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Abstract: Zinc-ion batteries (ZIBs) are increasingly recognized as highly promising candidates for
grid-scale energy storage systems due to their cost-effectiveness, environmental friendliness, and
high security. Despite recent advancements in the research of cathode materials, Zn anodes, and elec-
trolytes, several challenges persist and must be addressed, including cathode dissolution, generation
of by-products, and zinc dendrite formation, which hinder the future application of ZIBs. In this
review, we systematically summarize the recent developments in electrospinning technology within
ZIBs. First, the principle technical parameters and subsequent thermal treatment of electrospinning
technology are discussed, and then the synthetic preparation, morphologies, and electrochemical
performance of electrospun nanostructured electrodes in ZIBs are comprehensively reviewed. Finally,
some perspectives on research directions and optimization strategies for electrospinning technology
in energy applications are outlined.

Keywords: zinc-ion batteries; electrospinning; 1D nanomaterials

1. Introduction

In order to address the growing worldwide need for efficient energy storage sys-
tems and sustainable development, it is crucial to take the lead in developing affordable,
high-capacity, safe, and environmentally friendly batteries [1–3]. Although lithium-ion
batteries (LIBs) still dominate the battery storage market, their further application in large-
scale and flexible energy storage is impeded by their intrinsic shortages, such as high
cost, uneven lithium resources, and the usage of toxic and flammable electrolytes [4–9].
Nonetheless, zinc-ion batteries (ZIBs) are evolving as promising candidates for the next
era of energy storage systems due to their economical nature ($25/kWh), their high ionic
conductivity (10−1–1 S cm−1) of aqueous electrolytes, the substantial volumetric capacity
(5854 mAh cm−3) of Zn anodes, and their exemplary safety features [10–13].

The electrochemical mechanism of ZIBs is similar to that of lithium-ion batteries
(LIBs) [14,15], which mainly consists of the insertion/extraction of Zn2+ from the cathode
and Zn plating/striping on the anode during the reversible discharge/charge process.
The concern is that cathodes experience substantial volume variations as a result of the
larger radius of the Zn2+ (74 pm) than Li+ (68 pm) [16,17]. This discrepancy often results
in the pronounced deterioration of the structure’s integrity and the limited utilization of
active materials, especially for long cycles. In addition, repeated cycling can also induce the
growth of sharp zinc dendrites penetrating separators, resulting in short circuits [18–20], thus
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deteriorating the cycle performance of cells. Therefore, the rational design and construction
of advanced nanomaterials with high conductivity, fast reaction kinetics, tailorable porous
skeletons, and more active sites have become increasingly important as electrode materials
for ZIBs have become crucial strategies to address the aforementioned issues [21,22].

Compared to conventional bulk electrodes, nanostructured electrode materials can pro-
vide large electrochemical active sites and reduce the ion diffusion path [23], which signifi-
cantly improves the redox reaction rates and achieves faster kinetics. Among these nanos-
tructured electrodes with different dimensions, for example, vanadium- and manganese-
based compounds [24–28], heteroatom-rich organic materials [29–31], porous metal–organic
frameworks (MOFs) [32–34], etc., one-dimensional (1D) nanomaterials exhibit numer-
ous advantageous characteristics, including a high surface area, exceptional mechanical
strength, and flexibility [35]. These attributes position them as outstanding electrode mate-
rials. For example, the rod-like Na0.95MnO2, H2V3O8 nanowires, and Zn3V2O8·1.85H2O
nanobelts [36–38] were reported to serve as excellent cathode materials for ZIBs. In addition,
1D nanomaterials can adapt to volume changes and afford interconnected ion/electron
pathways, thus boosting the rate capability and cycling stability [39].

Various methods have been reported to fabricate 1D nanomaterials, including py-
rolysis, chemical vapor deposition, solution precipitation, and electrospinning [40–42].
Compared to other methods, electrospinning is the most attractive due to its cost effec-
tiveness, controllability, and adaptability in producing functional nanofibers with high
conductivity, large surface areas, and porosity. By adjusting the polymer solution and elec-
trospinning parameters, electrospun nanofibers with solid, hollow, porous multichannel
and core/shell structures have been successfully prepared and applied in energy storage
systems (LIBs [43,44], sodium-ion batteries [45], zinc-air batteries [46], and supercapaci-
tors [47,48]), including electrode materials, nanofiber separators, and gel electrolytes [49].
Similar concepts have also been successfully transferred from other energy storage systems
to ZIBs and great achievement has been made in recent years. Although many reviews
have summarized the application of electrospun materials in different kinds of electrochem-
ical energy storage systems, most of them are focused on lithium-based or sodium-based
energy storage systems; a comprehensive review on ZIBs is still absent. Given the growing
interest and rapid progress of electrospinning technology in ZIBs, there is an urgent need
to summarize the recent advancements in a timely and systematic manner and provide
potential guidelines for the development of high-efficiency ZIBs based on electrospinning.

In this review, recent advances in the design of 1D nanomaterials via electrospinning
technology for ZIBs, including cathodes and zinc anodes, are systematically summarized.
The electrochemical performance and fabrication strategies of electrospun cathode materials
for vanadium-based compounds, manganese-based compounds, organic compounds, and
MOF-derived materials are discussed in detail. The modification of zinc anodes, including
functional interlayers and functional substrates, is outlined. The summary of electrospun
nanostructured materials for ZIBs is shown in Figure 1. We sincerely hope that this review
can stimulate researchers’ interest in electrospun nanomaterials for ZIBs and promote their
practical applications in the future.
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syringe pump responsible for regulating the flow of the precursor solution. The third part 
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ously forms a few droplets at the needle tip via a syringe pump. Upon applying a static 
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Figure 1. Schematic illustration of electrospun nanostructured materials in ZIBs and representative
structural characterization.

2. Electrospinning Technology
2.1. Electrospinning Principle

Electrospinning is used in many different areas as a straightforward, rapid, facile,
and scalable strategy for producing ultra-thin fibers [50–52]. As shown in Figure 2a, the
typical experimental setup for electrospinning consists of three parts. The first component
comprises a high-voltage power supply that can provide 100–3000 kV m−1 between the
needle tip and the collector, generating free charges. The second component comprises
a syringe pump responsible for regulating the flow of the precursor solution. The third
part is a collector (normally a metal film, drum, or mesh) [40]. In general, during the
electrospinning process, a viscoelastic precursor solution is added to the syringe and
continuously forms a few droplets at the needle tip via a syringe pump. Upon applying
a static DC voltage, the interplay of the electrostatic repulsion force, surface tension, and
gravity induces the hanging droplet to elongate into a conical shape, commonly named the
“Taylor cone” [53]. As the surface charge of the droplet increases, the electrostatic repulsive
force breaks through the surface tension, causing the precursor solution to be ejected from
the needle tip, forming a liquid jet. The electrostatic repulsive force further stretches the
liquid spray into finer diameters and deposits irregularly on the collector. Finally, the
ultra-thin nanofibers can be obtained after instantaneous evaporation and solidification of
the solvent.

2.2. Factors and Parameters

In general, in an experimental preparation process, it is essential to tune the desired
morphologies and structures of the fibers by controlling the internal factors of the precursor
solution and the external operating parameters. Usually, the fibers’ diameter and continuity
can be regulated by the viscosity of the precursor solution and voltage. A low viscosity and
voltage may produce particles but not fibers, while a high viscosity may cause an unstable
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solution flow rate. The concentration of the precursor solution is another crucial internal
factor. Optimal concentration is often a variable parameter that can be manipulated to
achieve fibers with consistent diameters. A lower concentration might lead to insufficient
surface tension to counteract the electric field force, causing unraveled fibers. Thus, by
controlling the processing parameters, different morphologies and diameters of polymer
materials can be obtained, such as micro- and nanofibers and nanoparticles. Adequate
conductivity is also necessary to accumulate sufficient charge in the electric field. Solu-
tions with low electrical conductivity will result in the formation of uneven nanofibers.
Conversely, excessive conductivity can result in irregular diameters or the formation of
ribbon-like fibers. In addition, various 1D nanostructures with different morphologies,
structures, and functions can be easily prepared by mixing different types of components,
as shown in Figure 2b.
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Figure 2. Schematic configuration of (a) the typical electrospinning equipment and (b) the electrospun
nanostructures of precursor and calcination products.

The operating parameters of electrospinning include the electric field intensity (E),
the flow rate (Q), the electric current (I), and the distance between the needle tip and
the collector (D). For example, a higher electric potential will increase the acceleration
of the jet, resulting in smaller-diameter fibers. In contrast, a lower voltage will produce
thicker-diameter fibers or beaded fibers. The feed rate is a critical parameter in maintaining
the formation of nanofibers. A heightened feed rate can result in fibers with spindly beads,
whereas a diminished feed rate may lead to fibers with reduced diameters. The distance
can be modified to regulate the diameter. Increasing the distance will reduce the diameter
of the fibers. It is crucial to emphasize that environmental factors, including humidity and
temperature, can influence the formation of fibers. It is therefore important to take these
factors into account during the preparation process and not to overlook their effects.

2.3. Collection Devices

The collector functions as a conductive substrate on which the nanofibers are amassed.
The nature of the collector can impart varying effects on the resulting nanofibers. In general,
the most common collector is the aluminum flat plate, similar to the metal mesh, but other
collectors, such as rotating collectors, are also under investigation due to the requirement
for aligned fibers in many applications. The rotating collector can adjust its rotational speed
to control the degree of fiber alignment. With the increase in rotation speed, the fibers
exhibit pronounced alignment along the axis of rotation. Nevertheless, the rotating collector
can only partially achieve fiber alignment, as there are still a few fibers with randomly
distributed diameters. Another method involves the use of two parallel metal strips spaced
a certain distance apart, which can be used as a substrate to create perpendicular fibers that
are stretched and aligned by changing the electric field force [54].

2.4. Thermal Treatment

The resulting nanofibers can be further treated by pyrolysis to achieve different proper-
ties. In general, the formation of target carbon nanofibers consists of oxidation stabilization
and carbonization. Stabilization is necessary to prevent the precursor fibers from melting
during the carbonization process. The thermoplastic precursor nanofibers undergo a series
of chemical and physical reactions and are finally converted into highly densified thermoset
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fibers during stabilization [55]. In addition, the stabilization process involves a relatively
slow heating rate to avoid the risk of orientation loss and polymer melting caused by
high heat levels. Carbonization involves the transformation from a trapezoidal structure
to a graphite-like system, accompanied by cross-linking and reorganization in an inert
atmosphere [56]. Different porous structures can be obtained from the release of different
gaseous species during the heating process, such as H2O, H2, HCN, N2, NH3, CO, and CO2.
Furthermore, during carbonization, the fibers shrink and become much thinner than the
precursor fibers, significantly increasing the specific surface area. Finally, these as-prepared
carbon nanofibers loaded with active materials can be used as high-performance electrodes
in ZIBs.

3. Electrospun Cathode Materials

Cathode materials are critical for ZIBs because they can provide Zn storage sites,
influencing the final operating voltage and specific power density. To date, vanadium- and
manganese-based materials, Prussian blue analogs (PBAs), organic compounds, metal–
organic frameworks (MOFs) [34], and other types of materials have been designed and
applied as cathodes in ZIBs. Owing to the multiple valence states, high redox potential,
and theoretical capacity, vanadium- and manganese-based compounds are particularly
outstanding cathodes for ZIBs. Unfortunately, most of these materials have poor con-
ductivity and dissolution problems during the charge/discharge process, which remain
major obstacles to meeting commercial requirements. An effective method of address-
ing these issues is to integrate carbon materials to form a hybrid nanostructure. Carbon
nanomaterials produced by the electrospinning technique can provide cathode materials
with high conductivity and serve as matrices with large exposed specific surface areas
for embedding nanostructured active materials, which can facilitate fast electrochemical
kinetics and inhibit dissolution. In addition, some electrospun composites can be directly
used as freestanding and flexible electrodes to construct high-energy-density and flexible
ZIBs. The following content summarizes and discusses the recent progress in cathode
electrodes achieved by electrospinning methods for ZIBs, including the types of materials,
challenges, and viable solutions.

3.1. Vanadium-Based Materials

Vanadium is naturally abundant and has many valence states. As a result, there are
many different types of V-based compounds. Among them, V-based oxides have been
widely reported, especially V2O5 and VO2 [57–61]. The layered structure of V2O5 pro-
vides suitable layer spacing for ion migration, and the two-electron transfer reactions of
vanadium give it a high theoretical capacity (589 mAh g−1). Unfortunately, the Zn inser-
tion/extraction process is often hindered by poor conductivity and structural instability,
causing sluggish kinetics and reduced capacity. Numerous efforts have been made to
address these challenges, including combination with conductive materials, crystal struc-
ture adjustment, morphology engineering, and other modification strategies [62–65]. It
is worth noting that the utilization of 3D networked carbon nanofibers in combination
with electrospinning to produce composite materials has become increasingly attractive.
For example, Chen’s group [66] produced a V2O5 carbon fiber cloth (V2O5-CFC) via elec-
trospinning and high-temperature calcination methods, as illustrated in Figure 3a. The
V2O5 nanosheets are embedded in the ultra-long 1D carbon nanofibers, forming a 3D
conductive network structure (Figure 3b). Compared to pure V2O5, V2O5-CFC has a signif-
icantly higher cycling stability because of the prevented aggregation of V2O5 nanosheets.
Wang et al. [67] prepared a V2O5 encapsulated core–shell hierarchical structured fiber. The
hierarchical organization of the core–shell structure provides a substantial surface area that
promotes electron/ion transport. Consequently, it demonstrates excellent rate capability by
maintaining an outstanding capacity of 409 mAh g−1 even under a high current of 8 A g−1.

In order to optimize the electrochemical performance of V2O5, Chen’s group [68]
designed porous vanadium oxide fibers (VCN) with abundant defects by electrospinning
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and carbonization. Both the physical defects of pore pathways and caverns (Figure 3c)
and the chemical defects of oxygen vacancies (Figure 3d) can be concurrently generated
during the carbonization process. The defects in the cathodes enhance the ion/electron
migration, resulting in a shortened pathway and improved electrolyte penetration. This
leads to a remarkable electrochemical performance of the cathodes, achieving a capacity of
256 mAh g−1 at 1 A g−1. In addition, Chen’s group [69] also demonstrated a type of V2O5
nanofiber with a rich mesoporous structure (Figure 3e). This open and stable architecture
with rich porosity is beneficial for electrolyte permeation and Zn2+ insertion, enabling high
reversible capacity with ideal retention after 500 cycles.

Except for the combination of electrospun carbon fibers with excellent conductivity to
enhance the conductivity and flexibility of the whole cathode, some work has demonstrated
that electrospun polyacrylonitrile (PAN) fibers can be used as a sacrificial template to
design one-dimensional V2O5 nanostructured materials with interface defects. Due to
the high surface area and abundant electroactive sites, these materials are expected to
display excellent electrochemical performance. For example, Yoo et al. [70] used a template
method to synthesize interface-deficient V2O5 nanochips as cathodes (Figure 3f). In the
synthesis process, graphene is used to wrap PAN fiber templates embedded with vanadium
salt. During annealing, the combusted graphene can induce interfacial oxygen vacancies
formed in the V2O5. With the growth of V2O5 nanochips, these vacancies were activated by
compressive strain, serving as open channels for Zn2+ storage. In addition, Yoo et al. [71]
also prepared Fe-doped V2O5 nanorods by impregnating electrospun PAN fiber templates
in the precursor solution (Figure 3g). The doping effect and unique nanorod structure
enhance the electrical conductivity and ion migration kinetics, delivering superb rate and
cycling capabilities.

Unlike V2O5, which has a narrow interlayer spacing resulting in severe structural
degradation during the Zn2+ insertion/extraction process, VO2 has been shown to trans-
form the initial phase into hydrated vanadium oxide (V2O5·nH2O) through electrochemi-
cally induced phase transitions, and the structural H2O can increase interlayer spacing and
reduce electrostatic interactions, thereby effectively enhancing Zn2+ diffusion and ensuring
structural stability [72]. Thus, Wei’s group [73] utilized the in situ self-transformation of
VO2 and the electrospinning technique to prepare a kind of self-supported cathode. The
binder-free cathode delivers an excellent specific capacity of 319 mAh g−1 at 0.1 A g−1 and
215 mAh g−1 at 20 A g−1 (Figure 3h), confirming its significant promise in zinc-ion batteries.

Apart from V2O5 and VO2, low-valence vanadium oxide V2O3 can also be used
as a potential V-based cathode for ZIBs owing to its tunnel-like 3D architecture, which
can enhance the ion insertion/extraction and reduce the electrical resistance. Recently,
Liu et al. [74] reported a nanostructured V2O3/carbon cathode with V2O3 nanoparticles
embedded in carbon fibers. The electrospun V2O3/carbon composite, with its distinctive
tunnel-like 3D structure of V2O3 and high electrical conductivity of carbon nanofibers,
offers enhanced rate capacity and cycle stability as a flexible and free-standing electrode
for ZIBs.

Unlike vanadium oxides, vanadium chalcogenides are also worthy of exploring for
their superior electrical conductivity and capacity [75,76]. However, vanadium chalco-
genides always suffer from severe dissolution problems during the Zn2+ insertion/extraction
process, causing structural instability. To overcome this problem, Yang et al. [77] used
electrospinning to prepare a flexible cathode film, which allowed for better deposition
of the active materials and Al2O3 coating layers. These Al2O3 nanolayers can not only
act as a physical barrier to separate the active material from the electrolyte to prevent the
dissolution of VSe2 but also serve as ion-conducting nanoglue to anchor VSe2 onto N-CNFs
substrates and maintain the structural integrity of the electrodes (Figure 4a). As shown in
Figure 4b, TEM confirms that the Al2O3 nanocoating layer is homogeneously deposited on
the surface of the VSe2 NSs. The assembled ZIB provides an excellent stack energy density
of ~125 Wh kg−1 (Figure 4c).
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Figure 3. (a) Preparation of flexible V2O5-CFC cathode; (b) SEM image of V2O5-CFC; (c) TEM
image of VCN fibers; (d) comparison of XPS spectra of Zn 2p, V 2p, and O 1s regions between the
initial and subsequent cycle; (e) SEM image of as-fabricated V2O5 nanofibers; (f) schematic of the
electrospun PAN templates for the synthesis of interface-defective V2O5 nanochips; (g) schematic of
the rod-like structure of Fe-doped V2O5 synthesized by electrospinning templates; (h) rate capability
of VO2 (insets are photograph of the self-supporting and flexible electrode and the TEM image of
the as-prepared nanofibers). (a,b) Reproduced with permission from [66], copyright 2022, Elsevier
Ltd. (c,d) Reproduced with permission from [68], copyright 2020, Elsevier Ltd. (e) Reproduced
with permission from [69], copyright 2019, Elsevier Ltd. (f) Reproduced with permission from [70],
copyright 2021, Elsevier Ltd. (g) Reproduced with permission from [71], copyright 2021, Elsevier Ltd.
(h) Reproduced with permission from [73], copyright 2022, American Chemical Society.

Gradient materials have attracted considerable interest due to their compositional
distributions, which offer excellent adaptability to specific environmental conditions. How-
ever, the production of continuous materials is challenging due to the difficulty of precisely
controlling the continuous gradient distribution in their composition and structure. To
overcome this obstacle, Hu et al. [78] reported a novel strategy to fabricate continuous
gradient composite films (GCFs) by regulating the dynamically changing concentration
during electrospinning techniques. The precursor concentration, which decreases from
bottom to top, is achieved by continuously adding electrospinning polymer solution to
the precursor solution (Figure 4d). VO nanoparticles are consistently distributed within
the carbon fiber matrix with gradually decreased concentration from the bottom to the top
(Figure 4e). When VO-GCFs were employed as ZIBs cathodes, they displayed outstanding
electrochemical performance, and the capacity can still be maintained at 477.1 mAh g−1 at
a high current of 5.0 A g−1.
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3.2. Manganese-Based Materials

Due to the advantages of being inexpensive, abundant, environmentally friendly,
and non-toxic, manganese(Mn)-based oxides with different valence states, such as MnO2,
Mn2O3, Mn2O4, and Mn3O4 [79–82], have been developed as promising ZIBs cathodes.
Although Mn-based oxides possess high operating potential, specific capacity, and energy
density when used as cathodes for ZIBs, Mn oxides generally suffer from inferior rate
performance and cycle stability due to the low inherent electronic conductivity, significant
structural damage, and inevitable dissolution of Mn2+. An effective approach to tackle these
issues involves the integration of nanostructured Mn oxides with conductive substrates.
On the one hand, these conductive substrates including carbon cloth and carbon nanofibers
can improve the conductivity of the composite. On the other hand, these conductive
substrates usually have a high surface area and abundant functional groups, which can
prevent the dissolution of Mn2+ by adsorption. For instance, Liu’s group [83] used a porous
carbon fiber (PCF)-loaded MnO2 (PCF@MnO2) as a cathode electrode for ZIBs. The PCF
mats were synthesized by the initial electrospinning, separation, and subsequent pyrolysis.
It shows that mesopores are uniformly distributed in the fiber (Figure 5a) and that thin
layers of MnO2 are uniformly deposited on the internal and external surfaces of the PCF
after subsequent incubation in KMnO4 solutions (Figure 5b). The internal homogeneous
mesopores of PCF offer a large surface area and facilitate high MnO2 loading, and the
PCF@MnO2 with areal MnO2 loadings of 1.00 and 1.42 mg cm−2 exhibits superior energy
and power densities than other reported cathodes (Figure 5c). Similarly, Fang et al. [84]
prepared nitrogen-doped carbon nanofibers (CNFs) by electrospinning polyamic acid
(PAA)/polyvinyl pyrrolidone (PVP). Subsequently, ultra-thin MnO2 nanosheets were in
situ grown on the surface of CNFs (Figure 5d). When a Zn(ClO4)2 salt is employed for the
Zn//MnO2-CNF ZIBs, the cell exhibits an exceptional cycle life of 500 cycles at 1 A g−1

under 0 ◦C (Figure 5e) and could light up the LED at an ambient temperature of −10 ◦C.
The modification of the Mn oxides themselves, such as the creation of heterointer-

faces, defect engineering, and pre-intercalation of cations, can be efficient strategies to
tune the electronic and crystal structure of the electrode materials, thereby improving the
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conductivity and reaction kinetics of Mn oxide-based cathodes. To further enhance the
electrochemical behavior of Mn-based oxides, Tang et al. [85,86] developed a heterostruc-
tured MnS/MnO composite that has rich heterointerfaces with abundant reaction active
sites and N-doping, which significantly improves the electronic conductivity and surface
reaction kinetics. In addition, Yang’s group [87] reported a novel composite with MnO2
grown on the carbon nanofibers synthesized by electrospinning as the electrode, due to the
interlayer spacing of MnO2, was enlarged by the K+-intercalation; the resulting materials
can maintain a high reversible capacity of 190 mAh g−1 at 3 A g−1 over 1000 cycles.
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Figure 5. (a) SEM image of PCF; (b) SEM image of PCF@MnO2 prepared by solution soaking; (c)
comparison of the Ragone plot of PCF@MnO2 with other cathodes; SEM images of the (d) MnO2-
CNFs; (e) the cycling stability of the cell tested at 0 ◦C; (f) rate performance of all the Mn3O4@HCFs
electrodes at different currents; (g) SEM images of different MnOx nanowires annealed at 300 ◦C,
500 ◦C, and 700 ◦C; (h) rate performance of different MnOx nanowires annealed at 300 ◦C, 500 ◦C,
and 700 ◦C. (a–c) Reproduced with permission from [83], copyright 2022, Willey-VCH Verlag GmbH
&Co. KGaA, Weinheim. (d,e) Reproduced with permission from [84], copyright 2023, Elsevier Ltd.
(f) Reproduced with permission from [88], copyright 2020, Elsevier Ltd. (g,h) Reproduced with
permission from [89], copyright 2022, Elsevier Ltd.

To further investigate the effect of the carbonization process, including carbon content
and carbonization temperature, on the electrochemical behavior of the 3D carbon network
composited with Mn-based materials, Long et al. [88] investigated the effect of carbon
content in the Mn-based oxides/carbon nanofibers on the electrochemical performance.
Different PAN contents (5.5%, 7.5%, 9%, 10.5%) in the spinning solutions were combined
with Mn3O4 nanoparticles (NPs) to adjust the carbon content. Lower carbon content
cannot fully embed all the NPs, resulting in partial aggregation. However, excessive
carbon content will reduce the porosity, inhibiting ion transport and electrolyte infiltration.
Thus, the well-defined Mn3O4@HCFs-7.5 electrode demonstrates excellent rate capability
(215.8 and 115.7 mAh g−1 at 0.3 and 2.0 A g−1, respectively, Figure 5f). In addition,
Cheng et al. [89] explored the temperature effect on the electrochemical behavior. As
depicted in Figure 5g, when treated at 500 ◦C, the Mn2O3 nanoparticles were uniformly
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embedded in the carbon nanowires, compared to the uneven nanowire formation and
discontinuous grain growth at 300 ◦C and fiber disintegration and bead-like particles at
700 ◦C. When employed as ZIB cathodes, the Mn2O3 obtained at 500 ◦C shows outstanding
rate performance (~153 mAh g−1 at a current of 5 A g−1, Figure 5h).

3.3. Organic Compounds

Organic compounds play an important role as ZIB cathode materials due to their
lightweight, renewable resources, environmental friendliness, and structural diversity. In
contrast to transition metal oxides, the redox chemistry in organic electrodes involves only
the rearrangement of chemical bonds through the insertion/extraction of large hydrated
Zn2+. This characteristic helps to avoid significant structural changes [90]. Conductive
polymers are a distinctive group of organic materials that exhibit high electronic conductiv-
ity due to long electron-conjugated systems. However, the specific capacity and cycling
stability of conductive polymers are limited at high doping states when used as electrode
materials for ZIBs due to the poor conductivity in this state. Thus, hybridization with
conductive substrates is an effective way to improve their electrochemical performance. For
instance, Kim’s group [91] fabricated polyaniline (PANI)-coated carbon fibers (PANI/CFs)
and assembled them as cathodes to construct highly customized high-power ZIBs. A bind-
free CF mat was first synthesized as a 3D current collector via electrospinning; then, PANI
can be polymerized in situ on the surface of the CFs to obtain the desired PANI-coated
CF cathode (Figure 6a). As displayed in Figure 6b,c, the thin and highly porous PANI
layer grows homogeneously over the entire surface of the flexible CF mat. The packaged
PANI/CF/Zn cell within 3D printed geometries exhibits a high rate performance (~600 C).
Liu et al. [92] synthesized synchronous ultra-high conductivity reactive N-atom-doped
flexible carbon nanofiber networks (SH-FCNNs) by electrospinning. PANI-implanted
highly porous polyacrylonitrile (PPAN@PANI) nanofibers were used as precursors due
to the strong interaction between their functional groups (Figure 6d). Flexible solid-state
ZIBs packed with commercially available aluminum plastic films were fabricated, realiz-
ing superior rate capability (132 mAh g−1 at 20 A g−1, Figure 6e) and cycle performance
(168.2 mAh g−1 after 5000 cycles at 5 A g−1, Figure 6f). Apart from PANI, Cai et al. [93]
reported that poly(5-cyanoindole) could be directly electrospun into fibers to serve as
cathode materials for ZIBs, giving discharge capacity (107 Ah Kg−1) superior to that of the
zinc/polyindole powder cell.

3.4. MOF-Derived Materials

Organic ligands coordinated with metal ions form metal–organic frameworks (MOFs),
which are gaining interest as advanced functional electrode materials in battery systems
due to their high porosity, large surface area, and controlled morphologies. MOFs can be
selected as precursors or templates to be converted into specific carbon-based derivatives to
improve their electrical conductivity and structural integrity [94], which enhances electron
migration and prevents volume fluctuations. For example, Yu et al. [95] prepared MOF-
derived NiCo2S4 nanoparticles and hollow carbon hybrid spheres compactly connected
by electrospun carbon fibers (NiCo2S4/HCS@CFs) and used them as binder-free cathodes
for ZIBs (Figure 7a). As shown in Figure 7b,c, the solid NiCo-MOF spheres have a smooth
surface, and after carbonization and sulfidation of the electrospun composite, necklace-
like NiCo2S4/HCS@CF were formed with compactly linked structures. The assembled
NiCo2S4/HCS@CFs/Zn batteries show an extremely high capacity of 343.1 mAh g−1

at 3.8 A g−1 with superior rate and cycle performance (Figure 7d). Zhang et al. [96]
reported a 3D self-supported composite with vanadium nitride wrapped in nitrogen-doped
carbon nanofibers by electrospinning and annealing. The X-ray diffraction (XRD) pattern
depicted in Figure 7e confirms that the crystalline V-MOFs were completely transformed
into VN after thermal treatments. The presence of V-based MOFs can induce the formation
of whisker-like secondary structures and uniform distribution of VN nanograins. As
displayed in Figure 7f, the VN/N-CNFs possess a rough surface with truck nanofibers
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and branched nanowhiskers, which can expose more active sites for Zn2+ storage. Due
to the high structural integrity of the 3D electrospun VN/N-CNF skeletons, the electrode
delivered superior cycle stability, maintaining a capacity of 482 mAh g−1 after 30,000 cycles
at 50 A g−1 (Figure 7g). Ding et al. [97] reported a bead-like manganese oxide embedded
in electrospun carbon nanofibers (MnOx-CNFs); the unique structure can provide robust
structural integrity and accelerate the electron/ion diffusion kinetics. These features made
MnOx-CNFs exhibit long cycle stability and superior rate capability.
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2021, Elsevier Ltd.
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4. Electrospun Anode Materials

Zinc is commonly used as an anode in ZIBs because of its cost-effectiveness, economical
nature, high capacity (820 mAh g−1; 5851 mAh cm−3), suitable redox potential (−0.76 V vs.
standard hydrogen electrode (SHE)), and stability in many environments [98–100]. However,
the use of conventional zinc anodes suffers from several issues, including interfacial corro-
sion, dendrite and “dead zinc” formation during cycling, resulting in problems like poor
reversibility, low Coulombic efficiency (CE), and inferior cycle stability, which significantly
limit the further practical application of ZIBs. In recent years, many efforts have been
made to solve these issues, including electrolyte optimization, hierarchical current collector
design, and surface modification [101–103]. Numerous studies have demonstrated that
3D conductive structured materials can act as interfacial layers and substrates, providing
abundant zincophilic sites that can alleviate dendrite growth and greatly enhance the rate
and stability of ZIBs. Here, the latest advancements in anode electrodes achieved through
electrospinning technologies are reviewed. The electrospun modification structure on
anodes can be mainly categorized into functional interlayers and functional substrates.

4.1. Functional Interlayers

Many chemical reactions occur on the electrode/electrolyte interface. These reactions
include the in situ formation of the solid electrolyte interphase (SEI), ion transport, deposi-
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tion, and corrosion of metallic Zn. The interphase on the Zn anode plays a crucial role in
determining the thermodynamic stability as well as the dynamic processes that ultimately
affect the electrochemical performance of ZIBs. To promote Zn2+ migration and induce
homogeneous Zn plating, surface modification of the anode with a microporous polymer
network or the addition of an interlayer between the separator and the zinc anode is con-
sidered a promising strategy. Coincidentally, the electrospun nanofiber membrane, with its
lightweight and self-supporting properties, is a good choice as an interlayer material. For
example, Kim’s group [104] modified the Cu foil with an electrospun porous PAN nanofiber
layer and employed it as a current collector for the Zn plating/stripping (Figure 8a). The
polar nitrile groups present in the PAN nanofibers facilitate the uniform nucleation of
zinc and prevent the growth of dendrites. As shown in Figure 8b, the symmetrical cell
test demonstrates that the Zn@PAN-Cu electrode has extended cycling stability without a
short circuit happening after approximately 270 h. Kim’s group [105] also reported that an
electrospun ferroelectric poly(vinylidene fluoride-co-trifluoroethylene) copolymer (P(VDF-
TrFE)) nanofiber layer, denoted as PNF, can yield homogeneous Zn deposition and inhibit
side reactions. In addition, Zhao’s group [106] demonstrated that the polybenzimidazole
(PBI) nanofibers with abundant N-containing functional groups not only allow uniform
Zn nucleation on the Cu surface but also facilitate the uniform transport of Zn2+ ions,
facilitating the uniform deposition of zinc on the 3D porous framework. After 100 cycles of
the symmetrical cell test, it can be clearly seen that the surface of the Zn@PBI-Cu anode was
relatively uniform without obvious dendrites and flakes structures (Figure 8c,d) formed.
Furthermore, the assembled Zn@PBI-Cu/MnO2 full battery exhibited an exceptional ca-
pacity retention of almost 100% after 1000 cycles (Figure 8e). These results demonstrate
that the PBI framework can confine the Zn growth in the porous structure and inhibit the
short circuits that occur during the long-term cycling test. The electrospun interwoven
membranes have an inherently porous structure, which makes it possible to introduce some
fillers into the nanofibers or the porous networks to improve the electrochemical behavior
of the ZIBs. For instance, Zhi’s group [107] synthesized a hierarchical polymer electrolyte by
grafting polyacrylamide (PAM) onto an electrospun PAN network. The hybrid membrane
can be used both as a separator and an interlayer, and the fabricated flexible solid-state
ZIB delivers superior areal energy density and power density. Liu et al. [108] reported
a hybrid interlayer consisting of a thermoplastic polyurethane (TPU) fiber matrix and a
Zn-alginate (ZA) filler, denoted as Zn@TPZA. This interlayer acts as a physical barrier
between the anode and electrolyte, preventing the spontaneous corrosion and uncontrolled
accumulation of Zn dendrites. As depicted in Figure 8f,g, the Zn@TPZA-coated zinc anode
retains its original shape after 30 days of immersion in a 2 M ZnSO4 electrolyte with no by-
products detected compared to bare Zn, confirming that the hybrid interlayer has excellent
corrosion resistance.

Recently, porous and conductive carbon networks derived from electrospun polymer
nanofibers have shown great promise as anode interlayers owing to their high electrical con-
ductivity, significant surface area, and unique anisotropic structure, which can homogenize
the charge distribution and reduce the nucleation overpotential and diffusion resistance of
Zn2+, thus inhibiting the dendrite growth and improving the cycling stability. For instance,
Liang et al. [109] demonstrated a N–O co-doped carbon nanofiber (CNF) with a diameter
distributed in the range of 500–800 nm (Figure 8h), which can be easily obtained by cal-
cining PAN nanofibers. Owing to the fact that the CNF interlayer can efficiently capture
Zn2+ and facilitate proper Zn deposition on the anode, the assembled symmetric cell can
operate steadily for 1200 h with a low overpotential of 59.5 mV at 5 mA cm−2 (Figure 8i).
Similarly, Wan et al. [110] synthesized a dendrite-free N-doped carbon nanofiber Zn anode
and fabricated a ZIB full cell with an AlxV2O5 cathode; the cell can display an energy
density of 50 Wh kg−1. Additionally, Yang et al. [111] fabricated a flexible coating layer
composed of Cu nanoparticles and porous and conductive carbon networks (Cu@CNFs) by
the electrospinning method. Cu nanoparticles (CuNPs) with zincophilic properties can act
as nucleation seeds, promoting uniform zinc deposition and preventing dendrite growth,



Batteries 2024, 10, 22 14 of 21

while the CNFs have the ability to evenly disperse the electric charge and control the flow
of Zn2+ ions. This synergistic effect efficiently improves its electrochemical performance,
resulting in a continuous cycle of over 2200 h at 1.0 mA cm−2.
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in electrolyte for a few days; (h) SEM image of CNF interlayers; (i) cyclic stability test of Zn depo-
sition/stripping and corresponding nucleation overpotential. (a,b) Reproduced with permission
from [104], copyright 2022, Elsevier Ltd. (c–e) Reproduced with permission from [106], copyright
2020, Royal Society of Chemistry. (f,g) Reproduced with permission from [108], copyright 2022,
Wiley-VCH Verlag GmbH &Co. KGaA, Weinheim. (h,i) Reproduced with permission from [109],
copyright 2021, Elsevier Ltd.

4.2. Functional Substrates

When Zn foils are used directly as the current collector and anode material in ZIBs,
their electrochemical properties become unstable due to the volume change and the for-
mation of uneven zinc dendrites during cycling. Apart from the modification of the Zn
anode with an interlayer, in recent years, it has also been essential to construct suitable
substrates as hosts for the Zn deposition, which can handle the volume change, regulate the
crystal orientation, and improve the stability of the Zn anode. CNFs can be regarded as an
excellent modification material for conductive substrates due to their high electrical conduc-
tivity, large surface area, and unique anisotropic structure for zinc storage. Baek et al. [112]
used the CNF as a conductive host for the anode of ZIBs. The symmetrical cell test at
0.1 mA cm−2 for 400 h showed that the overpotential of zinc-deposited CNF (ZnCNF) was
maintained at 60.1%, which is lower than that of bare zinc. In addition to using conductive
materials alone as substrates, another effective approach is to combine 3D conductive
frameworks and active materials with abundant zincophilic sites. On the one hand, the
3D conductive frameworks can provide more space than a planar configuration, which is
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beneficial in regulating the local current distribution and accommodating the volumetric
changes. On the other hand, the use of these active materials significantly regulates the
crystal orientation and deposition behavior of metallic zinc, resulting in a notable enhance-
ment in its electrochemical behavior. For example, Yang et al. [113] fabricated a Sn-coated
porous carbon fiber (Sn-PCF) as a Zn anode host to promote homogeneous Zn plating.
The Sn-PCF@Zn anode synergistically integrates the benefits of two constituent elements.
One originates from the PCF network, which facilitates the promotion of consistent Zn2+

flow and even distribution of 3D Zn formation. The other originates from the Sn nanodot
coating, which creates a surface on each fiber that strongly attracts zinc ions and allows for
high Zn2+ adsorption and immobilization. These features work together to enhance the Zn
deposition and stripping behavior, resulting in a very slow capacity degradation rate of
approximately 0.009% per cycle at 5 A g−1 for Zn-ion full cells. Similarly, Yu et al. [114]
reported a 3D hybrid fiber substrate consisting of interconnected N-doped hollow carbon
spheres embedded with Sn nanoparticles (Sn@NHCF) as a Zn host for a stable Zn anode
in ZIBs (Figure 9a). Compared to the direct coating of Sn nanodots on carbon fibers, this
synthesis method, in which Sn nanoparticles are first embedded in hollow carbon spheres
and then combined with carbon fibers, provides more internal and external surfaces for
Zn deposition, resulting in a lower nucleation overpotential (11.4 mV at 1 mA cm−2 vs.
21 mV at 1 mA cm−2, Figure 9b). In addition, a full cell assembled with the Sn@NHCF-Zn
composite anode and a V2O5 cathode exhibits excellent rate performance and long-term
cycle life (Figure 9c). Zeng et al. [115] fabricated a 3D multifunctional host comprising
N-doped carbon fibers with Cu nanoboxes (Cu NBs@NCFs) implanted for stable Zn an-
odes. The preparation of Cu NBs@NCFs is demonstrated in Figure 9d, where the CuS
hollow nanoboxes are used as the template for Cu NBs (Figure 9e). The Cu NBs@NCF
host demonstrates high Zn deposition/stripping CE for 1000 cycles and extended cycle
life (450 h) by inhibiting the dendrite formation. The transition metal oxides (e.g., TiO2,
SiO2) have been investigated as Li hosts to suppress dendrite growth and exhibit excellent
electrochemical performance in lithium batteries [116,117]. To confirm that these metal
oxides can also be used as Zn hosts in Zn batteries, Song et al. [118] synthesized a ZnOx
embedded in porous carbon nanofibers (ZnOx@PCNF) as a host material for Zn anodes.
As shown in Figure 9f, the flexible ZnOx@PCNF films offer stable plating/stripping within
500 h at a high current density, demonstrating that this composite can regulate the elec-
tron/ion flux and guide the Zn2+ ions to form homogeneous Zn metal deposition. Xue
et al. [119] synthesized well-distributed TiO2, SiO2, and carbon into the 3D porous hollow
fiber (HSTF) as a superzincophilic zinc anode host. The homogeneous zinc plating behavior
in the 3D-HSTF host can be directly observed using atomic force microscopy (AFM) height
tests and Kelvin probe force microscopy (KPFM) potential measurements. As depicted
in Figure 9g, the initial HSTF electrode exhibits a relatively smooth surface (the average
height is only 370 nm) compared to the rough surface (the average height is 420 nm) of the
Zn anode based on a pristine separator.
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5. Conclusions and Perspectives

In recent years, ZIBs have evoked much interest in grid-scale energy storage due to
their inherent safety, cost-effectiveness, and environmental friendliness. However, there are
still many challenges to be overcome before practical implementation, including extremely
unstable Zn metal anodes, side reactions (e.g., H2/O2 evolution), cathode dissolution,
and structural damage. In this case, numerous efforts have been made to develop and
modify the cathode, interlayer, and anode materials in ZIBs. Electrospinning is a highly
efficient technology and is widely used to design 1D nanostructures with controllable
morphology, structure, and composition by adapting the parameters of electrospinning and
annealing. In this review, the basic electrospinning technique has been introduced and its
applications in ZIBs have been systematically summarized. For the cathode side, almost all
commonly used cathode materials with nanoscale dimensions can be fabricated by electro-
spinning via modulating the precursor solutions, including vanadium-based compounds,
manganese-based compounds, organic compounds, and MOF-derived materials. The 1D
nanostructures synthesized by electrospinning can be interwoven to form a 3D network,
which improves electrical conductivity and maintains structural integrity. For the anode
side, the 3D network interlayers of electrospun polymer nanofibers could homogenize the
charge distribution on the zinc anode and promote Zn deposition uniformly, thus inhibiting
dendrite formation. In addition, the electrospun carbonaceous nanofibers or composites
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have a good surface affinity for Zn2+, thus exhibiting a smoother Zn plating/stripping
process, and can construct a CNF/Zn anode by the plating method. However, before
designing electrospun nanostructures for ZIBs in future work, there are still several points
to consider, including the following: (1) Previous work has mainly focused on the design
of transition metal oxide-based cathode materials. Other potential cathode materials, such
as organic compounds and MOF-derived composites, are still lacking, and much effort is
needed to design these materials with high performance; (2) Innovative strategies based
on electrospinning need to be developed to prepare functional components for ZIBs, such
as hierarchical separators and solid/gel polymer electrolytes; (3) The testing standards of
electrospun nanostructured electrodes need to be established. The loading density, thick-
ness, electrode areas, porosity, etc., of electrospun electrodes are not unified across different
reported work, making it difficult to evaluate the effect of different modification strategies,
especially for industrial requirements; (4) Currently reported works usually use harmful
and flammable organic solvents and expensive precursors, which make it difficult to meet
the industrial standard. Thus, the exploration of low-cost precursors and environmentally
friendly solvents is urgently needed to promote electrospun nanostructured electrodes
for large-scale use. In addition, a reliable and widely applicable mathematical model for
optimization of the electrospinning process’s parameters also needs to be developed, which
can help provide a deeper scientific understanding of electrospinning and promote the
development of ZIBs in the near future.
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