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Abstract: Nanocrystalline La0.9A0.1Mn0.9Cr0.1O3 (A: Li, K, Na) powders have been synthesized by
combustion method. The powders were used to prepare ceramics by high-pressure low-temperature
sintering technique. For all samples the structure, elemental composition and morphology were
studied using X-ray diffraction (XRD), Raman spectroscopy, Energy-Dispersive X-ray Spectroscopy
(EDS) and Scanning electron microscopy (SEM). Magnetic properties were studied using magnetom-
etry methods and the valency changes of the cations after alkali ions doping were studied using
X-ray photoelectron spectroscopy (XPS). The influence of the sintering pressure on the structural
and magnetic properties of the manganites doped with different alkali ions and chromium was also
investigated. Magnetization properties were studied as a function of sintering pressure and type of
the dopant. Chemical doping with alkali ions as well as external pressure significantly changed the
magnetic properties of the compounds. It was found that the magnetic properties of the manganites
could be predictably modified through the use of a suitable dopant element.

Keywords: multiferroic; manganites; nanopowders; ceramics; alkaline ions; doping; magnetiza-
tion; XPS

1. Introduction

The term multiferroic was first used in 1993 in Ascona, where Hans Schmid [1]
used it to refer to materials that combine at least two of the primary ferroic states in
one phase, i.e., ferroelectricity, ferroelasticity and ferromagnetisms [1,2]. Presently, four
classes of multiferroics can be distinguished and are divided based on the different ways
ferroelectricity is facilitated in them. The ferroelectricity may be caused by magnetic field,
geometry, charge ordering or lone pair electrons [3–5]. The ideal example that shows a clear
relation between structure and magnetic order is a magnetic insulator such as LaMnO3 [6].
This structure belongs to manganite groups, which are a mix of manganese oxides which
crystalize in a perovskite structure. The manganites have the formula ABO(3±δ); where
A is a lanthanide element and B is manganese, the stoichiometry is related to the oxygen
excess or deficiency [7]. The main advantage of the perovskite structure is the possibility
of exchanging part of the cations without breaking its crystal structure. It is known that
LaMnO3 has an orthorhombic structure, which allows for tilting modes and Jahn–Teller
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distortion [8]. Exchange of trivalent ions in A position can modify Mn ion valency (from
trivalent to tetravalent) which may change this paramagnetic insulator to ferromagnetic
conductor or lead to a coexistence of mixed magnetic phases [9]. The proposed mechanism
of conductivity in manganites was based on the double exchange between Mn3+ and Mn4+

via oxygen with strong electron phonon coupling [10]. The hole doped LaMnO3 can show
the transition from paramagnetic to antiferromagnetic, from paramagnetic to ferromagnetic
and also from ferromagnetic to antiferromagnetic phase and is strongly dependent on
hole concentration [11–14]. Such doping can be achieved when the trivalent La3+ ions
are changed with divalent alkali earth ions, which can transform Mn3+ ions to Mn4+ ions.
The transition to ferromagnetism may also be stimulated by exchange of La3+ ions with
monovalent alkali ions. This in principle should introduce more holes to the structure in
comparison to divalent ions [15]. It was found that manganates doped with mono- and
many divalent alkali ions are very sensitive to applied external pressure. The hydrostatic
pressure changes Curie temperature, cell parameters, increases band gap energy and
weakens electron–phonon coupling [16,17]. Another way to alter the manganite properties
is by doping with transition metal ions that would change the bandwidth and bond angle
between manganese ions [18] and in consequence change the conductivity mechanism.
Troyanchuk and Sun showed that partial substitution of manganese by chromium ions
leads to a decrease in metallic-insulating (M-I) transition temperature [19,20], and Raveau
et al. [21] demonstrated that chromium and cobalt doping leads to stimulated insulator–
metal transition in the antiferromagnetic phase in Pr0.5Ca0.5Mn1−xCrxO3 without the use
of the magnetic field. In LnMn1-xCrxO3 perovskite, the substitution of manganese by
chromium leads to a transition from antiferromagnetic to ferromagnetic phase with no
metallic properties [18–20,22,23]. The ferromagnetic state is possibly caused by the double
exchange between manganese and chromium ions, which have almost the same electron
configuration as Mn4+ ions [24,25]. In manganites doped with chromium, a decrease in
Curie temperature, increase resistivity and decrease temperature of transition from metal
to semiconductor can be observed with increase in chromium concentration [26–31].

In this work, we continue our systematic work, where the manganites were doped
with alkali ions [32] and then doped with cobalt ions [33]. The results obtained in our
previous works have shown that chemical doping with alkali metal ions and Co ions, along
with the different synthesis methods, can be considered an effective tool for the controllable
modification of the electronic configuration of the Mn and Co ions, and thus, the functional
properties of the doped manganites. The aim of the actual work is to check the mentioned
means for controllable modification of the magnetic properties of the manganites doped
with an alkali metal and Cr ions.

2. Materials and Methods

The La0.9A0.1Mn0.9Cr0.1O3 (A: Li, K, Na) were synthesized using the combustion
method [34]. The combustion method was chosen for sample preparation because, unlike
sol-gel or precipitation methods, it allows for a quick (about 2 h of the whole process) and
low-cost synthesis of a structurally pure material. In addition, it is an easily scalable method
that allows you to obtain powder in semi-industrial quantities. As a source of precursors, a
series of nitrates were used (La(NO3)3•6H2O, Mn(NO3)2•4H2O, Cr(NO3)2•9H2O, LiNO3,
NaNO3 or KNO3). The molar ratio of lanthanum to alkali ions and manganese to chromium
was 0.9 to 0.1. The nitrates were mixed with an excess of 10% molten stearic acid and kept
at 140 ◦C under continuous stirring. Stearic acid has a low melting point, prevents the
hydrolysis of the prepared structure and acts as a complexing agent; therefore, it helps
lower the combustion synthesis temperature. After 2 h, the obtained gel was placed in a
furnace heated up to 500 ◦C. After a short while, the gel ignited spontaneously with the
release of a large number of gases and resulting in a black foam-like structure. The foam
was ground and calcined at 700 ◦C for 1 h. After calcination, all powders were ground and
taken for further experiments and ceramic sintering. The ceramics were prepared using
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a high-pressure, low-temperature sintering technique [35]. The ceramics were sintered at
8 GPa and 500 ◦C for 1 min.

The structure of the powders and ceramics were measured and analyzed by powder
X-ray diffraction (XRD) using a PANalytical X’Pert diffractometer (Malvern Panalytical,
Almelo, The Netherlands) with Ni-filtered CuKλ radiation, λ = 0.15418 nm. Raman in-
vestigations were performed in back-scattering geometry using a Renishaw InVia Raman
microscope equipped with a confocal DM 2500 Leica optical microscope and CCD detector
(Renishaw plc, Wotton-under-Edge, United Kingdom). A 632 nm line from the HeNe
laser was used as an excitation source. The spectra were recorded in five scans with a
90 s exposure time, 1 mW of applied power and 50× magnification. EDS analysis was
performed using a Hitachi TM3000 microscope (Hitachi, Tokyo, Japan) under 8.5 mm
working distance and 15 kV accelerating voltage. The data were collected during a period
of 1 h for each sample. An XPS measurement was performed, allowing us to measure
the composition of a deeper and larger area of the sample, as the surface analysis results
could contain errors or uncertainties due to the inhomogeneity of the sample and the EDS
measurement being taken from a single point. The XPS analyses were carried out with a
Kratos Axis Supra spectrometer, using a monochromatic Al K(alpha) source (25 mA, 15
kV). XPS can detect all elements except hydrogen and helium, it probes the surface of the
sample to a depth of 5–7 nm, and it has detection limits ranging from 0.1 to 0.5 atomic
percent depending on the element. The instrument work function was calibrated to give a
binding energy (BE) of 83.96 eV for the Au 4f7/2 line for metallic gold, and the spectrom-
eter dispersion was adjusted to give a BE of 932.62 eV for the Cu 2p3/2 line of metallic
copper. The Kratos charge neutralizer system was used on all specimens to minimize
the impact of sample charging (buildup of surface potential) during data acquisition to
enable photoelectron lines to appear nearly at the expected binding energy without sample
damage or peak distortion. Survey scan analyses were carried out with an analysis area
of 300 × 700 microns and a pass energy of 160 eV. High resolution analyses were carried
out with an analysis area of 300 × 700 microns and a pass energy of 20 eV. Spectra have
been charge-corrected to the main line of the carbon 1s spectrum (adventitious carbon) set
to 284.8 eV. Spectra were analyzed using CasaXPS software (version 2.3.23rev1.1R, Casa
Software Ltd., Teignmouth, UK). The magnetic properties of the powders and ceramics
were checked, using highly sensitive and precise Physical Properties Measurement Systems
from Cryogenic Ltd. (London, UK) in magnetic fields up to ±14 T at 5 K.

3. Results
3.1. Structure and Morphology

The crystal structure of the La0.9A0.1Mn0.9Cr0.1O3 compounds of both series (powders
and ceramics) was analyzed using the results of X-ray diffraction measurements performed
at room temperature (Figure 1). The crystal structure and the unit cell parameters have
been evaluated by Rietveld refinement using X’pert HighScore Plus software (Malvern Pan-
alytical, Malvern, United Kingdom) [36]. The diffraction data testifies to the formation of
single-phase compounds without any presence of impurity phases. The diffraction patterns
of all the compounds were refined using rhombohedral symmetry with the space group
R-3c. The difference in the structure of the compounds under study and the initial com-
pound LaMnO3 having orthorhombic symmetry [37] denotes the dopant-induced changes
in the geometry of oxygen octahedra specific for the compounds LaMnO(3±δ) [38]. A slight
shift in reflections can also be observed compared to the reference based on pure manganate.
This shift is attributed to a symmetry disorder resulting from the substitution of lanthanum
and manganese with alkaline and chromium ions, respectively. Chemical doping with Li,
Na and K ions leads to an increase in the unit cell parameters (Table 1) proportional to
the ionic radius of the dopant ions while also keeping the rhombohedral symmetry. The
application of high pressure notably diffuses the reflections on the diffraction patterns of
the compounds pointing towards much smaller crystallite size and increasing the strains in
the compounds, which notably affects the magnetic properties of the compounds as shown
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in the next section. It is known, that variation in the particle size can drastically affect the
value of magnetization as well as magnetic transition temperature of the manganite and
can be considered as an effective method for the modification of the functional properties
of complex oxide systems [39,40]. In the manganites, a decrease in the crystallite size leads
to a reduction in the magnetization [41] by a disruption of the long-range ferromagnetic
interactions occurring in volume and especially in the surface layer of the crystallites. The
decrease in the crystallite size was observed already by us [42,43], and is related to the
decomposition of the surface layer of the nanocrystallite and decrease in the size of the
core. Additionally, it can be observed that for the ceramics at high diffraction angles, the
background strongly increases, this may be potentially related to the reflection mode of
measurement made on non-parallel surfaces of the small pieces of the ceramics. However,
in all cases, it can be seen that the reflections correspond to the rhombohedral structure of
LaMnO3 without any impurities.
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Figure 1. XRD patterns of La0.9A0.1Mn0.9Cr0.1O3 powders and ceramics.

Table 1. Crystal structure parameters and interatomic distances calculated for La0.9A0.1Mn0.9Cr0.1O3

powders and ceramics from XRD data.

Size Strains a, b c V
Atomic Distance

Mn-O(1) La-O(1) La-O(2)

nm % Å Å Å3 Å

Powders
La0.9Li0.1Mn0.9Cr0.1O3

Rexp = 2.0631, GOF = 2.692 26 0.222 5.496(7) 13.32(3) 348.6(2) 1.957(5) 2.744(1) 2.463(1)

La0.9Na0.1Mn0.9Cr0.1O3
Rexp = 2.0317, GOF = 2.4394 34 0.18 5.496(4) 13.34(0) 349.0(1) 1.958(2) 2.746(3) 2.462(9)

La0.9K0.1Mn0.9Cr0.1O3
Rexp = 2.0565, GOF = 2.4711 37 0.177 5.503(0) 13.36(4) 350.4(8) 1.961(0) 2.750(6) 2.465(9)

Ceramics
La0.9Li0.1Mn0.9Cr0.1O3

Rexp = 4.6257, GOF = 6.5642 13 0.686 5.505(2) 13.36(3) 350.7(5) 1.961(6) 2.751(9) 2.467(0)

La0.9Na0.1Mn0.9Cr0.1O3
Rexp = 5.8594, GOF = 5.2561 16 0.672 5.482(5) 13.44(4) 349.9(6) 1.959(8) 2.758(0) 2.456(7)

La0.9K0.1Mn0.9Cr0.1O3
Rexp = 5.3762, GOF = 4.2687 18 0.892 5.488(2) 13.41(3) 349.9(0) 1.942(8) 2.719(8) 2.447(7)

Rexp—Expected Rietveld R-factor, GOF—goodness of fit.
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Group theory provides 24 Raman active modes (7Ag + 5B1g + 7B2g + 5B3g) in a
LaMnO3 orthorhombic crystal structure [44]. At the same time, the heating that occurs
from laser radiation results in a structural transformation toward the rhombohedral phase
in which only five Raman modes (A1g + 4Eg) are active [45]. The results obtained for
La0.9A0.1Mn0.9Cr0.1O3 (A: Li, Na, K) powders and ceramics are consistent with previous
studies of similar perovskite structures, such as LaMnO3 [45]. However, in our study,
we observed only three Eg modes (Figure 2) and a shift of the Raman peak position to
higher frequencies with the decrease in the atomic nucleus size of the doping alkali metals
(Table 2). This can be explained by the substitution of La atoms. As the crystal lattice is
compressed, the force constant remains the same and the Raman shift increases. This effect
has less impact on Eg4 (out-of-phase stretching) than Eg3 (pure oxygen bending vibration)
modes, which explains the fact that the ∆ between Eg4 and Eg3 is also decreased.
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Figure 2. Raman spectra of La0.9A0.1Mn0.9Cr0.1O3 (A: Li, Na, K) powders and ceramics.

For the prepared ceramics and powders doped with different alkali ions as well
as chromium, an energy dispersive X-ray spectroscopy analysis (EDS) was performed
(Figure 3). The characterization was performed in order to evaluate the elemental distri-
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bution and confirm whether their segregation on the grain boundaries had occurred. The
elemental distribution maps can be seen in Figure 3. From the given data, we can conclude
that no segregation occurred and that the elements were evenly distributed in both ceramic
and powder compounds. The ratios of different elements were also measured. No signifi-
cant differences were observed in the case of the powder-form compounds. A distinctly
smaller amount of chromium was measured in the K- and Li-doped ceramics. This could be
related to the slight inhomogeneity caused by the application of high pressure. The other
dopant concentrations were measured to be around 10%, which is in good accordance with
the expected values. However, the amount of lithium was not measured as, in this case, the
ion was too light and could not be detected using EDS.

Table 2. Energies (cm−1) and symmetry assignments of Raman-active phonons observed in the
Raman spectra of La0.9A0.1Mn0.9Cr0.1O3 (A: Li, Na, K) powders and ceramics.

Raman Modes

Eg2 Eg3 Eg4 ∆

La Bending Antistretching

cm−1

Powder
LaMnO3 [44] 198 490 612 122

La0.9Li0.1Mn0.9Cr0.1O3 - 517 643 126
La0.9Na0.1Mn0.9Cr0.1O3 177 504 637 133
La0.9K0.1Mn0.9Cr0.1O3 185 496 632 136

Ceramic
La0.9Li0.1Mn0.9Cr0.1O3 - 525 653 128
La0.9Na0.1Mn0.9Cr0.1O3 191 495 630 135
La0.9K0.1Mn0.9Cr0.1O3 201 497 632 135
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3.2. Oxidation States of Mn and Cr Ions

The XPS analysis was carried out for all of the La0.9A0.1Mn0.9Cr0.1O3 powders and
ceramics (Figures 4 and 5) and allowed us to clarify the oxidation state of the Mn and
Cr ions depending on the chemical composition and the synthesis method. It is known
that electronic configuration and, thus, the oxidation state of the Mn ions is a critical issue
in determining the type of exchange interactions formed in the manganites [46,47]. The
results obtained showed that there was very little quality literature on the exact fitting of
Mn2p spectra. Additionally, manganese 2p transitions exhibited multiple splittings due to
unpaired electrons, which complicates any kind of analysis. It is possible to analyze Mn4+

systems with impurities of Mn3+ to some extent, but it is not the case in mixed manganites,
which are also doped with two additional elements. It is worth mentioning that Mn3+ and
Mn4+ states show very similar chemical shifts. Therefore, the analysis of Mn2p is at the
very least questionable. However, in our case just to get a sense of the possible chemistry of
compounds, standard peaks of manganite (MnOOH- as a source of Mn3+) and Pyrolusite
(MnO2− as a source of Mn4+) were used fixing their area ratios and fixing their positions.
Approximate amounts of Mn3+ and Mn4+ were calculated [48] and presented in Table 3.
The ratios of Mn3+ and Mn4+ correlate well with the energy difference between Mn 3s
peaks. The peak energy separation between Mn 3s peaks (delta E) observed in the spectra is
often reported to correlate with Mn4+ and Mn3+ ratio as discussed in the literature [49,50].
However, this should also be used very cautiously since other Mn ligands give rise to very
different values [48]. In this case, the homogeneous elemental distribution is achieved in all
samples through the sol-gel procedure, allowing for atomic-level mixing. This method is
commonly used in compounds prepared by sol-gel synthesis. Considering the changes in
oxidation states, it is observed that prior to the application of high pressure, the oxidation
states remain relatively close regardless of the alkali metal used. It is worth noting that
other researchers have also reported similar results, particularly concerning the oxidation
state of Mn ions. Similar findings were obtained through Co and Cu doping, where 20% of
Co and Cu were introduced instead of Mn, resulting in Mn4+/Mn3+ ratios of 0.62 for Cu
and 0.55 for Co [51], which are comparable to the compounds in this study. Similarly, in
the case of K doping alone, Yolanda Ng Lee et al. found that at 10% doping, the amount of
Mn4+ was around 32% [52]. However, conflicting results can be found in the literature as
well. For instance, in the case of 20% Sr doping in La, the Mn4+/Mn3+ ratio was reported
to be 1.77 [53], which was significantly higher than what was observed in our work, even
considering the larger charge difference in this case. This difference could be attributed
to the presence of chromium or the ionic radius disparity between Sr and alkali metals.
Furthermore, there are reports of Mn2+ being present in the LaMnO3 system doped with
K and Ce, although it was not observed in our case [54]. Regarding the effects of high
pressure on the oxidation states in LaMnO3, it is challenging to find relevant information
in the literature, making comparisons difficult. Ceramic samples seemed to have a trace
of Mn2+ due to evident satellites indicating this state; however, it was not included due
to a weak signal. However, it is worth noting that ceramics seem to possess an overall
larger amount of Mn3+ ion compared to powders. Similarly, as well, they show a higher
amount of Cr3+ as compared to Cr6+ (except for the Li-doped ceramics). The deviation in
the oxidation states may be caused by the modification carried out on the surface of the
ceramics when high pressure is applied, and the crystal structure is partially destroyed,
thus providing an easier partial reduction in the oxidation states at the surface.
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Table 3. Oxidation state of Mn and Cr ions in La0.9A0.1Mn0.9Cr0.1O3 powders and ceramics.

Mn Oxidation State (%) Cr Oxidation State (%)

3+ 4+ 3+ 6+

Powder
La0.9Li0.1Mn0.9Cr0.1O3 66.0 34.0 62.1 37.9
La0.9Na0.1Mn0.9Cr0.1O3 66.7 33.3 53.9 46.1
La0.9K0.1Mn0.9Cr0.1O3 78.0 22.0 50.4 49.6
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Table 3. Cont.

Mn Oxidation State (%) Cr Oxidation State (%)

3+ 4+ 3+ 6+

Ceramic
La0.9Li0.1Mn0.9Cr0.1O3 83.3 16.7 40.8 59.2
La0.9Na0.1Mn0.9Cr0.1O3 79.8 20.2 85.4 14.6
La0.9K0.1Mn0.9Cr0.1O3 82.2 17.8 78.3 21.7

3.3. Magnetic Properties

Magnetization measurements performed for the compounds have allowed the estima-
tion of an evolution of magnetic structure depending on the dopant element. The mixed
magnetic state of the initial compounds is associated with a deficient cation content formed
during the synthesis procedure thus leading to the formation of competing positive and
negative exchange interactions between isovalent and heterovalent manganese ions [55].
The magnetization value obtained for LaMnO3 compound can be described in the men-
tioned model assuming that about 20% of the manganese ions are in 4+ oxidation state,
which is in accordance with our previous study [33].

Chemical substitution with alkali elements and chromium ions leads to only slight
changes in the structural parameters thus assuming a stabilization of dominant 3+ oxidation
state of the chromium ions having ionic radius (0.615Å) similar to that specific for Mn3+

ions (0.645Å) [56]. A dominance of chromium ions in 3+ oxidation state should lead to an
increase in magnetization of the compounds by positive exchange interaction between Cr3+

and Mn3+ ions. A formation of positive exchange interactions Cr3+-O-Mn3+ is in accordance
with the double exchange mechanism used to explain ferromagnetism in compounds
having transition metal ions in 3d3 and 3d4 electron configurations [22,57]. Indeed, the
compounds in powder form doped with Na/Cr and K/Cr ions are characterized by the
value of in-field magnetization, which is about 40% larger than the magnetization value
observed for the initial compound (Figure 6). It should be noted that magnetization data
obtained for the compound doped with Li and Cr ions is only slightly changed as compared
to the initial compound which is explained by lower chemical homogeneity as compared to
other compounds and thus a reduction in positive exchange interactions Cr3+-O-Mn3+ and
Mn3+-O-Mn4+ and stabilization of negative interactions Cr3+-O-Mn4+ and Mn3+-O-Mn3+.

Lower value of magnetization obtained for the compounds in ceramic form (Figure 6)
can be caused by the smaller size of crystallites leading to a reduction in long-range mag-
netic order, as well as by a reduced amount of oxygen content formed during high-pressure
procedure, which shift the Mn3+/Mn4+ ratio out of optimal value. The compounds doped
with Na/Cr and K/Cr ions are characterized by the increased value of in-field magnetiza-
tion as compared to the undoped compound, which is similar to the tendency observed for
the powder compounds. The compound doped with Li/Cr ions has lower magnetization
among the compounds in both series while a reduction in in-field magnetization is more
pronounced in the case of ceramic compounds. The decrease in magnetization observed in
Li/Cr doped compound is explained by the Mn3+/Mn4+ ratio shifted towards to Mn3+ ions
as compared to other compounds and a reduced amount of Cr3+ ions (Table 3) thus leading
to a dominance of negative exchange interactions formed between isovalent manganese
ions and Cr3+-O-Mn4+.

There are no publications for the LaMnO3 doped with alkaline elements and chromium
together, but articles can be found where at least one similar dopant was used. Firstly,
when looking at the case of Ag+ doping [58], the results presented at 10 K show a similar-
shaped peak, however, a slightly larger coercivity as compared to results obtained in our
study. The second two most used elements for doping LaMnO3 systems are Sr2+ and
Ca2+ [59]; however, in this case, a slightly higher magnetic field is needed to reach the
full saturation. However, it is not too significant as the difference is quite small, most
likely due to the similar mechanisms in charge compensation happening in the system



Magnetochemistry 2023, 9, 140 10 of 13

presented in this paper. Lastly, when electroneutrality is maintained during doping in
the cases of Ce3+ [60] and Cr3+ [18] the magnetization results resemble the data presented
quite closely, while in other cases, the angle of the magnetization curve, as well as the
saturation happening, was slightly different, while, in this case, the magnetic properties
are almost identical. Articles on the magnetic particles of LaMnO3 ceramics can also be
found. Supelano et al. [61] described the impact of the addition of Mg2+ on the magnetic
properties of La1−xMgxMnO3. They show that the inclusion of Mg in the system induces
interactions which arise from the ferromagnetic phase at low temperatures, and it is related
to Mn–O–Mn bond angles and Mn–O bond lengths. Similar values of magnetization were
observed for ceramics doped with 25% of Mg2+. Zakhvalinskii et al. [62] described the
impact of preparation condition of the ceramics on their magnetic properties. They found
that LaMnO3 + δ (δ = 0–0.154) ceramic can show different magnetic properties because of the
distortion of the cubic perovskite structure induced by time and temperature of annealing.
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4. Discussion and Conclusions

Combustion synthesis can be an easy, fast and, above all, scalable method for obtaining
multiferroics based on manganese and rare earth ions. Additionally, it has been proven that
the structural and magnetic properties can be easily modulated by the addition of various
types and amounts of alkali ions, which change the Mn3+ to Mn4+ ratio. Depending on
the dopant used, both the valency of manganese ions (and as shown in this paper also
chromium ions) and the distance of these ions from the oxygen ions changes, which has
a huge impact on the physical properties of these nanopowders. It has also been shown
that under the influence of the high pressure used in the sintering process, the manganite
structure, interionic distances, unit cell size and, consequently, also the magnetic properties
can be designed. The doping of LaMnO3 with alkali metals and Cr ions allow for the
formation of the polar rhombohedral phase, instead of the non-polar orthorhombic one,
which is most common in undoped compounds. As such, it would allow for the compound
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to potentially be used in multiferroic devices. Furthermore, the distortion in the lattice
caused by the aliovalent doping nature, as well as different ionic sizes, could result in
higher polarization and magnetization values and, as such, would increase the efficiency
of the devices. Furthermore, the differences caused by the alkali element doping on the
magnetic structure, as well as on the oxidation state of Cr ions, are noticeable and provide
an additional route for material optimization.
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