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Abstract: Predicting the core temperature of a Li-ion battery is crucial for precise state estimation,
but it is difficult to directly measure. Existing quick temperature-predicting approaches can hardly
consider the thermal mass of complex structure that may cause time delays, particularly under high
C-rate dynamic conditions. In this paper, we developed a quick temperature prediction algorithm
based on a thermal convolution method (TCM) to calculate the core temperature of a flat heat pipe-
based battery thermal management system (FHP-BTMS) under dynamic conditions. The model could
predict the core temperature rapidly through convolution of the thermal response map which contains
full physical information. Firstly, in order to obtain a high fidelity spatio-temporal temperature
distribution, the thermal capacitance-resistance network (TCRN) of the FHP-BTMS is established
and validated by constant and dynamic discharging experiments. Then, the response map of the
core temperature motivated by various impulse heat sources and heat sinks is obtained. Specifically,
the dynamic thermal characteristics of an FHP are discussed to correct the boundary conditions of
the TCM. Afterwards, the temperature prediction performances of the TCM and a lumped model
under different step operating conditions are compared. The TCM results show a 70–80% accuracy
improvement and better dynamic adaptivity than the lumped model. Lastly, a vertical take-off and
landing (VTOL) profile is employed. The temperature prediction accuracy results show that the TCM
can maintain a relative error below 5% throughout the entire prediction period.

Keywords: Li-ion battery; flat heat pipe; thermal management system; temperature prediction;
thermal convolution

1. Introduction

With the growing demand for decarbonization, pure electric vehicles and electrification
of transportation have developed rapidly in recent years [1]. The Lithium-ion battery,
benefiting from its high power and energy density, is considered to be one of the most crucial
and marketable technologies among electrochemical power sources [2]. A tremendous
amount of research works have clarified that temperature critically influences the overall
performance of Li-ion batteries, including cycled/calendar life, state of power (SOP),
security, etc. [3]. A low temperature under 0 ◦C causes Lithium precipitation. An exorbitant
temperature (above 50 ◦C) can lead to decomposition of the solid electrolyte interface
(SEI). Therefore, an inappropriate operating temperature causes capacity degradation and
increases the risk of thermal runaway [4]. Battery thermal management systems (BTMS)
play a crucial role in regulating Li-ion battery temperatures within the optimal region.

The structural configurations and control strategies are two main research aspects of
BTMSs. There are various types of BTMS. As the primary kinds, air cooling and liquid
cooling are widely applied in electric vehicles [5,6]. In order to achieve favorable thermal
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management performance, the layouts between the coolant flow channel and batteries
have been taken into consideration and extensively studied, as well as the optimal BTMS
design methods [7,8]. As the safety requirements for battery systems and the demands
of high charge/discharge rates both increase, BTMSs based on heat pipes were proposed.
Profiting from the principle of latent heat during the phase change process, heat pipes
can reach a high equivalent thermal conductivity and low temperature gradient on the
evaporation side. Heat pipe-based BTMSs are generally combined with air or liquid cooling
on the condensation side as a heat sink [9,10]. For the purpose of maintaining temperature
consistency among batteries, phase change materials (PCM) are also applied together
with heat pipes [11]. Researchers focused on the thermal performance of such BTMSs
through sample experiments and three-dimensional Computational Fluid Dynamics (CFD)
simulation. Zhang et al. [12] placed an FHP between battery cells, the temperature of
which can be regulated below 32 ◦C under 4 C condition with an ambient temperature
of 25 ◦C, and the temperature difference is below 5 ◦C. Jouhara et al. [13] placed the
FHP below the battery pack. Liquid cooling was utilized in the condensation part of
the FHP. The maximum temperature and temperature difference are regulated to 35 ◦C
and 3 ◦C, respectively. Liu et al. [14] also applied a fin structure on a cylindrical battery
pack, and their experimental results provided a quantitative relationship between cooling
flow rate and temperature distribution. Although heat pipe-based BTMSs demonstrated
excellent temperature regulation effectiveness, the temperature prediction methods have
not developed practically yet. The CFD work costs time, and usually assumes the FHP to
be a thermal conductor with constant thermal conductivity [15–17], without considering
the dynamic thermal effects, which is essential to the accuracy of battery temperature
prediction and control under dynamic operating current and variable boundary conditions.

As for control strategies, the existing research works mainly focus on systematic air-
cooled and liquid-cooled BTMSs. The control targets would generally take temperature,
temperature difference, calendar/cycled life-span and the energy consumption of the BTMS
into consideration. Cen et al. [18] studied the influence of proportional, integral and dif-
ferential (PID) parameters on control precision by combining automotive air-conditioning
and battery systems. When the expected control target temperature is set to 25 ◦C, the tem-
perature differences of batteries are within 2 ◦C at 0.5 C and 2.5 ◦C at 1.5 C. Min et al. [19]
proposed a fuzzy control strategy based on a battery-lifetime extension method which
reduces battery-lifetime loss by the peak shifting and valley filling effect. It can reduce
the loss of battery life during the heating-up process under low-temperature conditions
without affecting the state of temperature (SOT). Gao et al. [20] compared the dynamic
performance and precision of temperature control between the fuzzy logic method and PID
for an air-cooled array battery system. In the above research, temperature is the most crucial
index and target for controller and strategy design. The adaptable temperature model
is mostly a lumped model, which expresses battery temperature as the volume-average
one. Moreover, the operating charge/discharge rate of the working condition is low as a
conventional system. Due to the rolling and multi-layer structure of anode/cathode pole
pieces and separators inside the battery, the normal thermal conductivity of the diaphragm
is much smaller than in the other direction. Thermal inertia will lead to delays between the
internal and surface temperatures. With the gradual enlargement of battery volumes and
high C-rate operating conditions, this effect will be highlighted. Lee et al. [21] found that
the temperature difference between inside and outside under 3 C working conditions can
reach 8 ◦C through home-made thermocouples inserted into a pouch battery. The response
delay turns out to be around 45–90 s. Hence, merely detecting the surface temperature and
considering the average temperature of the battery are not enough to predict SOT precisely.

Considerable number of researches have already noticed the defects of the lumped
thermal model and the inadequacy of measuring surface temperature only. Kalman filters
(KF), finite element methods (FEM) and data-driven methods are the usual approaches
to estimate and predict the SOT of the battery. In terms of KF methods, the internal
temperature can be estimated and corrected in real time based on sensor data and a
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thermo-electrical model [22]. Then, extended Kalman filter (EKF), dual-KF and joint
estimation were widely used to achieve higher precision [23–25]. However, KF-based
methods essentially involve online solving and correction of thermal models. The lack of
feedback will lead to inadequate accuracy during temperature prediction. As for FEM,
they can accurately reconstruct the temperature field but suffer from long computation
times while solving the implicit equations. Some studies have explored dimensionality
reduction methods that include high-dimensional temperature information. Hu [26,27]
generated a temperature–time matrix based on CFD simulation results and performed
singular value decomposition to obtain temperature field snapshots. This reduced-order
method significantly improves the calculation speed of obtaining a 3D temperature field,
yet it essentially represents a repetitive process under the same conditions and struggles
to adapt to dynamically variable boundary conditions and different initial conditions.
Data-driven methods have also received attention to predict SOT in recent years. Kleiner
developed a recurrent neural network, which makes the results of the previous time step
temperature prediction memorable and performs with higher precision and robustness
dynamically than traditional feedforward artificial neural networks [28]. Wang proposed a
physical informed neural network (PINN) to achieve self-learning of the battery electoral-
thermal model during aging [29]. However, such machine learning models are black-
box and rely on a high-fidelity training dataset which is difficult and time-consuming
to obtain [30]. Additionally, thermal network methods were widely applied for their
reasonable simplification of FEM and interpretability [31], but the calculation speed cannot
meet the real-time requirements when the structure of the BTMS becomes more complex.
Therefore, a temperature-prediction algorithm that can reflect physical mechanisms and
enable fast computation at the same time is still lacking.

In order to fill the aforementioned research gaps, this paper developed a quick
temperature-prediction algorithm based on the thermal convolution method (TCM) for
an FHP-based BTMS. Compared to the existing studies, three contributions are achieved.
The first contribution is the theoretical modeling of dynamic heat transfer effects between
the FHP and prismatic batteries, with the consideration of the phase change heat transfer
mechanism. We integrate it into a thermal capacitance-resistance network (TCRN) to simu-
late temperature distribution. Experiments under constant and dynamic current profiles
were carried out and the accuracy of the TCRN was verified. The second contribution is to
propose a paradigm for temperature prediction based on the thermal convolution method.
The temperature responses of the inner node of the battery to multiple heat sources are col-
lected, and hence the inner temperature of the battery can be predicted precisely through a
temporal convolutional integral so long as the boundary conditions are provided. The third
contribution is the research on the influences of cooling and heating condition variation
on the characteristic time of the FHP, which confirms the quick temperature prediction
algorithm as a correction of the heat sink source term in the thermal convolution method.
The algorithm performs on a similar time scale of calculation as the lumped model, but
with much more accuracy. Afterwards, the temperature prediction performances of the
TCM and the lumped model under various specific dynamic operating conditions were
compared and discussed. The proposed temperature prediction method in this paper can
serve as a foundation for controller and strategy design, and can be further extended to
other forms of BTMS to accurately estimate and predict battery temperatures.

2. FHP-Based BTMS Electro-Thermal Coupled Model
2.1. FHP-Based BTMS

A prismatic Li-ion battery module combined with FHP-based thermal management
system is presented in Figure 1. Twelve battery cells are closely aligned along the thickness
direction, and a flexible heat-conduction pad made of silica gel is sandwiched between each
two cells. The FHP is placed underneath the cells. The part of the FHP surface attached to
the cells is coated with silicone grease to reduce contact thermal resistance and reinforce
heat transfer. The other part of the FHP provides heat dissipation measures, and consists
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of a fin and an axial fan. The operating principle of the FHP-based BTMS is also shown
in Figure 1. An FHP can be divided into the shell, a porous capillary wick and a vapor
chamber [32].
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Figure 1. Schematic of an FHP-based BTMS of 12 cells and working principle of the FHP [32].

For the above configuration of an FHP-based BTMS, the heat transfer process of the
whole system includes three important aspects: (1) Operating conditions and heat genera-
tion rates of the battery module. (2) Heat transfer performance of the FHP. (3) The cooling
capacity of the condensation section. According to references [33,34], the heat transfer
performance of the FHP is mainly affected by heat source conditions and structural param-
eters. The heat transfer capacity of the FHP directly affects the temperature uniformity and
cooling/heating rate of the battery module. For the fin structure and fluid channel at the
condensation section of the FHP, shown in Figure 1, the cooling method can be direct air
cooling or liquid cooling. In the present study, air cooling was adopted.

As indicated above, the temperature of batteries is mainly determined by both heat
generation and heat dissipation. In the current section, the heat generation model of
batteries and the heat transfer model of the FHP are established, respectively. Then, the
coupling method of the models is introduced, and the battery parameters are calibrated
by experiments.

In the current study, a module consisting of twelve prismatic battery cells is used for
the analysis, and the parameters of the cells are presented in Table 1.

Table 1. Technical parameters of the Prismatic Battery Cell (L148N50A).

Parameters Value

Dimensions 148 mm × 26.7 mm × 98 mm
Nominal capacity 50 Ah

Energy 182.5 Wh
Nominal voltage 3.65 V
Anode material NCM

Electrolyte material LiPF6
Cathode material Graphite

Mass 895 g

The FHP is produced with a shell made of aluminum, and the phase change medium
is acetone, for its adaptability to the operating temperature range of the battery. The specific
details of the FHP-BTMS are introduced in Table 2.

Table 2. Details specification of the FHP-BTMS.

Parameters Value

Shell Material of FHP Aluminum
Wick Material of FHP (Porous sintered) Aluminum particles
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Table 2. Cont.

Parameters Value

Working Fluid of FHP Acetone
Evaporator length (each cell) 0.026 m

Condenser length of FHP 0.1 m
FHP width 0.148 m
FHP length 0.44 m

Total thickness of FHP 0.005 m
Thickness of shell 0.001 m
Thickness of wick 0.0015 m

Thickness of vapor channel 0.0015 m
Space of fin 0.01 m
Width of fin 0.08 m

Thickness of fin 0.0005 m
Wick porosity 0.48

Module overall size 440 mm × 150 mm × 103 mm
Cooling method Axial fan

Fan size 120 mm × 120 mm × 50 mm
Max airflow rate 0.12 kg/m3

2.2. Battery Heat Generation Model

According to Newman et al. [35], the total heat generation rate inside a battery cell is
composed of two parts (right side of Equation (1)): the first term refers to the irreversible
heat generated during the charging-discharging process, the second term refers to the
reversible heat which is produced by the electrochemical reactions.

Q = I(U − Uocv) + IT
dUocv

dT
(1)

where I is the charging/discharging current through the battery, T is the battery tempera-
ture, U and Uocv are the terminal voltage and open-circuit voltage of the battery, respectively.
Since Uocv is related to State of Charge (SOC), battery temperature and entropy change, a
resistance-based heat generation model could be adopted to calculate the irreversible heat
in order to simplify calculations. Thus, Equation (1) could be changed into:

Q = I2(θp(T, SOC, I) + θo(T, SOC, I)
)
+ IT

dUocv

dT
(2)

where θp and θo are, respectively, the polarization resistance and ohmic resistance.
For different batteries, experiments should be carried out to obtain resistances and

open circuit voltages (OCV) under different conditions, and thus the dynamic heat gen-
eration rate in a battery could be described. Hybrid pulse power characteristic (HPPC)
experiments are conducted with the conditions of 10 ◦C, 20 ◦C, 30 ◦C and 40 ◦C environ-
mental temperature, 0.5 C, 1 C, 1.5 C, 2 C charge and discharge current, respectively. As
shown in Figure 2, after a certain period of pulse current (10 s in this paper), the voltage
response of the battery will be excited, firstly jumping down from U1 to U2, and then slowly
decreasing to U3. After the end of pulse loading, the voltage starts with a jump rebound and
then slowly increases. Correspondingly, the sudden change of voltage from U1 to U2 and
the decrease from U2 to U3 are caused by θo and θp, respectively. According to ohmic law,
the θo and θp under the tested conditions can be obtained, and the total resistance (θo + θp)
of the battery can be obtained. Then, the polynomial fitting relationship of (θp + θo) and
dUocv/dT with respect to temperature, SOC, I based on experimental results is shown in
Equations (3) and (4).
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θp + θo =



3
∑

i=1
AiSOCi +

3
∑

i=1
BiTi++

3
∑

i=1
Ci Ii+

D1SOC · T + D2T · I + D3SOC · I + E SOC > 0.3
2
∑

i=1
FiSOCi +

2
∑

i=1
GiTi++

2
∑

i=1
Hi Ii+

M1SOC · T + M2T · I + M3SOC · I + N SOC ≤ 0.3

(3)

where:
A1 A2 A3
B1 B2 B3
C1 C2 C3
D1 D2 D3

 =


−5.022 8.767 −4.728
−0.085 8.69 × 10−4 5.51 × 10−6

0.024 −4.78 × 10−4 3.79 × 10−6

7.6 × 10−3 −1.11 × 10−4 −0.00141

, E = 3.325

F =

 F1 F2
G1 G2
H1 H2

 =

 2.069 −16.24
−0.142 1.66 × 10−3

1.022 × 10−2 8.5 × 10−5


M = [M1 M2 M3] =

[
0.082 − 7.33 × 10−6 0.012

]
, N = 4.069

dUocv

dT
=

7

∑
i=1

AiSOCi−1 (4)

where:
A = [−69.12, 214.40, −248.0, 131.55, −32.07, 3.77,−0.27]
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2.3. Dynamic Heat Transfer Model

The TCRN based on thermal resistance models can comparatively simplify the heat
transfer analysis from complex three-dimensional CFD simulations, and is easily com-
prehensible; it has physical meaning and could describe the heat transfer process inside
the battery module and FHP. Therefore, it is reasonable to study the regularity of battery
inner temperature based on the thermal network model. In the present study, a planar
multi-heat source TCRN is adopted to analyze the performance of the FHP-based BTMS.
The heat transfer process along the width direction of the FHP is neglected, as it can be
well considered as the thermal mass of the control volume. As shown in Figure 3, the
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FHP-based BTMS thermal network is subdivided into a limited number of control volumes,
which refer to the nodes connected by thermal resistances. The expressions of different
thermal resistance types are presented in Table 3.

Batteries 2024, 10, x FOR PEER REVIEW 7 of 26 
 

6
ocv

0

d SOC
d

i
i

i

U A
T =

=  (4) 

where: 

[ 69.12, 214.40, 248.30, 131.55,  32.07,  3.77,  0.27]A = − − − −  

2.3. Dynamic Heat Transfer Model 
The TCRN based on thermal resistance models can comparatively simplify the heat 

transfer analysis from complex three-dimensional CFD simulations, and is easily compre-
hensible; it has physical meaning and could describe the heat transfer process inside the 
battery module and FHP. Therefore, it is reasonable to study the regularity of battery inner 
temperature based on the thermal network model. In the present study, a planar multi-
heat source TCRN is adopted to analyze the performance of the FHP-based BTMS. The 
heat transfer process along the width direction of the FHP is neglected, as it can be well 
considered as the thermal mass of the control volume. As shown in Figure 3, the FHP-
based BTMS thermal network is subdivided into a limited number of control volumes, 
which refer to the nodes connected by thermal resistances. The expressions of different 
thermal resistance types are presented in Table 3. 

 
Figure 3. Thermal network topology of the FHP-based BTMS. 

Table 3. Expressions of different thermal resistance types. 

Type Symbol Expression  

Conduction thermal resistance 
Rc 

i
i

i i

tR
Aλ

=
 

(5) Rw 
Rs 

Convection thermal resistance Rec 
si

1
eci

i

R
h A

=
 

(6) 

Figure 3. Thermal network topology of the FHP-based BTMS.

Table 3. Expressions of different thermal resistance types.

Type Symbol Expression

Conduction thermal resistance
Rc

Ri =
ti

λi Ai
(5)Rw

Rs
Convection thermal resistance Rec Reci =

1
hsi Ai

(6)

Phase change thermal resistance Rpc Rpci =
2−σ
2σ

(2πRgasTvi)
0.5

RgasT2
vi

Aei pvih2
fgi

(7)

Vapor flow thermal resistance Rv Rvi =
RgasT2

vi
pvihfgi

12µvi
t3
vρviwFHPhfgi

lei (8)

The thermal network structure of a single battery cell is considered firstly, and shown
at the left of Figure 3, where Rcxi and Rcyi are the thermal resistance of cell structure in
the x and y axis directions, respectively, and Rei is the external thermal resistance due to
natural convection or physical contact. The heat transfer process occurs in the following
steps. The heat generated by two inner nodes enters the peripheral nodes through thermal
conduction, then the heat is divided into four directions with three modes: (1) dissipates to
the environment, (2) moves into other cells and (3) moves into the FHP. The last mode is
the main basis for battery thermal management. After heat transfers through the solid shell
and porous wick structure of the FHP, it enters the vapor chamber after the phase change
of acetone, and finally is carried away at the condensation section.

As the state indicators of each battery cell are different, the heat generation rate must be
considered mutually independent. Hence, as shown in Figure 3, there are multiple battery
cells with heat sources qc configured and the heat is transferred into the vapor chamber
by the phase change process. For the proposed FHP, the corresponding thermal network
model is also described in Figure 3, where Rsi and Rwi, respectively, represent the thermal
resistances of the shell and the wick structure, Rpci is the phase change thermal resistance
and Rvi is the resistance generated due to the pressure drop along the vapor chamber.
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As shown in Table 3, Equation (5) represents the thermal resistance due to solid
thermal conduction. Both inter-cell and intra-cell thermal resistances in the battery module
are categorized under this type. In the equation, t represents the thickness controlling the
direction of heat conduction, A denotes the cross-sectional area for heat conduction and λ
represents the solid thermal conductivity. Additionally, the heat transfer processes in the
shell and the wick of the FHP are also considered to be based on solid thermal conduction.
The thermal conductivity of the wick λw is obtained based on the assumption of a porous
sintered material filled with liquid medium, as shown in the following equation [36]:

λw = λs
2 + λl/λs − 2φ(1 − λl/λs)

2 + λl/λs + φ(1 − λl/λs)
(9)

where λl represents the thermal conductivity of the liquid-phase working fluid, λs repre-
sents the thermal conductivity of the solid-phase material and φ denotes the porosity of the
porous wick.

Equation (6) represents the convective thermal resistance, which includes the forced
convection between the FHP fins and the cooling air, as well as the natural convection
between the battery and the ambient environment. The equivalent convective heat trans-
fer coefficient of the fins on condensing section of the FHP is calculated by following
Equation (10) [37]:

hfin = 0.134
λf
de

Re0.681
f Pr1/3

f

(
sfin
wfin

)0.2( sfin
tfin

)0.1134
(10)

where λf represents the thermal conductivity of the cooling fluid. de represents the hydraulic
diameter of the flow channel. Ref and Prf, respectively, represent the Reynolds number and
Prandtl number of the cooling fluid. sfin, wfin and tfin are, respectively, the space, width and
thickness structure parameters of the fin, whose values have been shown in Table 2.

As the contact surface between the battery module and the FHP is only the bottom of
the cells, the impact of natural convection with air on other surrounding surfaces needs to
be considered. The heat transfer coefficient is calculated using the following equation [38]:

hair =
Nuλair

l
= 0.664

(
ρairvairl

µair

) 1
2
(

µaircp,air

λair

) 1
3 λair

l
(11)

where Nu represents the Nusselt number of the cooling fluid. l represents the characteristic
length of the cooling flow. The middle two terms, respectively, calculate the Reynolds
number and Prandtl number based on the physical parameters of air.

Equation (7) represents the phase-change thermal resistance between the control
volume of the wick and the vapor chamber. In this study, it is assumed that the heating heat
flux in the evaporation section has not caused the working fluid within the wick to reach the
boiling stage. Evaporation only occurs at the gas–liquid interface, and the evaporation rate
is considered to be averaged within a control volume. In the equation, σ is the adjustment
factor, with a value of 0.03 [39]. Pv and Tv represent the pressure and temperature at the
evaporation interface, respectively. Rgas is the gas constant, and hfgi represents the phase
change latent heat of the working fluid.

Equation (8) represents the thermal resistance of steam flow between the vapor cham-
ber control volumes. The following assumptions were made. Regarding the gas flow within
the vapor chamber, assumptions of laminar and incompressible flow were made, as well
as one-dimensional flow. In the equation, lFHP represents the total length of the flat heat
pipe along the heat transfer direction. M denotes the dynamic viscosity of the vapor, and tv
represents the thickness of the vapor chamber in the FHP.
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The node temperature of the TCRN can be calculated based on the thermal balance
equation:

ciρiVi
dTi
dt

=
TE − Ti

RE
+

TW − Ti
RW

+
TS − Ti

RS
+

TN − Ti
RN

+ qi (12)

where E (east), W (west), S (south), N (north) are the directions of the surrounding control
volumes of volume i. The left side of the above equation represents the heat increase of the
discrete volume unit, and ρ, c and R are the density, specific heat and thermal resistances of
the control volume. The thermophysical properties of battery cells and FHP are shown in
Table 4 [32,40].

Table 4. Thermophysical properties of an FHP-based BTMS [32,40].

Battery Cell FHP Shell FHP Wick Sources
# Density(kg/m3) 2.519 × 103 2.7 × 103 1.520 × 103 [32,40]

# Thermal Capacity(J/kg·K) 1.023 × 103 920.9 1.059 × 103 [32,40]

Thermal Conductivity (W·m–1·K–1)
& x axis: 1.096

200 9.965 [32,40]& y axis: 22.446
# Based on mass average method: ρ = ∑

i
ρimi/∑

i
mi , cp = ∑

i
cpimi/∑

i
mi . & Based on linear average method:

λ = ∑
i

liλi/∑
i

li .

During the simulation, the heat generation rate of each battery is calculated by
Equation (2) every time step. The temperature values of battery cells are then solved
by Equation (3), and the obtained temperature values are used to calculate the heat gen-
eration rate for the next time step. Through the above iterative calculation process, the
temperature of each battery at different time steps could be obtained.

2.4. Electro-Thermal Coupled Modeling Approach

In an FHP-based BTMS, the time-varying heat generation rate is transferred into the
FHP by heat conduction. After a series of heat transfer processes, the heat eventually
dissipates by the cooling medium at the cooling end of the FHP. Therefore, the temperature
value of each contact surface between the battery cells and the FHP can be solved through
mathematical calculations. The temperature was defined as the boundary condition of
batteries. The specific calculation process is presented in Figure 4. At each time step, the
heat generation rate of each battery was calculated by the heat generation model and was
transferred into the FHP model as the input condition. The temperature of each node was
obtained by solving the energy equation for each control volume. In the meanwhile, the
FHP thermal resistance, which varies with temperature, could be obtained at each time
step. Through the coupling calculation mentioned above, the thermal characteristics of the
BTMS could be obtained.

2.5. Verification of FHP-Based BTMS Thermo-Electric Coupled Model

The experimental setup is shown in Figure 5. It is mainly composed of an FHP-
based BTMS, charge-discharge apparatus, a temperature collector, an industrial Personal
Computer (IPC) and 24 K-type thermocouples. The BTMS includes 12 prismatic batteries
and an FHP, just as in the configuration introduced in Section 2.1. The charge-discharge
apparatus (Digatron EVT300-0600, Digatron, Aachen, Germany) provides operating loads
and electric source. The charging and discharging procedures of the battery module are
controlled by the IPC. The IPC also plays the role of electrical signal measurement and
collection, whose relative uncertainty is below 0.1%. The temperature data of the batteries
are collected by the data collector (Agilent 34972A, Agilent, Beijing, China) through K-
type thermocouples, which have an accuracy of 0.15 + 0.002|T| ◦C and set the transmit
frequency as 1 Hz. The thermocouples are placed at the center position on both sides of the
battery, as shown in Figure 5.
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Figure 5. Schematic representation of the experimental system devices.

The simulation results and experimental data under constant discharging current of
0.5 C, 1 C and 1.5 C are compared first. The temperature of the sixth thermocouple in
Figure 6 is chosen as a representative, and the node at the same position is selected in
our model. In the constant discharging case, an air-cooling velocity of 0 m·s–1 (natural
convection) and 5 m·s–1 are adopted, and the results are shown in Figures 6a and 6b,
respectively. The discharging capacity is set to 80% SOC, so that the experimental times are
6400 s, 2880 s and 1920 s for 0.5 C, 1 C and 1.5 C. After every discharging process, 2–4 h is
applied to the battery for relaxation. When the measuring temperature has dropped to be
equal to the environment, the charging process is started up. The upper and lower cut-off
voltages are set to 4.2 V and 2.7 V per cell, in case over-charging/discharging occur. Due to
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the random variation of the environmental temperature in different cases, temperature rise
is utilized as the comparison indicator. All experiments are started with the environmental
temperature around 20 ◦C; thus, the initial temperature of the simulation is also set to
20 ◦C.
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From Figure 6, it can be observed that the battery temperature rise is significantly
reduced when the fan is turned on. Under different discharge rates, there is good agreement
between the simulations and experiments both for natural convection and forced-air cooling.
The relative root mean square error (RSME) between the simulated and experimentally
measured temperatures is calculated by Equation (13), and the results are shown in Table 5.
It is evident that there is a relatively large discrepancy at 0.5 C. This is because during the
experimental process the ambient temperature fluctuates, and at lower discharge rates the
temperature is more influenced by the ambient temperature, while the simulation can only
assume a constant ambient temperature.

Relative RSME =
1
N

√√√√ N

∑
i=1

(
TS,i − TE,i

∆T
)

2
(13)

Table 5. Relative RSMEs of FHP-based BTMS thermo-electric coupled model compared to experiments.

Operating Condition 0.5 C 1 C 1.5 C WLTC

Relative RSMEs Fan off
8.14%

Fan on
8.74%

Fan off
3.10%

Fan on
1.82%

Fan off
2.93%

Fan on
1.98% 12.38%

Then, the temperature results of the model and the experiment were compared under
a cycle of the Worldwide harmonized Light vehicles Test Cycle (WLTC) condition [41]. The
standard current profile for one cycle of the WLTC condition is shown in Figure 7. In this
case, the ambient temperature was set to 10 ◦C, and the fan speed was set to 0 (natural
convection) to better observe the battery temperature rise. The experimental duration was
set to 1800 s, which corresponds to one WLTC cycle. Figure 8 presents the comparison
of results, and the relative error between the simulation and experiment is also shown
in Table 5. This indicates that the model proposed in this paper can also adapt well to
dynamic current conditions.
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Figure 8. Comparison of experiments and simulation under the WLTC profile.

3. Implementation of Thermal Convolution Method

Battery temperature is one of the most significant characteristics estimated by BMS
algorithm. Nevertheless, the temperature information can only obtain by limited number
of thermocouples in battery pack in practical. The existing control-oriented thermal models
are lumped-parameter in most cases, and hardly reflect transient thermal behavior when
large gradient mutation of operating current occur.
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It can be observed from Equation (12) that energy conservation equation of each
node in battery thermal resistance network manifests linear characteristics. Therefore,
the relationship between the driving of distributed heat/cold sources and the nodes’
temperature responses can be described as a linear system. The TCRN model can be
simplified by a 0-D reduced order model based on linear combination and temporal
convolution of temperature response.

3.1. Temperature Response of a Particular Node inside a Battery Cell to Impulse Excitation

According to the superposability of linear systems, any input signal can be decom-
posed into the permutation and combination of basic signals. Using the response of the
original system to these basic signals, the response to any signal can be obtained by us-
ing linear combination. For any discrete-time signal, it can be decomposed into a linear
combination of weighted and temporal shifted unit impulse signals δ(t). The mathematical
expression of the unit impulse signal is the Dirac function. When generating a unit impulse
signal in practice, it will be more like a rectangular wave, as shown in Equation (14).

δ(t) =
{ 1

h ,0 ≤ t ≤ h
0 , t < 0|t > h

(14)

Then, we used h(n) and h(t) to represent the response of a linear system to the unit
impulse signal δ(n) and δ(t) under continuous and discrete conditions, respectively. Its
response to any signal is a combination of h(n) after weighting and translation, which
means the system response y(n) to a discrete time signal u(n) can be expressed through
linear combination of a series of delayed unit impulse responses by Equation (15). When it
involves continuous time systems, y(t) can be rewritten into the integral form as shown in
Equation (16), which is very similar to the formation of convolution.

Then, h(t) is used to represent the temperature response of a particular node inside
No. 6 battery cell to the unit impulse heat source signal, and the temperature response to
any signal is a combination of h(t) after weighting and translation. The node temperature
response y(t) at time t to the heat source signal u(t) during past times can be expressed by a
combination of series-delayed unit pulse responses, which is very similar to the formation
of convolution.

y(n) =
n

∑
i=1

u(i)h(n − i) (15)

y(t) =
∫ t

−∞
u(τ)h(t − τ)dτ (16)

Hence it is reasonable to reconstruct the temperature of a particular node, which is
located inside battery cell no. 6 in this paper, by means of combining different responses
to various heat/cold sources. As shown in Figure 9, the FHP battery module is divided
into 14 heat/cold sources. Sources 1–12 correspond to the heat generation of Cell 1-Cell
12, respectively, and can be obtained by Equation (2). Source 13 represents the natural
convection between the air and the battery top surface. Source 14 is the heat sink, which
represents the heat conducted from the battery bottom surface and then dissipated through
convection between the fin and the forced airflow at the condensation part of the FHP.
Equation (17) presents the formula of ui(t).

u13(τ) = hair Ab(T(τ)− Tair(τ))

u14(τ) = hfin A f (T(τ)−
qFHPRcy

12 − Tcool(τ))
ui(τ) = Qi, i = 1...12

(17)
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Figure 10 shows the temperature responses of the node inside cell no. 6 to 14 sources, 
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0.02 s, as an approximation of pulse excitation. What can be obviously obtained from the 
results is that the thermal pulse from cell no. 6 itself causes the fastest response and the 
highest temperature amplitude peak of the node. The thermal pulses of Cell 5 and Cell 7, 
which are adjacent to cell no. 6, cause the same response of overshoot but with a much 
smaller magnitude than cell no. 6. The thermal pulses activated by the remaining cells 
induce temperature responses without overshoot, due to their distant position relative to 
cell no. 6. As for thermal pulses from natural convection and the heat sink, the responses 

Figure 9. The location of 14 variable heat/cold sources.

Figure 10 shows the temperature responses of the node inside cell no. 6 to 14 sources,
which are all given a rectangular pulse wave with an amplitude of 50 W and duration of
0.02 s, as an approximation of pulse excitation. What can be obviously obtained from the
results is that the thermal pulse from cell no. 6 itself causes the fastest response and the
highest temperature amplitude peak of the node. The thermal pulses of Cell 5 and Cell 7,
which are adjacent to cell no. 6, cause the same response of overshoot but with a much
smaller magnitude than cell no. 6. The thermal pulses activated by the remaining cells
induce temperature responses without overshoot, due to their distant position relative to
cell no. 6. As for thermal pulses from natural convection and the heat sink, the responses to
these possess a similar curve but a much smaller amplitude. This is because both thermal
impulses are divided equally between each cell almost at the same moment.
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Finally, the temperature responses eventually tend to a state approaching thermal
equilibrium. The same heat balance temperature is represented in Figure 10, which is in
accord with the result of steady-state energy conservation. It can be further observed from
the figure that the temperature responses of the node to thermal pulses generally take close
to 600 s before reaching equilibrium, due to the heat transfer architecture of the battery
module and the combined thermal mass. Meanwhile, each battery cell is affected by its
own and external thermal excitation at every moment, which means a cell itself could not
reach a state of thermal balance throughout its working period. In this case, the potential
temperature overshoot cannot be identified by a steady-state method assuming thermal
equilibrium. When the instantaneous discharge C-rate increases/decreases suddenly,
predictably, the temperature prediction based on the lumped control model may exhibit
poor tracking behavior and cause more risk. The relevant research work will be introduced
in the next section.

Before that, it is necessary to make corrections to the heat dissipation of the FHP-
BTMS in order to improve the accuracy of the estimated q14 in the thermal convolution
method. Therefore, the thermal convolution method for a given node is as follows in
Equation (18): the current temperature of the node can be obtained using past thermal/cold
source boundary conditions and the pulse response characteristics. To achieve a prediction,
Equation (18) needs to be extended in the time domain, as shown in Equation (19), by
adding future K-time operating condition inputs to determine the future effects of heat
sources and cold sources on the node.

T(t) = ∑N
i=1

∫ t

−∞
ui(τ)hi(t − τ)dτ (18)

T(t + K) = ∑N
i=1

∫ t+K

−∞
ui(τ)hi(t − τ)dτ (19)

3.2. Correction of the Heat Flux throughout the FHP

Unlike traditional air-cooled and liquid-cooled BTMSs, the dissipation heat flow
throughout a FHP-based BTMS is closely related to the dynamic heat transfer characteristics
of the flat heat pipe.

As the temperatures of the evaporator and condenser sections change, the mass
flow rate of the liquid working fluid from the wick evaporating into the vapor chamber
also changes. This can be intuitively expressed as the heat dissipation of the FHP to the
battery module dynamically changing when the battery module or cooling conditions
vary. Therefore, it is necessary to modify the qFHP term in Equation (17) to account for
the dynamic thermal characteristics of the FHP. Mathematical models for the heating and
cooling dynamic processes of flat plate heat pipes have been established in the literature
and experimentally validated [42,43].

For the FHP described in this paper, based on a digital prototype, the multi-heat
source TCRN model has been validated. The dynamic characteristics of the heat-up and
cool-down processes have been investigated under different evaporator input power and
condenser heat dissipation airflow, and the applicability of the model has been verified
under various operating conditions such as continuous loading and unloading.

A dynamic model for the flat plate heat pipe has been established, and its formula is
expressed as follows:

X(t) = Xss(1 − e(t0−t)/τh) (20)

X(t) = Xsse(t0−t)/τh (21)

τ =
∣∣∣Xss/[(dX/dt)t=t0

]
∣∣∣ (22)

where X represents the state parameters such as heat flux and τ represents the characte-
ristic time.
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The characteristic times corresponding to different operating conditions are shown in
Figure 11 below. From Figure 11a, we can observe that as the input heat power increases,
both the heat-up time constants and the cool-down time constants decrease to a certain
extent, but they remain within a small range, and the cool-down time constants are slightly
greater than the heat-up time constants. As shown in Figure 11b, with the increasing of heat
dissipation airflow rates, the time constants shows a pattern of rapid decrease followed by
a tendency to level off, and there is no significant difference between the cool-down time
constants and the heat-up time constants.
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Figure 11. Heat-up and cool-down time constants variation with (a) power input and (b) airflow rate.

Based on the previous results, the interpolation model between the characteristic time
constants and the cooling airflow and input heat power have been obtained. Furthermore,
a dynamic model for the FHP under continuous dynamic operating conditions has been
developed. Here is the expression for the flat heat pipe dynamic model (FHP-DM):

X(t) = X(t−1) · (1 − e−1/τ(t)) +
t

∑
i=1

Xie(i−t)/τi (23)

Figure 12 demonstrates the comparison between the dynamic model and the TCRN
of the FHP for different input heat power levels. It appears that the flat plate heat pipe
requires a certain time to reach its maximum heat transfer rate. The fit between the dynamic
model and the TCRN indicates that the dynamic model based on thermal time constants
can effectively reflect the dynamic thermal characteristics of the flat plate heat pipe during
startup and shutdown processes.

Furthermore, Figure 13 illustrates the comparison between the dynamic model and
the TCRN of the FHP under dynamic validation conditions, such as 200 s with a power
change from 12 W to 8 W and 50 s with a power change from 12 W to 0 W. The almost
identical results suggest that the dynamic model of the FHP can adequately reflect the heat
transfer performance of the flat plate heat pipe under continuous loading and non-steady
operating conditions.

3.3. Implementation Procedure of Online Temperature Prediction Based on the TCM

The quick temperature prediction algorithm based on the thermal convolution method
is summarized in the following flow chart, shown in Figure 14.
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Figure 12. Comparison between the TCRN and the FHP-DM under different heat input and shut-
down conditions.
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Figure 13. Comparison between the FHP-TCRN model and the FHP-DM. (a) Continuous power
input 12 W(200 s)–8 W, (b) Continuous power input 12 W(50 s)–0 W.

The first step is program initialization at time t, which is calculated from the beginning
of the discharge process. As the experiments are based on a virtual prototype, we can
obtain the current temperature of the node TCRN by utilizing an observer. The battery’s
heat generation rates, q1–q12, can be determined based on the present operating current.
Through the observer, we can acquire the temperatures at the condensation section of
the FHP and on the battery surface, as well as the ambient temperature and cooling air
temperature. Plugging these values into Equations (10) and (11) enables us to calculate the
current heat transfer through natural convection and the instantaneous heat dissipation of
the FHP, which are represented as q13 and q14. In order to reduce the computational cost
and space occupation of the algorithm, 600 s (600 time steps) is adopted as the memory
limit for thermal excitation, since it can be assumed that the temperature will not change
after 600 s according to Figure 10. Consequently, the thermal response map can be reduced
in row count, resulting in decreased computational load.
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The second step is storing the heat source information obtained at time t in the heat
source memory. Additionally, we adjust the heat dissipation of the FHP based on the
operational corrections outlined in Section 3.2.

In the third step, the temperature trend of the nodes for the next k seconds is predicted.
This involves the implementation of two nested loops. The outer loop iterates from the
current time to the prediction termination time, while the inner loop performs matrix
operations for the 14 heat sources. Referring to the explanation in Section 3.1, the product
of the heat source q and the inverse response function h in the time domain yields the
temperature rise at the current time step. By summing the results obtained from the inner
loop, the temperature at the current time can be determined. Once the outer loop concludes,
the temperature variations of the nodes from time t to t + k can be obtained.

To evaluate the computational speed and memory usage of the temperature prediction
algorithm, comparative analysis on a computer with an R7-4800H CPU was conducted.
We compared the performance of the lumped model, the TCRN and the algorithm based
on the TCM with a temperature-predicting period of 600 s. The results, as presented in
Table 6, indicate that while the TCM exhibits higher computational speed and memory
consumption compared to the lumped model, it still can meet the requirements of making
real-time predictions.

Table 6. CPU-time comparison between the TCM, the lumped model and the TCRN.

TCM Lumped Model TCRN

CPU-time 47 ms 5 ms 26.81 s

4. Results and Discussion

In this section, specific examples are presented to compare and analyze the tempera-
ture prediction precision, operational adaptability and stability of the TCM and the lumped
model. Figure 15a–e illustrates dynamic scenarios where the battery is discharged continu-
ously from 1 C to 5 C for 120 s at an initial temperature of 20 ◦C and suddenly terminated.
The condensation section fan of the FHP remains off, allowing for natural cooling. Apart
from the numerical values of temperature rise, the five figures exhibit good consistency
in terms of patterns. It is observed that the surface temperature of the battery responds
to changes in operational conditions with a delay of approximately 30 s compared to the
internal temperature of the battery. The temperature prediction algorithm based on the
TCM can consistently track the dynamic temperature changes during the entire period
in response to varying operational conditions. On the other hand, although the lumped
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model can provide timely responses to dynamic operational changes, it struggles to reflect
the current temperature distribution within the battery. As the discharge rate increases, the
absolute deviation of temperature predicted by the lumped model becomes larger. The
relative errors and maximum absolute temperature deviations in temperature prediction
by the TCM and the lumped model under different shutdown conditions are shown in
Table 7. The TCM achieves an overall accuracy improvement of 83% compared to the
lumped model.
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Figure 15. Results comparison of the lumped model, the TCM, battery surface temperature, bat-
tery core temperature: (a) 1 C-break condition; (b) 2 C-break condition; (c) 3 C-break condition;
(d) 4 C-break condition; (e) 5 C-break condition.

Table 7. Relative error (RE) and maximum absolute error (MAE) of the TCM and the lumped model
under different dynamic conditions.

TCM Lumped Model

RE MAE RE MAE

Dynamic current

1 C 2.20% 0.01 ◦C 12.70% 0.07 ◦C
2 C 2.20% 0.06 ◦C 12.69% 0.28 ◦C
3 C 2.19% 0.12 ◦C 12.67% 0.62 ◦C
4 C 2.18% 0.21 ◦C 12.64% 1.04 ◦C
5 C 2.18% 0.31 ◦C 12.61% 1.55 ◦C
Step 6.24% 1.27 ◦C 45.06% 10.39 ◦C

Dynamic air velocity

1 C 26.12% 0.13 ◦C 141.45% 0.84 ◦C
2 C 7.37% 0.33 ◦C 92.29% 1.50 ◦C
3 C 6.54% 0.60 ◦C 25.02% 2.32 ◦C
4 C 6.23% 0.98 ◦C 23.39% 3.46 ◦C
5 C 6.10% 1.43 ◦C 22.64% 4.80 ◦C

Dynamic air temperature

1 C 34.24% 0.14 ◦C 175.90% 0.83 ◦C
2 C 7.66% 0.31 ◦C 28.04% 1.37 ◦C
3 C 6.40% 0.61 ◦C 22.56% 2.19 ◦C
4 C 6.02% 0.99 ◦C 20.82% 3.23 ◦C
5 C 5.85% 1.44 ◦C 20.02% 4.46 ◦C

Figure 16 presents a comparison between the TCM and the lumped model under
a step change scenario, with a discharge rate ranging from 1 C to 5 C. It is evident that
the appearance of inflection points in surface temperature consistently lags behind the
operational changes. Moreover, as time progresses, the relative errors in temperature
prediction increase. The TCM manages to maintain a relative error of 6.24% even under
such continuously changing operational conditions.
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Figure 16. Step-loading condition.

Next, comparisons of the accuracy and adaptability of the TCM and the lumped model
are conducted under dynamic cooling conditions with sudden changes in operational
scenarios. Figure 17a–e represents a constant current ranging from 1 C to 5 C. In these
scenarios, the fan located at the condensation section of the FHP remains off for the
first 120 s and then switches on at 120 s with a flow rate of 0.098 kg/s, corresponding
to an airflow velocity of 10 m/s. The cooling air temperature is set to 10 ◦C. It can
be observed that in the 1 C and 2 C scenarios, inflection points in surface temperature
and internal temperature change lines can be obviously detected. Due to the dynamic
response characteristics of the FHP and battery module, there is a delay before the internal
temperature begins to decrease after the surface temperature starts to decline. For discharge
currents of 3 C and above, the inflection points caused by sudden cooling condition changes
are less noticeable. This is due to the limited heat transfer coefficient of the air cooling,
resulting in insufficient cooling capacity of the FHP. This phenomenon also indicates that
the heat transfer capacity of the heat pipe, when applied to a BTMS, is actually limited
by the cooling capacity at the cold end. Sometimes, there can be a situation where the
heat transfer capacity of the heat pipe far exceeds the cooling capacity at the cold end,
resulting in poor heat dissipation. The TCM demonstrates better performance in following
the internal temperature under different discharge rates compared to the lumped model.
Since the lumped model does not consider the dynamic heat transfer performance of
the FHP, it leads to significant errors in estimating the cooling capacity of the battery
module after sudden changes in cooling conditions. This is also the reason behind the rapid
temperature drop observed in the lumped model after operational changes. Figure 17a–e
represents constant current scenarios from 1 C to 5 C, with the FHP condensation section
fan continuously operating at a fixed airflow velocity of 10 m/s. However, at 120 s, the
cooling air temperature suddenly changes from 20 ◦C to 10 ◦C. The patterns observed in
these figures are similar to those in Figure 18.

Table 7 provides the average prediction accuracy and absolute prediction deviation
of the TCM and the lumped model under different conditions. The TCM consistently
outperforms the lumped model by 70–80% in terms of accuracy.
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Figure 17. Temperature prediction comparison between the lumped model and the TCM under
(a) 1C, (b) 2C, (c) 3C, (d) 4C, (e) 5C conditions, when the fan starts at 120 s and the temperature of
cooling air is set to 10 ◦C.
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Figure 18. Temperature prediction comparison between the lumped model and the TCM under
(a) 1C, (b) 2C, (c) 3C, (d) 4C, (e) 5C condition, when the temperature of cooling air changes from
20 ◦C to 10 ◦C at 120 s.

The high discharge rate dynamic current profile is derived from the research on
VTOL flight missions of flying cars, as mentioned in reference [43]. In this case, the
current profile, cooling airflow velocity and temperature are provided to compare the
temperature prediction performance of the lumped model and the TCM. The results and
relative errors are shown in Figures 19 and 20, respectively. It can be observed that the TCM
consistently exhibits higher temperature accuracy than the lumped model throughout the
entire prediction time domain. The temperature prediction error of the TCM remains within
5%. On the other hand, the temperature prediction accuracy of the lumped model decreases
over time, possibly due to accumulated errors. Considering the previous studies, the TCM
can be considered as an effective approach for online battery temperature prediction in a
BTMS. When combined with corresponding prediction controllers, it enables more accurate
and convenient achievement of control objectives such as thermal management energy
optimization and battery temperature regulation.



Batteries 2024, 10, 19 22 of 25

Batteries 2024, 10, x FOR PEER REVIEW 22 of 26 
 

 
Figure 18. Temperature prediction comparison between the lumped model and the TCM under (a) 
1C, (b) 2C, (c) 3C, (d) 4C, (e) 5C condition, when the temperature of cooling air changes from 20 °C 
to 10 °C at 120 s. 

The high discharge rate dynamic current profile is derived from the research on 
VTOL flight missions of flying cars, as mentioned in reference [43]. In this case, the current 
profile, cooling airflow velocity and temperature are provided to compare the tempera-
ture prediction performance of the lumped model and the TCM. The results and relative 
errors are shown in Figure 19 and Figure 20, respectively. It can be observed that the TCM 
consistently exhibits higher temperature accuracy than the lumped model throughout the 
entire prediction time domain. The temperature prediction error of the TCM remains 
within 5%. On the other hand, the temperature prediction accuracy of the lumped model 
decreases over time, possibly due to accumulated errors. Considering the previous stud-
ies, the TCM can be considered as an effective approach for online battery temperature 
prediction in a BTMS. When combined with corresponding prediction controllers, it ena-
bles more accurate and convenient achievement of control objectives such as thermal man-
agement energy optimization and battery temperature regulation. 

 
Figure 19. Results of the lumped model, the TCM, battery surface temperature and core temperature 
(under VTOL mission profile). 

0 100 200

19

20

21

0 100 200

20

22

24

0 100 200
20

24

28

0 100 200
20

26

32

0 100 200
20

28

36

10℃
cooling

    20℃
cooling

10℃
cooling

20℃
cooling

(b)
2C

t(s)

Te
m

pe
ra

tu
re

(℃
) (a)

1C
(c)
3C

(d)
4C

(e)
5C

20℃
cooling

10℃
cooling

   20℃
cooling

10℃
cooling

  20℃
cooling

10℃
cooling

 Tsurf    Tcore   Lumped Model   TCM

0 200 400 600 800

20

25

30

35

40

45

 Tsurf    Tcore   Lumped Model   TCM

Te
m

pe
ra

tu
re

(℃
)

t(s)

6

3

di
sc

ha
rg

e 
ra

te
(C

)

0

Figure 19. Results of the lumped model, the TCM, battery surface temperature and core temperature
(under VTOL mission profile).
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5. Conclusions

This paper focuses on the challenge of accurately predicting the temperature vari-
ation of batteries for a FHP-BTMS under dynamic operating and boundary conditions.
A quick temperature prediction algorithm based on the TCM, considering the dynamic
thermal characteristics of FHP-BTMSs, is developed. By comparing with the simulation
platform based on a TCRN, the temperature prediction accuracy and adaptability of the
lumped model and the TCM under different dynamic conditions are analyzed. The main
conclusions are as follows:

(1) The relative RSMEs between the TCRN of an FHP-based BTMS and experimental
data under constant C-rates and the WLTC profile validates the thermo-electrical modeling
and the accuracy of the simulation platform;



Batteries 2024, 10, 19 23 of 25

(2) With a prediction time domain of 600 s, the temperature-predicting algorithm
based on the TCM has a runtime of 47 ms. Although longer than the lumped model, it
still can meet the computational requirements and limitations for fast calculation for real-
time prediction;

(3) In the study of dynamic current, for sudden shutdown scenarios, the TCM achieves
a relative error of 2.2% for discharge rates ranging from 1 C to 5 C. For long-duration step-
type current scenarios, the error is still only 6.24%. In dynamic cooling conditions, the TCM
can effectively track the temperature variations of nodes with changes in cooling airflow
velocity or cooling airflow temperature. With the benefit of heat dissipation rate correction,
it exhibits significantly higher temperature prediction accuracy and 70–80% improvement
compared to the lumped model, with an absolute temperature error of 1.5 ◦C. Under the
VTOL mission profile, the TCM maintains its superior dynamic tracking performance and
achieves a prediction accuracy of within 5% throughout the 870 s prediction time domain.

The key focus of the TCM lies in obtaining the temperature response map of nodes
under different thermal excitations. In this paper, the map was obtained from a validated
digital prototype. However, these temperature response curves can also be obtained from
real experimental tests and then calibrated. Therefore, this method has good practicality
and applicability, with broad prospects for applications in BMS temperature prediction and
global optimal control strategy design.

Author Contributions: Conceptualization, W.L. (Weifeng Li) and Y.X.; methodology, W.L. (Weifeng Li)
and Y.W.; software, W.L. (Weifeng Li) and W.L. (Wei Li); validation, W.L. (Weifeng Li), Y.X. and
W.L. (Wei Li); formal analysis, W.L. (Weifeng Li) and D.D.; writing—original draft preparation, W.L.
(Weifeng Li); writing—review and editing, Y.X. and Y.Q.; visualization, W.L. (Weifeng Li); supervision,
Y.Z.; funding acquisition, Y.X. and Y.Z. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was financially supported by the National Natural Science Foundation of China
(Grant No. U1864212), Guangdong Science and Technology Department (Grant No. 2020B0909030001),
National key research and development program (Grant Nos. 2021YFE0193800 and 2022YFB3305404),
Chongqing Science and Technology Commission (Grant No. CSTB2022TIAD-KPX0036) and Guang-
dong Science and Technology Department (Grant No. 2023B0909050004).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sharmili, N.; Nagi, R.; Wang, P. A review of research in the Li-ion battery production and reverse supply chains. J. Energy Storage

2023, 68, 107622. [CrossRef]
2. Zhou, H.; Zhou, F.; Xu, L.; Kong, J.; Yang, Q. Thermal performance of cylindrical Lithium-ion battery thermal management

system based on air distribution pipe. Int. J. Heat Mass Transf. 2018, 131, 984–998. [CrossRef]
3. Das, D.; Manna, S.; Puravankara, S. Electrolytes, Additives and Binders for NMC Cathodes in Li-Ion Batteries—A Review.

Batteries 2023, 9, 193. [CrossRef]
4. Wu, S.; Wang, C.; Luan, W.; Zhang, Y.; Chen, Y.; Chen, H. Thermal runaway behaviors of Li-ion batteries after low temperature

aging: Experimental study and predictive modeling. J. Energy Storage 2023, 66, 107451. [CrossRef]
5. Shahjalal, M.; Shams, T.; Islam, E.; Alam, W.; Modak, M.; Bin Hossain, S.; Ramadesigan, V.; Ahmed, R.; Ahmed, H.; Iqbal, A. A

review of thermal management for Li-ion batteries: Prospects, challenges, and issues. J. Energy Storage 2021, 39, 102518. [CrossRef]
6. Kumar, R.; Goel, V. A study on thermal management system of lithium-ion batteries for electrical vehicles: A critical review.

J. Energy Storage 2023, 71, 108025. [CrossRef]
7. Li, W.; Garg, A.; Xiao, M.; Gao, L. Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on

Gaussian Process Model. J. Therm. Sci. Eng. Appl. 2021, 13, 1–19. [CrossRef]
8. He, F.; Ma, L. Thermal management of batteries employing active temperature control and reciprocating cooling flow. Int. J. Heat

Mass Transf. 2015, 83, 164–172. [CrossRef]
9. Behi, H.; Karimi, D.; Behi, M.; Jaguemont, J.; Ghanbarpour, M.; Behnia, M.; Berecibar, M.; Van Mierlo, J. Thermal management

analysis using heat pipe in the high current discharging of lithium-ion battery in electric vehicles. J. Energy Storage 2020, 32, 101893.
[CrossRef]

10. Smith, J.; Singh, R.; Hinterberger, M.; Mochizuki, M. Battery thermal management system for electric vehicle using heat pipes. Int.
J. Therm. Sci. 2018, 134, 517–529. [CrossRef]

https://doi.org/10.1016/j.est.2023.107622
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.116
https://doi.org/10.3390/batteries9040193
https://doi.org/10.1016/j.est.2023.107451
https://doi.org/10.1016/j.est.2021.102518
https://doi.org/10.1016/j.est.2023.108025
https://doi.org/10.1115/1.4047526
https://doi.org/10.1016/j.ijheatmasstransfer.2014.11.079
https://doi.org/10.1016/j.est.2020.101893
https://doi.org/10.1016/j.ijthermalsci.2018.08.022


Batteries 2024, 10, 19 24 of 25

11. Yu, Z.; Zhang, J.; Pan, W. A review of battery thermal management systems about heat pipe and phase change materials. J. Energy
Storage 2023, 62, 106827. [CrossRef]

12. Zhang, Z.; Wei, K. Experimental and numerical study of a passive thermal management system using flat heat pipes for
lithium-ion batteries. Appl. Therm. Eng. 2020, 166, 114660. [CrossRef]

13. Jouhara, H.; Serey, N.; Khordehgah, N.; Bennett, R.; Almahmoud, S.; Lester, S.P. Investigation, development and experimental
analyses of a heat pipe based battery thermal management system. Int. J. Thermofluids 2019, 1, 100004. [CrossRef]

14. Liu, W.; Jia, Z.; Luo, Y.; Xie, W.; Deng, T. Experimental investigation on thermal management of cylindrical Li-ion battery pack
based on vapor chamber combined with fin structure. Appl. Therm. Eng. 2020, 162, 114272. [CrossRef]

15. Mei, N.; Xu, X.; Li, R. Heat Dissipation Analysis on the Liquid Cooling System Coupled with a Flat Heat Pipe of a Lithium-Ion
Battery. ACS Omega 2020, 5, 17431–17441. [CrossRef]

16. Mo, X.; Hu, X.; Tang, J.; Tian, H. A comprehensive investigation on thermal management of large-capacity pouch cell using micro
heat pipe array. Int. J. Energy Res. 2019, 43, 7444–7458. [CrossRef]

17. Gan, Y.; He, L.; Liang, J.; Tan, M.; Xiong, T.; Li, Y. A numerical study on the performance of a thermal management system for a
battery pack with cylindrical cells based on heat pipes. Appl. Therm. Eng. 2020, 179, 115740. [CrossRef]

18. Cen, J.; Jiang, F. Li-ion power battery temperature control by a battery thermal management and vehicle cabin air conditioning
integrated system. Energy Sustain. Dev. 2020, 57, 141–148. [CrossRef]

19. Min, H.; Zhang, Z.; Sun, W.; Min, Z.; Yu, Y.; Wang, B. A thermal management system control strategy for electric vehicles under
low-temperature driving conditions considering battery lifetime. Appl. Therm. Eng. 2020, 181, 115944. [CrossRef]

20. Gao, X.; Ma, Y.; Chen, H. Active Thermal Control of a Battery Pack Under Elevated Temperatures. IFAC PapersOnLine 2018, 51,
262–267. [CrossRef]

21. Lee, S.-J.; Lee, C.-Y.; Chung, M.-Y.; Chen, Y.-H.; Han, K.-C.; Liu, C.-K.; Yu, W.-C.; Chang, Y.-M. Lithium-ion Battery Module
Temperature Monitoring by Using Planer Home-Made Micro Thermocouples. Int. J. Electrochem. Sci. 2013, 8, 4131–4141.
[CrossRef]

22. Sun, J.; Wei, G.; Pei, L.; Lu, R.; Song, K.; Wu, C.; Zhu, C. Online Internal Temperature Estimation for Lithium-Ion Batteries Based
on Kalman Filter. Energies 2015, 8, 4400–4415. [CrossRef]

23. Zhang, C.; Li, K.; Deng, J. Real-time estimation of battery internal temperature based on a simplified thermoelectric model.
J. Power Sources 2016, 302, 146–154. [CrossRef]

24. Kim, Y.; Mohan, S.; Siegel, J.B.; Stefanopoulou, A.G.; Ding, Y. The Estimation of Temperature Distribution in Cylindrical Battery
Cells Under Unknown Cooling Conditions. IEEE Trans. Control. Syst. Technol. 2014, 22, 2277–2286. [CrossRef]

25. Li, W.; Xie, Y.; Hu, X.; Zhang, Y.; Li, H.; Lin, X. An Online SOC-SOTD Joint Estimation Algorithm for Pouch Li-Ion Batteries Based
on Spatio-Temporal Coupling Correction Method. IEEE Trans. Power Electron. 2021, 37, 7370–7386. [CrossRef]

26. Hu, X.; Asgari, S.; Yavuz, I.; Stanton, S.; Hsu, C.-C.; Shi, Z.; Wang, B.; Chu, H.-K. A Transient Reduced Order Model for Battery
Thermal Management Based on Singular Value Decomposition. In Proceedings of the 2014 IEEE Energy Conversion Congress
and Exposition (ECCE), Pittsburgh, PA, USA, 14–18 September 2014; pp. 3971–3976.

27. Asgari, S.; Hu, X.; Tsuk, M.; Kaushik, S. Application of POD plus LTI ROM to Battery Thermal Modeling: SISO Case. SAE Int. J.
Commer. Veh. 2014, 7, 278–285. [CrossRef]

28. Kleiner, J.; Stuckenberger, M.; Komsiyska, L.; Endisch, C. Real-time core temperature prediction of prismatic automotive
lithium-ion battery cells based on artificial neural networks. J. Energy Storage 2021, 39, 102588. [CrossRef]

29. Wang, Y.; Xiong, C.; Wang, Y.; Xu, P.; Ju, C.; Shi, J.; Yang, G.; Chu, J. Temperature state prediction for lithium-ion batteries based
on improved physics informed neural networks. J. Energy Storage 2023, 73, 108863. [CrossRef]

30. Al Miaari, A.; Ali, H.M. Batteries temperature prediction and thermal management using machine learning: An overview. Energy
Rep. 2023, 10, 2277–2305. [CrossRef]

31. Zhang, W.; Wan, W.; Wu, W.; Zhang, Z.; Qi, X. Internal temperature prediction model of the cylindrical lithium-ion battery under
different cooling modes. Appl. Therm. Eng. 2022, 212, 118562. [CrossRef]

32. Dan, D.; Li, W.; Zhang, Y.; Xie, Y. A quasi-dynamic model and thermal analysis for vapor chambers with multiple heat sources
based on thermal resistance network model. Case Stud. Therm. Eng. 2022, 35, 102110. [CrossRef]

33. Jiang, Y.; Carbajal, G.; Sobhan, C.B.; Li, J. 3D Heat Transfer Analysis of a Miniature Copper-Water Vapor Chamber with Wicked
Pillars Array. ISRN Mech. Eng. 2013, 2013, 194908. [CrossRef]

34. Patankar, G.; Weibel, J.A.; Garimella, S.V. On the transient thermal response of thin vapor chamber heat spreaders: Optimized
design and fluid selection. Int. J. Heat Mass Transf. 2020, 148, 119106. [CrossRef]

35. Thomas, K.E.; Newman, J. Thermal Modeling of Porous Insertion Electrodes. J. Electrochem. Soc. 2003, 150, A176–A192. [CrossRef]
36. Singh, R.; Akbarzadeh, A.; Mochizuki, M. Effect of Wick Characteristics on the Thermal Performance of the Miniature Loop Heat

Pipe. J. Heat Transf. 2009, 131, 082601. [CrossRef]
37. Liu, F.; Lan, F.; Chen, J. Dynamic thermal characteristics of heat pipe via segmented thermal resistance model for electric vehicle

battery cooling. J. Power Sources 2016, 321, 57–70. [CrossRef]
38. Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Fundamentals of Heat and Mass Transfer; John Wiley & Sons: New York,

NY, USA, 2015; Volume 13.
39. Ranjan, R.; Murthy, J.Y.; Garimella, S.V.; Vadakkan, U. A numerical model for transport in flat heat pipes considering wick

microstructure effects. Int. J. Heat Mass Transf. 2011, 54, 153–168. [CrossRef]

https://doi.org/10.1016/j.est.2023.106827
https://doi.org/10.1016/j.applthermaleng.2019.114660
https://doi.org/10.1016/j.ijft.2019.100004
https://doi.org/10.1016/j.applthermaleng.2019.114272
https://doi.org/10.1021/acsomega.0c01858
https://doi.org/10.1002/er.4777
https://doi.org/10.1016/j.applthermaleng.2020.115740
https://doi.org/10.1016/j.esd.2020.06.004
https://doi.org/10.1016/j.applthermaleng.2020.115944
https://doi.org/10.1016/j.ifacol.2018.10.047
https://doi.org/10.1016/S1452-3981(23)14459-2
https://doi.org/10.3390/en8054400
https://doi.org/10.1016/j.jpowsour.2015.10.052
https://doi.org/10.1109/tcst.2014.2309492
https://doi.org/10.1109/TPEL.2021.3137416
https://doi.org/10.4271/2014-01-1843
https://doi.org/10.1016/j.est.2021.102588
https://doi.org/10.1016/j.est.2023.108863
https://doi.org/10.1016/j.egyr.2023.08.043
https://doi.org/10.1016/j.applthermaleng.2022.118562
https://doi.org/10.1016/j.csite.2022.102110
https://doi.org/10.1155/2013/194908
https://doi.org/10.1016/j.ijheatmasstransfer.2019.119106
https://doi.org/10.1149/1.1531194
https://doi.org/10.1115/1.3109994
https://doi.org/10.1016/j.jpowsour.2016.04.108
https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.057


Batteries 2024, 10, 19 25 of 25

40. Tutuianu, M.; Bonnel, P.; Ciuffo, B.; Haniu, T.; Ichikawa, N.; Marotta, A.; Pavlovic, J.; Steven, H. Development of the World-wide
harmonized Light duty Test Cycle (WLTC) and a possible pathway for its introduction in the European legislation. Transp. Res.
Part D Transp. Environ. 2015, 40, 61–75. [CrossRef]

41. El-Genk, M.S.; Lianmin, H. An experimental investigation of the transient response of a water heat pipe. Int. J. Heat Mass Transf.
1993, 36, 3823–3830. [CrossRef]

42. Chang, W.S.; Colwell, G.T. Mathematical Modeling of The Transient Operating Characteristics of a Low-Temperature Heat Pipe.
Numer. Heat Transf. 1985, 8, 169–186. [CrossRef]

43. Luo, Y.; Qian, Y.; Zeng, Z.; Zhang, Y. Simulation and analysis of operating characteristics of power battery for flying car utilization.
eTransportation 2021, 8, 100111. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.trd.2015.07.011
https://doi.org/10.1016/0017-9310(93)90062-B
https://doi.org/10.1080/01495728508961848
https://doi.org/10.1016/j.etran.2021.100111

	Introduction 
	FHP-Based BTMS Electro-Thermal Coupled Model 
	FHP-Based BTMS 
	Battery Heat Generation Model 
	Dynamic Heat Transfer Model 
	Electro-Thermal Coupled Modeling Approach 
	Verification of FHP-Based BTMS Thermo-Electric Coupled Model 

	Implementation of Thermal Convolution Method 
	Temperature Response of a Particular Node inside a Battery Cell to Impulse Excitation 
	Correction of the Heat Flux throughout the FHP 
	Implementation Procedure of Online Temperature Prediction Based on the TCM 

	Results and Discussion 
	Conclusions 
	References

