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Abstract: This article explores the novel application of a trained artificial neural network (ANN) in
the prediction of vanadium redox flow battery behaviour and compares its performance with that
of a two-dimensional numerical model. The aim is to evaluate the capability of two ANNs, one for
predicting the cell potential and one for the overpotential under various operating conditions. The
two-dimensional model, previously validated with experimental data, was used to generate data to
train and test the ANNs. The results show that the first ANN precisely predicts the cell voltage under
different states of charge and current density conditions in both the charge and discharge modes.
The second ANN, which is responsible for the overpotential calculation, can accurately predict the
overpotential across the cell domains, with the lowest confidence near high-gradient areas such as the
electrode membrane and domain boundaries. Furthermore, the computational time is substantially
reduced, making ANNs a suitable option for the fast understanding and optimisation of VRFBs.

Keywords: ANN; vanadium redox flow battery; numerical model; cell potential; two-dimensional;
overpotential; states of charge

1. Introduction

Deploying effective and scalable energy storage systems is becoming increasingly im-
portant as we move toward carbon-neutral emissions and a sustainable energy future [1,2].
The integration of intermittent renewable energy sources into our energy infrastructure
is imperative, considering the commitment to achieve carbon neutrality. The develop-
ment of large-scale energy storage systems is vital for this integration and maximising
the use of renewable resources while maintaining the stability of the electric grid. Redox
flow batteries (RFBs) have become one of the front-runners among the several available
choices [3–6]. They are distinguished by the separation of the energy storage capacity from
the power output, because RFBs store energy in chemical solutions contained in external
tanks, allowing the capacity to be scaled independently of the power density [7,8]. This
decoupling of energy and power renders RFBs exceptionally flexible for a wide range of
applications.

Arguably, vanadium-based redox flow batteries (VRFBs) are the most promising
technology for commercial implementation [9,10]. Invented by M. Skyllas-Kazacos et al. [11]
in the 1980s, VRFBs employ only one single element, vanadium, in different oxidation
states for both electrolytes, thus reducing the cross-contamination risk [12]. Moreover, VRFB
systems exhibit noteworthy characteristics in terms of cyclability, energy efficiency, response
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time, safe operation, remarkable energy storage capability, and incorporating readily recyclable
components to minimize overall costs over the system lifetime [11,13–17]. This sets them
apart from other RFB technologies, such as zinc-based chemistries, which present hydrogen
evolution in charging, dendrite formation, and uneven metal deposition, which then lead
to cell failure [3,18,19]. Organic-based RFBs have gained attention for their use of abundant,
non-expensive organic compounds, but they still face challenges arising from cycling
stability and reactant decomposition [6,20,21]. A more in-depth investigation is imperative
to consolidate this technology for future scalability and commercial implementation.

Figure 1 depicts a visual representation of a single cell from a VRFB. The electrolytes
are stored in two separate tanks. The positive electrolyte contains VO+

2 and VO2+ ions,
while the negative electrolyte has V2+ and V3+ ions. Both electrolytes are recirculated
by pumps into the cell. The electrodes, inside the cell, provide an active area for the
electrochemical redox reactions to occur. To prevent cross-contamination and allow for
protons to pass and preserve the charge conservation, an ion-selective membrane is added
between both electrodes [22].
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The chemical reactions occurring in the half-cells and the full cell are as follows:

Cathode : VO+
2 +2H+ + e−

discharge
⇌

charge
VO2+ + H2O (1)

Anode : V2+ discharge
⇌

charge
V3+ + e− (2)

Full cell: VO+
2 + V2+ + 2H+

discharge
⇌

charge
VO2+ + V3+ + H2O (3)

The experimental evaluation of VRFB performance is the conventional approach to
assess performance, but it has a considerable financial burden. As the use of VRFBs in vari-
ous applications has become increasingly popular, there is a growing need for cost-effective
methods and strategies to understand and optimise their performance and system integra-
tion. Numerical models offer a rapid and iterative design approach, allowing researchers
to easily modify system parameters, electrode geometries, and operating conditions. This
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approach enables the exploration of various design configurations and identification of
optimal operating conditions more efficiently than traditional experimental methods.

A wide range of numerical investigations of VRFBs is available in the public literature,
ranging from basic zero-dimensional models [23–25] to the most complex three-dimensional
models [26–31]. The use of numerical models to simulate flow batteries involves a careful
balance between computational cost and accuracy. Zero- and one-dimensional models
are particularly helpful for preliminary evaluations, down-selection, and fast exploratory
studies, but have the limitation of oversimplifying the complex behaviour of VRFBs,
neglecting spatial variations and non-uniformities within the battery cell. The need for
computational resources increases significantly as the accuracy of numerical simulations is
improved to include aspects such as concentration profiles, potential, and current density
distributions [28–31] or capture intricate time-dependent fluid–membrane interactions.
However, recent advancements in Artificial Neural Networks (ANNs) have enabled the
creation of accurate models trained on data obtained from Computational Fluid Dynamics
(CFD) simulations. These surrogate models offer the flexibility and speed of low-fidelity
models, while incorporating many aspects of advanced computational models. In the
field of fluid mechanics, several studies have used ANNs to model different cases, such
as active [32] and passive flow control devices [33], vehicle aerodynamics [34], thermal
systems [35], and multiphase-state systems [36], to mention a few.

The primary objective of this study was to model a VRFB using Artificial Neural
Networks (ANNs). To accomplish this, numerical simulations were performed to generate
training and benchmark data. By altering the current densities and states of charge in
these simulations, a comprehensive dataset was created. Specifically, two distinct ANNs
were designed and trained: one for predicting the voltage and the other for predicting
the overpotential.

2. Materials and Methods
2.1. Governing Equations

The model presented in this work consists of three domains: positive electrode, ion
exchange membrane, and negative electrode. The current work utilizes a Nafion type
cation exchange membrane. This choice aligns with the conventional approach in the
literature and is consistent with the experimental validation. However, newly developed
anion exchange membranes show promising results in terms of lower vanadium crossover
and cost and enhanced H+ permeability [37]. The following assumptions were made in the
numerical model:

• Stationary conditions;
• Incompressible electrolytes;
• The fluids were assumed to be completely diluted;
• Side reactions were neglected;
• Both electrodes and the membrane were considered isothermal;
• The properties of the electrodes, electrolyte, and membrane were isotropic;
• Changes in the z-direction of the cell were ignored (depth in Figure 1).

The model was based on works published by Shah et al. [38] and Knehr et al. [39]. The
conservation of mass of the charged species can be expressed by Equation (4).

∂

∂t
(εci) +∇·

→
Ni = −Si (4)

Variable ε refers to the electrode porosity, ci is the concentration of species i, and Si is
the source term of the species (listed in Table 1).
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Table 1. Source terms for species in the positive and negative electrodes.

Source Term Positive Electrode Negative Electrode

SII (V(II) mass conservation equation) - →
ı /F

SIII (V(III) mass conservation equation) - −→
ı /F

SIV (V(IV) mass conservation equation) →
ı /F -

SV (V(V) mass conservation equation) −→
ı /F -

SH
+ (proton concentration equation) - −2∇·→ı /F

→
Ni is the charged species flux described by the Nernst–Planck equation, as shown in

Equation (5).
→
Ni = −De f f

i ∇ci − ziuiciF∇φl +
→
uci (5)

The first term accounts for diffusion, where De f f
i is effective diffusivity. In the second

term (migration term), zi represents the charge of species i, ui is the ionic mobility, F is the
Faraday constant, and φl is the liquid potential. In the third term (convection),

→
u represents

electrolyte velocity.
The effective diffusivity, De f f

i , was obtained from the Bruggemann correlation as
shown in Equation (6).

De f f
i = ε3/2Di (6)

The ionic mobility ui was calculated using the Nernst–Einstein equation, as shown in
Equation (7), where R is the universal gas constant and T is the temperature.

ui =
De f f

i
RT

(7)

The electrolyte velocity, represented by
→
u in Equation (5) in the convection term, is

calculated by means of Darcy’s Law, as shown in Equation (8), where p is the pressure
and µ is the dynamic viscosity of the electrolyte, as indicated in Table 2, among the other
electrolyte properties.

→
u = −K

µ
∇p (8)

Table 2. Electrolyte properties.

Term Symbol Value

V(II) diffusion coefficient DV2 2.4 × 10−10 m2s−1 [40]
V(III) diffusion coefficient DV3 2.4 × 10−10 m2s−1 [40]
V(IV) diffusion coefficient DV4 3.9 × 10−10 m2s−1 [40]
V(V) diffusion coefficient DV5 3.9 × 10−10 m2s−1 [40]

HSO4
− diffusion coefficient DHSO−

4
1.33 × 10−9 m2s−1 [41]

SO4
2− diffusion coefficient DSO2−

4
1.065 × 10−9 m2s−1 [41]

H+ diffusion coefficient DH+ 9.312 × 10−9 m2s−1 [41]
Dynamic viscosity µ 4.9238 × 10−3 Pa s [42]

K represents the porous electrode permeability calculated using the Kozeny–Carman
equation, as shown in Equation (9), where df is the fibre diameter and kck is the Kozeny–
Carman constant.

K =
d2

f ε3

16kck(1 − ε)2 (9)
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To fulfil the condition of electroneutrality, Equation (10) was solved for all charged
species, except for SO4

2−:
∑

i
zici = 0 (10)

To integrate the species balance with electrochemical reactions and the current flow
within the electrode during the charge/discharge processes, the charge conservation equa-
tion was solved, as shown in Equation (11).

∇·→ı l = −∇·→ı s =
→
ı R (11)

Equation (11) indicates that the electrochemical reaction rate (iR) directly corresponds to
the charges leaving the electrolyte

→
ı l, which in turn equate to the charges entering the electrode

→
ı s. Both the liquid and solid current densities are expressed by Equations (12) and (13).

→
i l = F∑

i
zi
→
Ni (12)

→
i s = −σ

e f f
s ∇φs (13)

The term σ
e f f
s , which corresponds to the effective conductivity of the porous electrode,

was calculated using Equation (14), where σs is the electrode bulk conductivity, listed in
Table 3, with other parameters related to the electrodes.

σ
e f f
s = (1 − ε)

3
2 σs (14)

Table 3. Electrode properties.

Term Symbol Value

Electronic conductivity σs 1 × 103 S m−1 [42]
Porosity ε 0.929 [43]

Specific surface area a 1.62 × 104 m2 [43]
Kozeny–Carman constant kck 4.28 [42]
Electrode fibre diameter d f 1.76 × 10−5 m [43]

An integration with the Butler–Volmer law, which characterizes the electrochemical
reactions occurring at the surface of the porous carbon electrode, is utilised to converge the
conservation equations. Following this, the electrochemical reaction rate (iR) was calculated
for both electrodes, positive (“+”) and negative (“−”), as shown in Equation (15) and
Equation (16), respectively.

iR+= ai0,+

[
exp
(
(1 − α+)Fη+

RT

)
− exp

(
−α+Fη+

RT

)]
(15)

iR−= ai0,−

[
exp
(
(1 − α−)Fη+

RT

)
− exp

(
−α−Fη+

RT

)]
(16)

The specific surface area of the electrode was represented by a, α is the charge transfer
coefficient, and η denotes the overpotential. i0,+ and i0,−, the exchange current densities,
are expressed as shown in Equations (17) and (18), where k+ and k− are the reaction rate
constants for the positive and negative side, respectively.

i0,+ = Fk+(cIV)
(1−α+)(cV)

α+ (17)

i0,− = Fk−(cI I)
(1−α−)(cI I I)

α− (18)

Table 4 lists the kinetic parameters used in Equations (17) and (18).
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Table 4. Kinetic parameters.

Term Symbol Value

Cathodic transfer coefficient α+ 0.5 [42]
Anodic transfer coefficient α− 0.5 [42]

Standard rate constant for positive reaction k+ 6.8 × 10−7 m s−1 [40]
Standard rate constant for negative reaction k− 1.7 × 10−7 m s−1 [44]

Standard equilibrium potential for positive side E′
+ 1.004 V [38]

Standard equilibrium potential for negative side E′
− −0.255 V [38]

The overpotential was determined for the positive and negative reactions using
Equations (19) and (20).

η+ = φs − φl − E+ (19)

η− = φs − φl − E− (20)

The standard equilibrium potentials E+ and E− were obtained using the Nernst equa-
tion, as shown in Equations (21) and (22).

E+ = E′
+ +

RT
F

ln
(

cI I I
cI I

)
(21)

E− = E′
− +

RT
F

ln

(
cV ·(cH+)

2

cIV

)
(22)

The effective conductivity of the membrane σ
e f f
m can be modelled as shown in

Equation (23), where De f f
H+ denotes the proton effective diffusion coefficient.

σ
e f f
m =

F2

RT
z2

i D
e f f
H+cH+ (23)

2.2. Boundary Conditions

Figure 1 x and y coordinates were taken as references for the boundary condition
description. At x = x0, the anode external boundary is set as an electrical ground, that is,
the solid potential is equal to zero:

φs= 0 x = x0 (24)

The species fluxes at the top and bottom of the membrane and the external boundaries
of the electrodes are zero, aside from the inlets and outlets:

−→
n ·

→
Ni = 0


x = x0 and x = x3

x = x1 and x = x2 (except protons)
y = 0 and y = he

(25)

At y = 0, a boundary was set for the flux entering the cell through the electrodes.

ci = cin
i→

n · →u = Q
εwe Le

}
x0 < x < x1 and x2 < x < x3

y = 0
(26)

where Q is the volumetric flow rate, wcell is the cell width, and Le is the electrode thickness.
Analogously, the electrodes have a pressure outlet at y = hcell, and the flux of the species
caused by diffusion is neglected.

p = pout

−De f f
i ∇ci·

→
n = 0

}
x0 < x < x1 and x2 < x < x3

y = he
(27)
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A constant current density was applied to the external boundary of the cathode using
Equation (28).

−→
n ·

→
i s= iavg x = x3 (28)

where iavg denotes the user-defined current applied to the boundary. The sign of this param-
eter determines whether the cell is in charge or discharge. This leads to the application of an
electrical insulation to the upper and lower boundaries of the membranes and electrodes.

−→
n ·

→
i s= 0

−→
n ·

→
i l= 0

 x0 < x < x3
y = 0 and y = he

(29)

The geometrical dimensions and operating conditions of the cell are listed in Table 5.

Table 5. Operating conditions and cell geometrical parameters.

Term Symbol Value

Temperature T 298 K
State of Charge SOC 50%

Volumetric flow rate Q 60 mL min−1

Outlet pressure pout 0 Pa
Electrode thickness Le 0.003 m [42]

Electrode width we 0.025 m [42]
Electrode length he 0.02 m [42]

Membrane thickness Lm 125 µm [42]

2.3. Numerical Model

The cell was modelled using the commercial software COMSOL Multiphysics 5.5 with
its incorporated physics packages, including Darcy’s law and tertiary current distribution.
By employing the finite element method, the model featured a structured mesh made of
4616 quadratic elements. The computational approach adhered to a relative error set at
1.0 × 10−6.

2.4. Neural Network

In the present study, a multilayer perceptron with backpropagation (MLP-BP) is
used, which is a multilayer model with hidden layers. In this model, the output y is
estimated using Equation (30). The output of each hidden neuron is calculated with the
sigmoid function defined in Equation (31), which receives as input the postsynaptical hi of
each i neuron from the previous layer, calculated with the linear combination defined in
Equation (32), where x represents the inputs to the layers, ω the weights of the layers, and
θ the biases.

y =
i=Nhidden

∑
i=1

ωi·gi

(→
x
)
+ θ (30)

gi

(→
x
)
=

1
1 + e−hi

(31)

hi

(→
x
)
=

j=Nhidden

∑
j=1

ω
′
i,j·xj + θ

′
i (32)

The commercial software MATLAB 2022a [45], commercial code with its Deep Learn-
ing toolbox [46], was used to design and train the ANN.

The number of hidden layers and neurones in each network depended on the com-
plexity of the magnitude considered. Hence, two different networks were trained for the
two targeted ANN models: one for voltage prediction, as shown in Figure 2, and the other
for overpotential prediction, as shown in Figure 3. The training data were split into 70%
training, 20% validation, and 10% testing for both networks.
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The first network (ANN1) predicts the voltage of the cell under charge and discharge
regimes for different charge and current densities. ANN1 is a relatively simple ANN
with a single input layer comprising three parameters: SoC, Current density, Charging or
Discharging, a single hidden layer with eight nodes, and an output layer with a single node.
Figure 2 shows the architecture of ANN1.

The second network (ANN2) aims to predict the spatial overpotential of the cell for
a constant State of Charge of 50% which is expected to be substantially less continuous
compared to ANN1. Hence, added complexity is required in ANN2 which contains three
hidden layers (with 8, 16, and 8 nodes) and an output layer with a single node for the
overpotential. Figure 3 shows the architecture of the ANN2.

The ANNs are benchmarked using the standard Pearson product-moment correlation
coefficient R.
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3. Results
3.1. Model Validation

The numerical model was validated using experimental data from You et al. [28],
which involved placing a 5 cm2 cell in a static solution and measuring the charge-discharge
curves at two different current densities: 40 mA cm−2 and 80 mA cm−2. Figure 4 illustrates
the excellent agreement between the numerical results of the in-house simulation and
experimental data from You et al. [28]. The model demonstrated an average relative error of
1.6% when calculating the voltage, which is comparable to the level of agreement between
the numerical simulations and experiments described in You et al. [28]. The relative error
has been calculated by means of the following expression:

Relative error (%) =

(
Numerical model value − Experimental value

Experimental value

)
× 100 (33)
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3.2. Artificial Neural Network Validation

To evaluate the accuracy of the ANN predictions, the correlation coefficient (R-value)
of the test set is considered, since these cases are unknown for the network, and therefore
determine the generalisability of the proposed networks. The R-values after training ANN1
and ANN2 are shown in Figure 5.

The R-values for ANN1 and ANN2 were 0.99927 and 0.99516. Both models provide
relatively high correlation coefficients, indicating a high level of confidence in ANN predic-
tion. It should be noted that the two graphs do not have the same vertical scale and that
ANN1 has no outliers, whereas the more complex ANN2 has a substantial set of outliers at
the extremes.

To further analyse the performance of the two neural networks, Figure 6 shows a
comparison between the predictions of ANN1 for both charging and discharging, together
with the CFD results for the considered cases. The ANN1 prediction is illustrated as
a surface, and the CFD results are illustrated using black markers. The possibility of
spanning a continuous and smooth surface between CFD cases enables the prediction of a
well-formulated ANN to have few outliers, which is the case for the ANN1 model.
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Figure 6. ANN1 predictions of voltage (coloured surfaces) and CFD results (black circles):
(a) charging; (b) discharging.

As previously mentioned, ANN2, compared to ANN1, is modelling a more complex
phenomenon and has a non-negligible set of outliers of correlation coefficients. The intricate
modelling is illustrated by detailed studies of the overpotential for a current density of
60 mA/cm2 in the discharge mode for an SoC of 50%. Figure 7 shows a section view across
the membrane (the xy plane in Figure 1), where the positive and negative electrode voltages
across the membrane and neighbouring fluid are shown for the numerical simulations to
the left and ANN2 to the centre. Observing the numerical results, one may note a near-
discrete step in the electrode voltage over the membrane and a non-uniform distribution,
particularly near the lower boundary. ANN2 captured a substantial fraction of the electrode
voltage distribution of the section cut, as can be observed by comparing the results with the
CFD results. However, there were clear discrepancies near the membrane and the lower
boundary. These discrepancies are emphasised by the subtraction of the numerical results
and ANN2, as illustrated on the rightmost surface in Figure 7.
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3.3. ANN Effiency Benchmark

Table 6 summarises the computational times required for the CFD calculation, ANN1,
and ANN2 for a workstation with a single Intel Xeon Gold 5120 CPU. The effectiveness of
the ANN was benchmarked based on the time required to conduct a single CFD simulation.

Table 6. Computational time required for each method.

Method Computational Time Speed Up

CFD 50 s -
ANN1 (Voltage) 0.0032 s 15,625

ANN2 (Overpotential) 0.1875 s 266.7

The results demonstrate that ANNs can significantly reduce the computational time
required to obtain the results. ANN1 achieved a speed-up of 15,625 times the CFD, whereas
with ANN2 for overpotential prediction, a speed-up of 266.7 was obtained.

4. Conclusions

This study investigated the predictive capabilities of Artificial Neural Networks
(ANNs) for cell voltage and overpotential in Vanadium Redox Flow (VRF) cells. Two
ANN models were developed, one for cell voltage and another for overpotential, and
trained on a dataset generated by a two-dimensional numerical CFD model based on previ-
ous research by Shah et al. [30] and Knehr et al. [31]. The accuracy of the CFD models was
verified with experimental results from You et al. [28], with an average discrepancy of 1.6%
for the charge and discharge curves at two different current densities (40 and 80 mA cm−2).

The results demonstrate that the ANN models are capable of accurately predicting a
wide range of State of Charge and current density conditions with high precision during
both charge and discharge. Additionally, the ANN model showed high confidence in
overpotential predictions for most of the domains, with only minor performance deteri-
oration in the high-gradient region over the membrane and selected boundaries of the
simulated domain.

The computational power required for the ANN models was significantly less than
that required for the CFD simulations, reducing the required computational power by up
to four orders of magnitude. This reduction in power, combined with high confidence in
the predictions, provides a promising option for rapid evaluation and system integration
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for optimisation. The most compelling application may be the integration of ANN models
on hardware for on-site monitoring and real-time cell prediction.
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Nomenclature

a Specific surface area [m2]
c Concentration [mol m−3]
D Diffusion coefficient
df Fiber diameter [m]
E Equilibrium potential [V]
F Faraday constant [C mol−1]
h Length [m]
hi Postsynaptical output (ANN)
i Current density [mA cm−2]
i0 Exchange current density
iR Electrochemical reaction rate
K Permeability [m2]
Kck Kozeny-Carman constant
k Reaction rate constant [m s−1]
L Thickness [m]
N Charged species flux [mol m−3 s−1]
p Pressure [Pa]
Q Volumetric flow rate [ml min−1]
R Ideal gas constant [J mol−1 K−1]
S Source term [mol m−3 s−1]
T Temperature [K]
t Time
u Mobility [mol s kg−1]
u Velocity [m s−1]
w Width [m]
x Input (ANN)
y Output (ANN)
z Species charge
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Greek
α Charge transfer coefficient
ε Porosity
η Overpotential [V]
σ Conductivity [S m−1]
φ Potential [V]
µ Dynamic viscosity [Pa s]
θ Layer bias (ANN)
ω Layer weights (ANN)
Superscripts and subscripts
+ Positive side or cathode
− Negative side or anode
‘ Standard
avg Average
e Electrode
eff Effective
i Species
in Inlet
l Liquid
m Membrane
out Outlet
s Solid
Abbreviations
ANN Artificial Neural Network
CFD Computational Fluid Dynamics
MLP-BP Multi-Layer Perceptron with Backpropagation
RFB Redox Flow Battery
VRFB Vanadium Redox Flow Battery
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