the pH of the solution to impede the diffusion of metal ions into
the organic phase. The use of NaOH for saponification of the organic phase allowed H+

exchange with Na+ to ensure the extraction power of the targeted ions. Saponification
removed the hydrophilic groups of the phosphoric acid that repelled metal ions, increasing
the unsaturation and complexation ability of P204. This ability enhanced the interactions
between P204 and the metal ions, thereby increasing the partition coefficients and extraction
efficiencies. Furthermore, the saponification reaction increased the pH of the aqueous phase
by using a strong base such as NaOH. This led to an increase in the solubility of the metal,
slowed hydrolysis of the metal ions and accelerated the formation of complexes, ultimately
resulting in increased extraction rates.
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Figure 18. Effect of (a) saponification rate on the extraction of Al (O/A = 1:1; T = 25 ◦C; t = 30 min;
pH = 3.5; P204 = 20% (v/v); TBP = 10% (v/v)) and (b) organic-to-aqueous phase ratio of Al (saponifi-
cation rate = 60%; T = 25 ◦C; t = 30 min; pH = 3.5; P204 = 20% (v/v); TBP = 10% (v/v)).
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The effect of the organic/aqueous phase ratio on Al leaching is presented in
Figure 18b. The efficiency of Al extraction initially increased substantially from 23.29% to
98.73% and from 0.47% and 0.24% to 5.49% and 7.18% for Ni and Co, respectively, as the
organic/aqueous phase ratio was increased from 1:7 to 1:1, indicating that most of the Al
was extracted into the organic phase and enabled better separation of Ni, Co and Mn. With
increases in the organic/aqueous phase ratio, the extraction efficiencies for Al, Ni, Co and
Mn showed little change. Based on the above results, the optimal organic-to-aqueous phase
ratio for Al removal was approximately 1:1.

3.4. Flowsheet Development

Based on these results, a new process for the recovery of Ni, Co, Mn, Al and Cu
from priority lithium extraction residue based on sulfation roasting, water leaching and
solvent extraction is outlined in Figure 19. The application of this new process could
significantly improve the separation and recovery of Ni, Co, Mn, Al and Cu from priority
lithium extraction residue. Mn was selectively separated and precipitated with KMnO4.
Then, the problem of difficult impurity removal from Al was resolved with a solvent
extraction method. After extraction and separation, a solution containing aluminum was
obtained, and aluminum hydroxide or alumina powder could be prepared through the
hydrolysis precipitation process. Finally, nickel sulfate and cobalt sulfate products were
further prepared from Al-free solution through stepwise solvent extraction. This reduced
the environmental impacts of this novel approach and optimized the production process.
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4. Conclusions

(1) A sulfation roasting–water leaching process enabled the efficient extraction of Ni, Co
and Mn from priority lithium residues obtained from the hydrogen reduction of spent
lithium ternary batteries. More than 87% Ni, 99% Co and 96% Mn were extracted at
180 ◦C and 120 min with 1.4 times the theoretical amount of sulfuric acid.

(2) More than 98% of the Mn was selectively separated and precipitated under the optimal
conditions. Al was also separated through extraction with P204 from the leaching
solution. More than 98% of the Al was extracted with 20% (v/v) P204 + 10% (v/v)
TBP at an A/O ratio of 1:1 within 30 min at 30 ◦C.

(3) This optimized and efficient process for the extraction of valuable metals from priority
extraction lithium residues increased the feasibility of hydrogen reduction treatment
for waste lithium batteries and enabled industrialization of the new process. The
proposed new process not only achieves efficient recovery of valuable metals such as
lithium, nickel, cobalt, manganese, etc., but also has advantages such as high efficiency,
low energy consumption and environmental protection.
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writing, Y.G. and F.L.; review and editing, F.L. and Z.C. All authors have read and agreed to the
published version of the manuscript.
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