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Abstract: Iron–cobalt (FeCo) alloys are highly desirable for their exceptional and adjustable physic-
ochemical properties, particularly in the form of thin films. This study focuses on the growth of
iron–cobalt (FeCo) alloy thin films using potentiostatic electrodeposition. The effects of applied
voltage and FeCo stoichiometry on the morphology, structure, and magnetic properties of the films
are investigated. The results indicate that the electrodeposition potential does not affect the overall
stoichiometry or the structural and magnetic properties. However, it does impact film thickness
and grain sizes. Higher applied potentials lead to thicker films with faster growth rates, as well
as smoother and more homogeneous films with smaller grains. Films with different Fe:Co ratios
(Fe90Co10, Fe50Co50, and Fe10Co90) are obtained, and their compositions have a direct impact on mor-
phology, with the amount of Fe influencing film thickness, growth rates, and grain sizes. Increasing
Fe content (50, 90%) leads to thicker films and smaller grains. Films with low Fe content (10%) exhibit
a face-centered cubic (fcc) structural phase instead of the typical body-centered cubic (bcc) structure.
All FeCo alloys display soft magnetic properties with characteristic coercivities, and the low Fe (10%)
sample with the fcc structure exhibits the highest coercivity among all the samples. The nucleation
and growth mechanisms are investigated using electrodeposition curves and the Scharifker and Hills
model. Increasing the applied potential leads to thicker films and higher growth rates, with the
nucleation mechanism identified as instantaneous nucleation in the diffusion-controlled regime.

Keywords: thin films; FeCo; alloys; electrodeposition; high applied voltage; nucleation; growth rate

1. Introduction

Soft magnetic materials play a crucial role in electromagnetic devices, making the
research on soft magnetic films vital. FeCo alloys, known for their high saturation magne-
tization, high permeability, low coercivity [1–6], and excellent thermal stability [1,3], are
considered important magnetic materials. These properties are unmatched by any other
alloy system, making it essential to precisely control them for both innovative and new ap-
plications. These unique properties make them useful in various technological applications,
such as magnetic recording heads, magnetic sensors [1,4], magnetic tunnelling junctions
(MTJs) like tunnelling magnetoresistance (TMR) heads and magnetic random-access mem-
ory (MRAM) [7], microelectromechanical systems (MEMS) [8,9], 3D racetrack memory
devices [10], wave absorbing [3], and microactuators [2]. Moreover, FeCo films have good
corrosion resistance and can be used in electronic devices and sensor applications, with
protective coatings [9] showing long-term durability. They are also the perfect candidates
for high-frequency electronic devices [6].
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Recently, FeCo alloy-based films have attracted great interest due to their low cost and
environmental friendliness, making them suitable for biomedical and energy conversion
applications. FeCo films are biocompatible and can be used in biomedical applications
such as drug delivery and tissue engineering [11]. Additionally, FeCo alloys have been
developed as novel catalysts for energy conversion equipment, including fuel cells, photo-
electrochemical cells, and metal–air batteries [12–15].

At the nanoscale, various techniques have resulted in FeCo nanomaterials with
different shapes and architectures, including nanoparticles [16–18], nanowires [19,20],
nanorods [21–23], nanotubes [24], and 2D thin films [6,25]. These materials have a wide
range of applications, and precise control over the properties of FeCo alloys in terms of
stoichiometry, structure, magnetic properties, and morphology is of great importance.

So far, FexCo1−x alloy thin films have been successfully fabricated by several physical
deposition techniques, such as molecular beam epitaxy [1,3,4,7,25–27], sputtering [1,3–5,28,29],
and evaporation [4,6,25], as well by electrochemical routes using electrodeposition [1,3–5,30,31].
Among them, electrodeposition stands out as a very attractive technique since it is the simplest,
most reliable, lowest-cost, scalable, and very versatile method, allowing a straightforward
thin film fabrication in conducting substrates [1,5,31]. Moreover, the FeCo alloys have been
electrodeposited for almost 100 years, starting with the work of Glasstone and Speakman in the
early 1930s [32–34].

Electrodeposited thin films are grown by different electrodeposition techniques, in-
cluding potentiostatic (constant voltage) [3], galvanostatic (constant current), [2,3] or pulsed
electrodeposition [3,30]. Furthermore, by changing the electrodeposition conditions, such
as electrolyte type [30], Fe and Co ionic concentration [2,8,35,36], temperature [1,9,37],
deposition potential [37]/current [9], or electrodeposition type [3], one can obtain FeCo
thin films with different properties and/or characteristics.

The composition of FexCo1−x can be easily adjusted by changing parameters, such
as temperature [37], electrolyte concentration [36], or the electrodeposition technique [38].
However, these adjustments have been reported to work effectively only at low potentials,
typically not exceeding −1.5 V (vs. Ag/AgCl), which leads to low growth rates [38].
Furthermore, varying the Fe:Co ratio in bulk alloys results in different crystalline phases,
ranging from body-centered cubic (bcc) to face-centered cubic (fcc) or hexagonal closest
packed (hcp) [39,40]. Interestingly, the crystalline phase of FeCo thin films can also change
from bcc to fcc by modifying the electrodeposition conditions, such as temperature or Fe:Co
ratio, and sometimes mixed crystallographic phases can emerge [5,9].

The nucleation and growth mechanisms of various metals have been extensively
studied at low potentials, typically below −1.3 V (vs. SCE) [41–46]. However, despite
numerous studies on FeCo electrodeposition, many have not optimized the potentiostatic
potential to achieve higher growth rates or establish correlations with the nucleation and
growth mechanisms observed in the electrodeposition curves.

The electrodeposition curves play a crucial role in distinguishing and determining the
type of nucleation and growth mechanisms. They also allow us to establish correlations
between these mechanisms and the resulting physical properties, structures, and magnetic
nature of the films, thereby enabling us to tailor the films for specific applications. Inter-
estingly, there are only a few works focused on analyzing the electrodeposition curve of
FeCo alloys [38,47,48]. Among them, variations in the solution composition, including
sulfate [48], chloride [47], chloride/sulfate [38] based solutions, or the Fe:Co ratio in the
electrolyte, have led to divergent outcomes when establishing the type of nucleation growth
mechanism and the Fe:Co ratio in the films. As such, a thorough understanding of the
influence different electrodeposition parameters have on the growth mechanisms of Fe:Co
films is still lacking.

In this work, FeCo thin films were synthesized using the potentiostatic electrodepo-
sition method. By varying electrodeposition parameters, such as the applied potential
(ranging from −1.0 to −1.8 V vs. Ag/AgCl) and the concentrations of Co and Fe ions in
the electrolyte, FeCo thin films were obtained at high potentials. These parameters were
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thoroughly investigated as they greatly influence the composition, microstructure, and
thickness (growth rate) of the films. The study focused on understanding the nucleation
and growth mechanisms underlying the electrodeposition process. By analyzing the tran-
sient current density during electrodeposition, we gained a better understanding of the
impact of applied voltage and of the Fe:Co ratio during the nucleation stage, as well as
their influence on growth rates and final thickness. The synthesized films were further
characterized in terms of their morphological, structural, and magnetic properties, which
were correlated with the electrodeposition curves.

2. Materials and Methods

The potentiostatic electrodeposition occurred in a three-electrode set-up. It was per-
formed using a home-made cell consisting of a Teflon container, where the metallic copper
substrate (working electrode) was placed in its bottom in contact with a Cu plate, used as
the anode, a Pt mesh (counter electrode) was inserted at the top that acts as the cathode, and
an Ag/AgCl reference electrode was placed between the working and counter electrodes.

In this process, a constant potential is applied between the working electrode and the
counter electrode, both immersed in an ionic electrolyte solution [31], and the electrode-
position occurred at constant room temperature (~20 ◦C). The electrodeposition curves
were controlled using the chronoamperometry procedure in AutoLab NOVA software.
The reagents used for the electrolytes are: FeSO4·7H2O (Acros Organic, Geel, Belgium,
99.5%) CoSO4·7H2O (Fisher Chemical, Waltham, MA, USA, 99+%), H3BO3 (Ficher Chem-
ical, ≥99.5%), and C6H8O6, (Sigma Aldrich, St. Louis, MO, USA, 99.7% min). Table 1
summarizes the electrolytes used [49] throughout this work.

Table 1. Electrolytes used, including electrolyte name, theoretical stoichiometry and molar concentra-
tions of FeSO4·7H2O, CoSO4·7H2O, H3BO3, and C6H8O6.

Electrolyte Name 1 2 3 4

Theoretical Stoichiometry Fe20Co80 Fe90Co10 Fe50Co50 Fe10Co90

FeSO4·7H2O 0.036 M 0.16 M 0.09 M 0.02 M

CoSO4·7H2O 0.16 M 0.02 M 0.09 M 0.16 M

H3BO3 0.16 M

C6H8O6 0.06 M

Two groups of samples were prepared by varying the electrodeposition parameters,
the electrolyte Fe:Co ratio, and applied potential (Vdep), as shown in Table 2. In the first
group of samples, the electrodeposition was performed using the electrolyte 1 [Fe20Co80]
under different potentiostatic voltages of −1.0, −1.4, −1.8 V. Aiming to obtain FeCo
thin films with different stoichiometries, a second group of samples was prepared using
three different electrolytes with different Fe:Co ratios: electrolyte 2 [Fe90Co10], electrolyte
3 [Fe50Co50], and electrolyte 4 [Fe10Co90]. These were electrodeposited at −1.8 V.

The morphological and chemical characterization of the thin films was carried out
by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) (FEI
Quanta 400FEG Field Emission, at CEMUP, University of Porto). The structural evaluation
was performed using X-ray diffraction (XRD) measurements (BB geometry, 2θ range from
40 to 90, step 0.01) (Rigaku SmartLab, IFIMUP). The magnetic measurements were achieved
by using a superconducting quantum interference device (SQUID) (Quantum Design
MPMS 3 SQUID in VSM mode, IFIMUP).

All samples were peeled off from the substrate in order to perform XRD and SQUID
measurements. From the XRD pattern analysis, the average crystallite size, DScherrer, of the
obtained thin films could be estimated using the Scherrer [50] equation given by:

DScherrer =
0.9λ

β cos θ
(1)



Magnetochemistry 2023, 9, 161 4 of 17

where β is the most intense peak full width at half maximum obtained from the Pseudo-
Voight profile fit, θ corresponds to the peak position, and λ is the X-ray wavelength
(λCu = 1.540560 Å). From the XRD pattern, the characteristic peaks of a bcc or fcc struc-
ture were identified for produced films, depending on their stoichiometry. The lattice
parameter, a, could also be estimated through Bragg’s Law [50] for a cubic structure:

a =
λ
√

h2 + k2 + l2

2 sin θ
(2)

where (hkl) corresponds to the Miller index of the peak positions.

Table 2. Groups of samples prepared with the respective electrolyte, theoretical stoichiometry, and
applied potential.

Electrolyte Name Theoretical Stoichiometry Applied Potential (V)

Group I 1 Fe20Co80

−1.0

−1.4

−1.8

Group II

2 Fe90Co10

−1.83 Fe50Co50

4 Fe10Co90

3. Results

The nucleation and growth mechanisms of the electrodeposited films can be evaluated
by the electrodeposition curves and by current density (potentiostatic electrodeposition) as
a function of time [j(t)] during the electrodeposition. The electrodeposition curves have a
characteristic behavior that are presented in Figure 1. A rapid j decrease is firstly observed
(stage I), which corresponds to the rapid formation of a double layer charge on the electrode
surface. After reaching a minimum, jmin, j increases and reaches a maximum (jmax) in a
period of time (tmax). This subsequent increase of j (stage II) corresponds to the growth
and/or to an increase of the nuclei number. During this stage, the nuclei develop diffusion
zones around themselves. These zones grow and the overlap of the hemispherical mass
transfer occurs, resulting in a linear mass-transfer diffusion zone. Finally, a third stage (III)
comes into play, where j decreases along the electrodeposition time, corresponding to the
slow growth rate of the thin film due to the species linear diffusion from the bulk electrolyte
to the electrolyte/electrode interface [47,51].
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Figure 1. Potentiostatic current transients for the electrodeposition of electrolyte 1 [Fe20Co80] on Cu
substrate at −1.0 V. Different stages of electrodeposition are represented: (I) charge of the electric
double layer at the electrode; (II) nucleation/growth; (III) and continuous deposition.
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3.1. Fe20Co80 Film Growth at Different Electrodeposition Applied Potentials (Vdep)
3.1.1. Analysis of the Current Transients

Figure 2a shows the current transients of the electrodeposition of electrolyte 1 [Fe20Co80]
on the Cu substrate at different potentials, −1.0, −1.4 and −1.8 V. It can be observed that the
j(t) curves differ substantially from each other in two critical aspects: (i) the mean value of j
is higher for higher Vdep (ii) and the typical stage III after the nucleation region, with the
j(t) slow decay more pronounced with increasing Vdep. While (i) is obviously due to the
proportionality of the deposition of the strength of the electric field, the phenomenon (ii)
is related to side reactions [41]. Accordantly, while jmax increases linearly with Vdep, the
nucleation time tmax decreases (Figure 2b) (Figure S1 in the Supplementary Information
(S.I.) shows this phenomenon more clearly). This is due to the rapid enlargement and
growth of the nuclei centers caused by the larger electric-field-driven forces associated
with a larger deposition potential, resulting in a larger surface area. By analyzing the
rising portion of the experimental current transients, it is possible to obtain some kinetic
information about the electrodeposition process. Considering that only isolated nuclei are
formed in the surface, Scharifker and Hills [52] proposed two types of nucleation that can
be explained by the following current–time relationships:

j = π1/2zFD3/2c1/2Nkt1/2, k =

(
8πcM

ρ

)1/2
(3)

for instantaneous nucleation (all nuclei are formed at the beginning of the pulse), and:

j =
1
2

π1/2zFD3/2c1/2 AN∞k′t3/2, k′ =
4
3

(
8πcM

ρ

)1/2
(4)

for progressive nucleation (nuclei are continuously formed).
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on Cu substrate at different potentials. (b) Maximum current density, jmax (red squares), and the
corresponding time, tmax (blue circles) as a function of applied potential. Dependence between
(c) j vs. t1/2 and (d) j vs. t3/2 for early stages of current transient curves of the electrodeposition.



Magnetochemistry 2023, 9, 161 6 of 17

In Equations (3) and (4), j is current density, t is time, D is the diffusion coefficient, c is
the bulk concentration, zF is the molar charge transferred during electrodeposition, M is the
molecular weight, ρ is the density of the material, N is the number of nuclei, A is the steady
state nucleation rate constant per site, and N∞ is the number density of sites. Classifying
the nucleation process as instantaneous or progressive is possible by representing the initial
current transients as j vs. t1/2 for instantaneous (Equation (3)) and j vs. t3/2 for progressive
nucleation (Equation (4)). Figure 2c,d show the plots of j vs. t1/2 and j vs. t3/2 for the
experimental data with the respective R2 (R-squared value), which shows the quality of
curve fitting to the experimental data. Since the plots of j vs. t1/2 present a higher R2, one
can conclude that, under the experimental conditions of this work, an instantaneous FeCo
nucleation process occurs. Furthermore, considering Equation (4) and the slope of j vs. t1/2

(Figure 2), we can estimate the number of nuclei (N) for each sample:

Slope = π1/2zFD3/2c1/2Nkt1/2 (5)

where D = 1.5 × 10−5 cm2 s−1. Although, the diffusion coefficient of FeCo alloys depends
on many factors, such as composition, temperature, and microstructure, here we considered
an experimental estimated valued [47].

For each Vdep, we obtained different number of nuclei, N1.0V = 6.5× 102, N1.4V = 1.9× 103,
and N1.8V = 4.9 × 103 cm−2. By increasing the voltage, the number of nuclei formed is
much larger (Figure S2 in S.I.) in a shorter period time (since for Vdep = −1.8 V tmax is
shorter), which is normal behavior [47]. While the growth mechanism depends on the
applied potential and electrolyte conditions, the nucleation process is usually attributed
mainly to the nature of the substrate (i.e., surface roughness) and the density of the active
sites [53]. In this work, it can be observed that different applied potentials have a major
impact on the nucleation and film formation stages. For higher potentials (Vdep = −1.8 V),
the conditions for the emergence of a higher density of nucleation sites are present, as
a larger number of nuclei are formed during the faster nucleation period of time. This
ultimately leads to, and probably results in, a more uniform and homogeneous film.

The transferred charge (Q) as a function of time can be determined by integrating the j(t)
electrodeposition curves, as shown in Figure 3. Q(t) plots with a linear trend are representative
of a constant and uniform growth rate of the thin film, indicating that the electrodeposition
after jmax is a steady-state process that proceeds at a constant rate represented by the slope
of Q(t) for each sample. As Vdep increases, higher Q(t) slopes are obtained, corresponding to
higher growth rates. This means that more charge transfer occurs throughout the deposition
time, which ultimately allows for thicker films. A higher final value of Q(t) indicates a greater
film thickness (L), one expects L (−1.8 V) > L (−1.4 V) > L (−1.0 V).
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3.1.2. Morphology, Structural, and Magnetic Characterization of Fe20Co80 Thin Films

Figure 4a–c displays the top-view SEM images of the thin films in the first group of
samples, while Figure 4e–g shows the cross-section view (Table 1). The film prepared with a
lower Vdep (−1.0 V) exhibits significantly larger grains (Figure 4a) than with increasing Vdep
(up to −1.4 and −1.8 V), with the film surface having a less granular (smaller grains) and
more homogeneous morphology (Figure 4b,c). Figure 5 shows the particle size distribution
histograms estimated for all samples in group I. As observed, the grains (particle size)
diminish with Vdep from 0.73 ± 0.17 µm to 0.089 ± 0.023 µm. Notice that Vdep of −1.4 V
(Figure 4b) film reveals nonuniform film growth, where some larger sporadic grains appear,
also composed of FeCo, on top of the initial film. Certain areas of the sample exhibit a
higher concentration of these agglomerated particles, covering the initial film (Figure S3a,b
in the S.I.). Furthermore, for Vdep = −1.8 V, a uniform film with much smaller grains
(0.089 ± 0.023 µm) is obtained, confirming the observations made previously, where the j(t)
curves indicated a faster, more uniform, and optimized nucleation mechanism.
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Figure 4. (a–c) Top view and (e–g) cross-section view obtained by SEM (secondary electrons) of
the thin films electrodeposited on Cu substrate using the electrolyte 1 at electrodeposition poten-
tials of −1.0 V, −1.4 V, and −1.8 V, for a mean Fe23Co77 stoichiometry obtained by (d) EDS and
(h) thickness (L) of the thin films as a function of the applied potential (Vdep).
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Figure 5. Particle size distribution histograms of the thin films electrodeposited in Cu substrate using
the electrolyte 1 at electrodeposition potentials of (a) −1.0 V, (b) −1.4 V, and (c) −1.8 V.

Additionally, the cross-section views revealed that the films show a tubular cauliflow-
erlike morphology for higher Vdep, −1.4 and −1.8 V, (Figure 4f,g, respectively), while for
low Vdep =−1.0 V (Figure 4e), these features were not found. For each sample, the thickness
of the thin film was estimated (Figure 4h). It was observed that as Vdep increased, the film
thickness (L) decreased. The film thickness ranged from 0.63 ± 0.10 µm, at Vdep = 1.0 V
to 1.62 ± 0.12 µm, at Vdep = 1.8 V, leading to growth rates of 0.7 nm/s and 1.8 nm/s,
respectively. Thicker films were found to be proportional to Vdep, as expected, since larger
deposition potentials are associated with stronger electric-field-driven forces. However,
it is important to emphasize that at Vdep = −1.8 V, characteristics such as film uniformity,
smaller grain size, and rapid nucleation are achievable at a higher deposition rate.

EDS analysis (Figure 4d) revealed stoichiometries of Fe23Co77, Fe22Co78, and Fe25Co75
for Vdep of−1.0,−1.4, and−1.8 V, respectively. Accordingly, for different Vdep, the average
stoichiometry is Fe23Co77, showing that Vdep does not significantly affect the composition
of the thin films. These observations show that increasing or adjusting Vdep to −1.8 V
leads to an increase in the deposition rate (Figure 4h) while maintaining stoichiometry
(Figure 4d). Therefore, by keeping the stoichiometry constant, we can effectively adjust the
deposition rate by controlling the applied voltage.

The crystalline structure analysis of the first group of FeCo thin films was evaluated
by X-ray diffraction (Figure 6a). For all diffractograms, two peaks are seen at 45◦ and 83◦,
corresponding to (110) and (211) crystallographic directions, which is characteristic of a bcc
structural phase.
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Figure 6. (a) XDR diffraction patterns showing a single bcc structural phase and the (b) crystallite size
(green circles) and lattice parameter (blue squares) of the thin films synthesized with the electrolyte
1 [Fe20Co80] at different applied potentials of −1.0, −1.4, and −1.8 V.

The lattice parameter was determined using Equation (2) and the crystallite size was de-
termined using the Scherrer relation (Equation (1)). The lattice parameter increases slightly
with increasing Vdep, ranging from 2.837 ± 0.007 Å (for Vdep = −1.0 V) to 2.844 ± 0.005 Å
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(for Vdep = −1.8 V), typical values for bcc FeCo alloys [1,8,9,38] (Figure 6b). The values for
the crystallite sizes of the films did not change significantly and ranged from 7.7 ± 0.2 nm,
8.9 ± 0.3 nm, and 7.23 ± 0.2 nm for the samples with Vdep of −1.0, −1.4, and −1.8 V,
respectively (Figure 5b).

Figure 7a shows the magnetization moment versus the magnetic field, M(H), at 300 K
for the first group of samples. The data show hysteresis loops with low coercive field (Hc),
strengths which are clear indications of the presence of the soft ferromagnetic contribution
of the FeCo alloy with Hc strengths between 16 and 26 Oe (Figure 7b), typical values in the
range of those reported [8].
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Figure 7. (a) Magnetic hysteresis loops and (b) coercive magnetization at 300 K of the thin films
synthesized with the electrolyte 1 [Fe20Co80] at different applied potentials of −1.0, −1.4, and −1.8 V.

Overall, the higher Vdep (−1.8 V) leads to larger growth rates, more homogeneous
morphology film, and reduced crystallite sizes. Thus, to further produce films with good
quality, homogeneity level, and higher deposition rates, a Vdep of −1.8 V parameter was
chosen to be applied for the second group of samples (Table 2).

3.2. Varying FeCo Films Stoichiometry by Using Different Fe:Co Ions Concentrations Electrolyte
for High Voltage Deposition
3.2.1. Analysis of the Current Transients

To evaluate the role of the Fe:Co ionic concentration in the alloy stoichiometry, thin
films were grown using different electrolytes: electrolyte 2 [Fe90Co10], 3 [Fe50Co50], and
4 [Fe10Co90] on Cu substrate at Vdep of −1.8 V.

In order to understand the nucleation and growth kinetics of the second group of
samples with three different Fe:Co ratios (Table 2), the electrodeposition current transients
were analyzed, as shown in Figure 8a. For the different electrolytes, one can notice: (i) the
magnitude of j mean values or final value of j, ranging from 10 to 14 mA cm−2, have the
same order of magnitude as the sample of the first group for Vdep of −1.8 V; and (ii) the
typical j(t) slow decay with time, characteristic of a diffusion-limited deposition, is more
evident for samples with more Fe content (50 and 90 at. % of Fe). In addition, a noisy
background is observed in the curves in all current transients (more pronounced for 50 and
90 at. % of Fe) associated with the hydrogen evolution that is usually observed for these
high deposition voltages.

jmax decreases with at. % of Fe whereas tmax decreases with at. % of Fe and seems to
remain constant for at. % of Fe higher than 50%, see Figure 8b. Figure 8c,d show the results of
applying the Scharifker and Hills model [52] (Equations (3) and (4)) to the current transients
obtained for the electrodeposition of electrolyte 2 [Fe90Co10], 3 [Fe50Co50], and 4 [Fe10Co90]
on Cu substrate with applied potential of −1.8 V. As previously noted for the first group of
samples, the R2 value is higher in the plots of j vs. t1/2 leading to the conclusion that, once
again, the FexCo1−x (x = 10, 50, 90) presents an instantaneous nucleation.
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Figure 8. (a) Potentiostatic current transients for the electrodeposition of electrolyte 2 [Fe90Co10],
3 [Fe50Co50], and 4 [Fe10Co90] on Cu substrate with applied potential of−1.8 V. (b) Maximum current
density, jmax (red squares), and the corresponding time, tmax (blue circles) as a function of applied
potential. Dependence between (c) j vs. t1/2 and (d) j vs. t3/2 for early stages of current transient
curves of the electrodeposition.

Furthermore, we can estimate the number of nuclei (N) for each sample, as previously
described, given more or less the same order of magnitude of N for all the samples, with
a mean N = 2.8 × 103 cm−2, as observed in Figure S2 in S.I. Although the atomic content
of the electrolyte has changed, the number of nuclei did not change significantly, as the
nucleation time was in the same order of magnitude. This leads us to conclude that the
electrolyte’s Fe:Co content is not the driving force of the nucleation mechanism. The Vdep
parameter is the key factor that has the most significant impact on the number of nuclei
and the time of their growth and film formation.

Figure 9 shows the charge transferred as a function of time for each thin film, yielding
an approximately linear relation as observed for the first group of samples. In all cases, the
same Vdep (−1.8 V) was applied, resulting in approximately similar slopes that suggest
comparable growth rates at different Fe:Co ratios under the same Vdep conditions.
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3.2.2. Morphology, Structural, and Magnetic Characterization of FexCo1−x (x = 10, 50, 90)
Thin Films

Figure 10a–c display the top SEM images of the second group of samples (Table 2)
and Figure 10d shows the EDS spectra for all the samples. The analyses of EDS revealed
stoichiometries of Fe88Co12, Fe54Co46, and Fe15Co85, for electrolyte 2, 3 and 4, respectively,
proving that the FeCo thin film composition can be tuned by altering the Fe:Co ratio
within the electrolyte for high electrodeposition applied voltages (Vdep = −1.8 V). Sample
Fe90Co10 (Figure 10a) exhibits a rough and disordered granular morphology with larger
grains of 0.34 ± 0.13 µm (Figure 11a). As the Fe content increases up to 50%, for Fe50Co50
sample (Figure 10b), the film shows a smoother morphology with much smaller grains of
0.11 ± 0.04 µm (Figure 11b). Conversely, the sample with Fe10Co90 (Figure 10c) exhibits
needle-like grain shapes with long and small axes, which are characteristic of this specific
stoichiometry [34]. Particle size distribution histograms were obtained for the different
directions, yielding small dimensions of 0.27 ± 0.05 µm for the long axis (length) and
0.083 ± 0.018 µm for the small axis (width) (Figure 11c,d, respectively).
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Figure 10. (a–c) Top view and (e–g) cross-section view obtained by SEM (secondary electrons) of
the thin films electrodeposited on Cu substrate using electrolytes 2 [Fe90Co10], 3 [Fe50Co50], and
4 [Fe10Co90] at electrodeposition potentials of −1.8 V, and (d) the respective stoichiometries obtained
by EDS. (h) Length of the thin films.
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Figure 11. Particle size distribution histograms of the thin films electrodeposited at applied potential
of −1.8 V, for the different electrolytes compositions Fe:Co: (a) electrolyte 2 [Fe90Co10], (b) electrolyte
3 [Fe50Co50], electrolyte 4 [Fe10Co90] along the (c) length and the (d) width of the needle-type particles.

Figure 10e–g illustrates the cross-sections of the samples from Group II. The Fe90Co10
(Figure 10e) sample exhibits similar characteristics to those observed in the top-view images,
displaying a rough morphology without a discernible regular growth trend structure.
Conversely, the films with increased at. Fe content of 50% or 90%, showcase a continuous
tubular morphology (Figure 10f,g, respectively).

Figure 10h presents the estimated L of the thin films from Group II as a function of the
at. % of Fe content. It can be observed that as the at. % of Fe content increases, there is a
linear increase in L, even when the same applied potential (Vdep = −1.8 V) is maintained. It
is noteworthy that L values for the Fe10Co90 (Group II) and Fe20Co80 (Group I) samples,
both at Vdep = −1.8 V, are in the same order of magnitude, with L = 1.30 ± 0.05 µm
(1.4 nm/s) and L = 1.62 ± 0.12 µm (1.8 nm/s), respectively. However, when the Fe content
is increased to 50% and 90%, the growth rate sharply increases to 3.6 nm/s and 4.5 nm/s,
respectively, resulting in final thicknesses of L = 3.26 ± 0.11 µm and L = 4.51 ± 0.16 µm.
Furthermore, a linear relationship can be estimated between the film thickness (L) and the
atomic percentage of Fe content, given by: L = 0.043 · at. % of Fe + 0.9. This relationship allows
for the fabrication of tunable FeCo films within the range of high electrodeposition voltages.

This result is not what would be expected for two reasons. First, as discussed earlier,
the j(t) and Q(t) curves (Figures 8a and 9) were in the same order of magnitude, indicating
similar growth rates under the applied voltage (Vdep = −1.8 V). Second, SEM images
revealed films with varying L and growth rates, where samples with larger amounts of
Fe lead to higher deposition rates and greater film thickness, with the Fe90Co10 sample
standing out among the others. One might expect the opposite trend since the reduction
of Fe is more difficult than that of Co (with reduction potentials of −0.44 V and −0.28 V,
respectively) [54,55]. Hence, the greater the amount of Fe, the more difficult the deposition
and growth. However, SEM cross-section images revealed that during the electrodeposition
process, the Fe90Co10 sample exhibited film liftoff from the substrate while still being
electrically connected in some areas. Due to the conducting nature of the FeCo thin film, it
continued to deposit in the free-standing films on both sides. This curling behavior during
film detachment seemed to be more pronounced with higher Fe amounts (samples 50 and
90% of Fe) during electrodeposition (Figure S4 in S.I.).

Nevertheless, a direct explanation for the relationship between the amount of Fe
in the electrolyte and the different resulting deposition rates and film thickness at the
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same applied potential is not possible at this stage. Other factors, such as the formation
of complexes and oxides during electrodeposition as parallel reactions, may play a role.
Additionally, changes in pH during alloy depositions could influence the process, as the
optimal reduction potential for a given applied potential might no longer be suitable [56].
Finally, the parasitic hydrogen evolution reaction has been reported to be favored over iron
electrodeposition [57]. This feature has been shown to be more pronounced in j(t) curves
for samples with higher Fe amounts, samples 50 and 90% of Fe (Figure 8a)).

Figure 12a shows the X-ray diffraction diffractograms for the second group of samples
with different Fe:Co ratios. The XRD diffraction patterns of the Fe90Co10 and Fe50Co50
thin films present three peaks at 45◦, 65◦ and 83◦ corresponding to (110), (200), and (211)
crystallographic directions, respectively, similar to the first group of samples (Fe20Co80
for Vdep = −1.0 to −1.8 V). Conversely, by decreasing Fe content to 10% (Fe10Co90) the
face-centered cubic (fcc) structural phase arises with pronounced diffraction peaks at (111),
(200), and (220) crystallographic directions corresponding to 44◦, 52◦ and 76◦, respectively.
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applied potential of −1.8 V.

Furthermore, associated with the arising of fcc structural change for lower amounts
of Fe (10 at. % of Fe) is the increase of the lattice parameter extracted from Fe10Co90
diffractogram, revealing the largest lattice parameter of 3.57 ± 0.06 Å, characteristic of the
fcc structural phase (Figure 12b) [27,38]. The other two sample compositions, both with the
bcc structural phase, presented a similar lattice parameter of ~2.8 Å, in the same range of
the previously studied group of samples with Fe20Co80 composition that also presented a
bcc structure. Additionally, as the structural phase changes, the particle shape also changes,
as observed in SEM images for Group II.

The crystallite size obtained for the thin films Fe90Co10, Fe50Co50, and Fe10Co90 were
10.8 ± 0.1 nm, 12.2 ± 0.2 nm, and 11.5 ± 0.3 nm, respectively. For this group of samples, a
small increase in crystallite size is obtained for sample Fe50Co50.

Figure 13a displays magnetization versus the magnetic field, M(H), at 300 K for the
second group of samples, where similar hysteresis loops to the precious group of samples
are observed. Low Hc strengths are once again obtained. However, Hc (Figure 13b) shows
a minimum for the alloy Fe50Co50, a result consistently reported in the literature [2,35,36].
It is worth reinforcing, that once again, the Fe10Co90 sample stands out from the other
considered sample, in this case, for the larger Hc in the group.

Overall, the sample with lower Fe content (Fe10Co90) stands out from the others in
terms of nucleation time and growth, as it shows shorter nucleation times and higher
growth rates, resulting in a larger final size (L). In addition, the structural analysis indicates
that the sample has an fcc structure, which results in a larger lattice parameter and volume
expansion compared to the other samples. Regarding magnetic characterization, although
the differences are not very significant, this sample displays higher coercivity field values
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compared to the others. It is worth noting that these properties are likely related to the
unique nucleation and growth behavior and structural characteristics of this sample.
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4. Conclusions

In this work, the fabrication of FeCo alloy films by potentiostatic electrodeposition
was performed, and parameters, such as the applied voltage (Vdep) and FeCo stoichiometry,
were studied. It was verified that the Vdep (−1.0,−1.4, and−1.8 V), for the same electrolyte,
does not affect the overall stoichiometry of the thin film, where an average of Fe23Co77
was obtained. Furthermore, adjusting Vdep allows producing granular films with varying
growth rates, which directly affects the film’s morphology in terms of grain size, final
thickness, and growth rates. Increasing Vdep results in smaller grains, while simultaneously
increasing both the film’s thickness and growth rate. Thus, optimized films with a smoother
and more homogeneous surface, characterized by smaller grains, were obtained for higher
Vdep (−1.8 V). Additionally, we used Vdep = −1.8 V to investigate films with varying Fe:Co
ratios in the electrolyte. This resulted in films confirmed by EDS analysis to have Fe10Co90,
Fe50Co50, and Fe90Co10 compositions. The FexCo1−x alloy composition influenced the
morphology at the same high Vdep (−1.8 V): (i) the grain size, (ii) the shape of the grain, and
(iii) the film thickness and growth rate. The composition influenced the grain morphology,
resulting in larger, shapeless grains (for 90% of Fe) and smaller grains with varying shapes,
ranging from round to needle-shaped (for 50% and 10% of Fe, respectively). Decreasing
the Fe content in the alloy led to these variations in grain size and shape. Furthermore,
increasing the at. % of Fe the film growth rate and final thickness increases.

The nucleation and growth mechanisms were inspected in detail for the two groups
of samples: variation of Vdep and Fe:Co content. This was carried out by analyzing the
electrodeposition curves. By increasing Vdep (for the same electrolyte), higher growth
rates (and thicker films) with shorter nucleation periods were obtained. Conversely, for
samples with different Fe:Co stoichiometries, the curves showed similar growth rates, film
thicknesses, and nucleation periods within the same order of magnitude. However, these
findings were not supported by SEM images, which revealed that thicker films (indicating
higher deposition rates) were achieved when electrodepositions included larger amounts
of Fe, exhibiting a linear dependence on Vdep. Notably, features such as the curvy nature
and detachment of films with higher Fe content suggested the possibility of promoting
double deposition, potentially affecting the final film characteristics.

An underlying analysis was performed by applying, for example, the SH model. It
was verified that the nucleation stage of formation, independent of the conditions (Vdep
or Fe:Co ratio), shows a nucleation of the instantaneous type. Through the same model, it
was possible to calculate the number of nuclei (N). It was realized that for samples with
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different Vdep, higher potentials lead to a larger number of N. However, for samples with
different stoichiometries, no substantial differences were obtained. Thus, while Vdep is a
key feature to achieve high-rate films, with larger numbers of N leading to homogeneous
and smooth films, varying the stoichiometry does not figuratively affect N.

Analyzing the XRD structural results, it was noticed that all groups of samples reveal
a bcc structure with a lattice parameter of the order of 2.8 Å. However, the Fe10Co90 sample
for group II shows a fcc with a lattice parameter of the order of 3.9 Å, as expected according
to the bulk FeCo alloys phase diagram.

Closely correlated with structure are the results of magnetic measurements. For all
groups of samples, the alloys revealed having characteristics of soft magnetic elements with
coercivities within the expected literature. However, the low-Fe sample with fcc structure
will have the highest coercivity (approximately twice the mean) when compared to all
other samples in both groups. In summary, this sample has unique properties in terms of
nucleation and growth, structure, and magnetic behavior, which distinguish it from the
other samples.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/magnetochemistry9070161/s1, Figure S1: Overall j-jmin as a function of
time to illustrate that the tmax increases with Vdep; Figure S2: Number of nuclei vs. applied potential
(blue squares) and vs. applied potential (red circles) for the electrodeposition of FeCo on Cu substrate;
Figure S3: (a,b) Top view of the thin film electrodeposited on Cu substrate using the electrolyte 1 at
electrodeposition potentials of –1.4 V, and its corresponding (c) particle size distribution histogram;
Figure S4: Cross-section SEM image (secondary electrons) of the thin film electrodeposited in Cu
substrate using the electrolyte 4 [Fe10Co90], at electrodeposition potentials of −1.8 V.
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