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Abstract: We report on the results of first principles calculations investigating the influences of Mn
doping on the local moments and stacking fault energies (SFEs) in the Co95.8Mn4.2 and Co91.6Mn8.4

systems as compared to pure face-centered cubic Co. A supercell was developed to maintain
periodicity in calculations, provide a simple relaxation mechanism, and allow for easy expansion
to accommodate different concentrations of Mn. Calculations to determine the generalized SFE
were performed on relaxed and non-relaxed systems in both ferromagnetic and nonmagnetic states.
Analysis revealed fluctuations in the magnetic moments that are closely tied to the relaxation state
and faulting state of the system. In the case of systems containing Mn, we observed a dependence of
the SFE on the location of the Mn atom(s) within the supercell relative to the stacking fault interface
and a strong induced magnetic moment for these atoms.

Keywords: first principles calculations; density functional theory; stacking fault energies; magnetic alloys

1. Introduction

Advanced soft magnetic materials used in motors, transformers, and filter inductors
can enable low-carbon-footprint transportation systems [1–5]. Of interest for this work,
among others, are complex metal-amorphous nanocomposite Co-based alloys that include
other constituent elements, such as Fe, Mn, B, Si, and Nb [6–8]. The alloys begin as an
amorphous ribbon, which is annealed to produce fine nanocrystallites embedded within
an amorphous matrix. B, Si, and Nb segregate to the amorphous phase, while the nanocrys-
tallites remain Co-rich with some amounts of Fe and Mn. Both the nanocrystalline and
amorphous phases are ferromagnetic (FM), and, while the nanocrystalline phase exhibits
higher saturation magnetization, the glassy matrix has higher resistivity, resulting in re-
duced eddy current losses at higher frequencies. The combined composite material also
exhibits a very low magnetostriction, further keeping the coercivity and magnetic losses
to a minimum. In addition, secondary processing of the ribbon, such as stress annealing,
can be used to tune the permeability of the ribbon over nearly five orders of magnitude [9].
This capability to induce strong magnetic anisotropy in Co-based alloys is thought to have
its origin in fault generation in the nanocrystalline phase during stress annealing. Thus,
these intricate composite materials are designed to optimize magnetic properties for a given
application through complex compositional and microstructural control. However, much
more research is needed to understand the atomistic behavior of these materials.

An initial analysis of Co78−xFe2MnxB14Si2Nb4 alloys, where 0.5 ≤ x ≤ 6, via transmis-
sion electron microscopy and ferromagnetic resonance showed evidence that the nanocrys-
tallites were formed in both the hexagonal close-packed (HCP) and face-centered cubic
(FCC) crystallographic phases [6], despite the tendency of bulk Co to be stable in the HCP
phase at room temperature [10]. Further experimental work with this type of material has
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focused on certain magnetic and crystallographic behaviors, particularly as concentrations
of the alloying elements change [6–8]. This work will focus on the theoretical analysis of
the structural behavior of the Co-rich nanocrystallites. As many of the constituent elements
remain in the amorphous phase and are not part of the nanocrystallite system, specific
attention will be paid to a Co1−xMnx binary alloy system to determine the influence,
if any, of Mn doping on the stability of the two primary crystallographic phases of Co.
We have chosen to focus on Mn as the dopant due to experimental observations made by
Koenig et al. [7] and Nakarmi et al. [8]. Additionally, the magnetic behavior of Mn as a
dopant in Co is sensitive to composition, as noted by Stepanyuk et al. [11]. This will be
performed via the calculation of the generalized stacking fault energy (SFE) curve of pure
Co and Mn-doped Co. As there is not much substantial analysis regarding the influences
of local moments on the SFE [12], the moments of atoms in the system at different points
along the SFE curve were determined.

1.1. Cobalt Phases

It has been well established that Co exists in either the HCP or FCC phases depending
on certain conditions, namely temperature, where, in general, the FCC phase is stable at
high temperatures and the HCP phase is stable at room temperature [12,13]. However,
for very fine grains, it is believed that Co exists primarily in the FCC phase [10]. Addi-
tional factors affecting phase stability include strain [12], which, for bulk samples at room
temperature, favors the conversion of any residual FCC phase to HCP [14]. The opposite
behavior, however, is expected for nanocrystalline Co, which is predicted to undergo de-
formation via phase transformation from HCP to FCC, as the energy required for a phase
transformation is lower than that required to generate twins [15]. Consequently, as the
Co78−xFe2MnxB14Si2Nb4 alloys have been shown to possess very small grains of the order
of only a few nanometers [7], this work will focus on understanding stacking fault behavior
in Co and Mn-doped Co in the FCC phase. It should be noted that Mn dopants in FCC Fe
are reported by Limmer et al. to stabilize the local HCP phase [16], so there is potential for
a similar behavior to arise in our calculations.

While Co is known to be in a stable FM state regardless of the crystallographic
phase [17], there are some situations where its magnetic phase differs from what is tradi-
tionally expected. Namely, in the case of pure Co, it is predicted that a nonmagnetic (NM)
phase is feasible when the lattice of FCC Co undergoes some degree of compression [18].
Additionally, in the case of Co1−xMnx alloys, an antiferromagnetic phase has been found
to exist for 0.42 ≤ x ≤ 0.52 [19]. While these concentrations are much higher than those
used in typical soft magnetic alloys, it is indicative that the presence of Mn can affect the
magnetic properties of the material. Zhao et al. note that, in Ni-based solid-solution alloys,
there appears to be a relationship between the SFE and magnetic moment of constituent
atoms [20]. Due to this potential Mn behavior, as well as the observed behavior in Ni-based
alloys, there will also be some focus on the effect of Mn doping on the local moments and
their potential effects on phase stability.

1.2. Density Functional Theory and Stacking Faults

Density functional theory (DFT) is a computational method that can be used to de-
termine the SFE, γSF, of a system and understand the wider behaviors of such energy
landscapes [21,22]. It has been used to determine the effects of pressure [23], alloying
elements [13,24–28], and spin polarization [29,30] on stacking fault energies and related
properties. DFT allows for fine-tuning of the supercells used in calculations, such as defin-
ing individual magnetic moments to determine effects from magnetic behavior [29] or
allowing the system to relax to an energetic minimum in a particular direction [31].

When performing analysis of the SFE, there are two main methods: the supercell
approach and the axial (next-)nearest neighbor Ising (A(N)NNI) model. The supercell
approach utilizes a large crystal sheared along a given plane to simulate a stacking fault.
This approach results in the generation of something called the generalized SFE surface,
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or γ surface, that includes an intrinsic stacking fault (ISF). However, such an approach is
often computationally expensive due to the size of the supercell needed to simulate the
fault [29]. On the other hand, the A(N)NNI model has the benefit of using a much smaller
system than the supercell approach, thus allowing for less time-consuming calculations
of potentially complex systems [32,33]. However, it is noted by Bleskov et al. [29] that the
A(N)NNI models, while computationally fast, do not account for factors such as the local
magnetic ordering that could occur due to the formation of a defect in the system. For this
reason, we have decided to use the supercell approach when calculating the SFE of the
Co-Mn system. Additionally, while many analyses of Co-based materials appear to take
the magnetism of the system as a whole into account, there is very little analysis of the
influence of local moments [12]. Since the local moments are of particular interest to this
work, using the supercell approach for calculations becomes even more critical.

1.3. Experimental Determination of Stacking Faults

Just as different phases can be observed via microscopy methods such as electron
diffraction, the presence of stacking faults can be experimentally observed through defect
analysis of electron microscopy images [34–38]. Additionally, indirect observations can be
made using X-ray diffraction methods [36]. Direct analysis via microscopy can result in the
experimental determination of γISF. Doing so, however, requires knowledge of mechanical
properties such as the shear modulus, elastic constants, and Poisson’s ratio [34,35]. Experi-
mental determination of the SFE has shown that faulting behavior, such as the size of the
dislocation, can be influenced by annealing and can result in drastic changes to the SFE [37].
It has also been used to verify the predictions of constituent alloying element effects on the
SFE in high-entropy alloys [38]. However, one should keep in mind that experimentally
reported SFE values can have a wide variance due to their local environment [20]. As such,
one can potentially use this experimental approach to verify the computationally deter-
mined γISF for the Co-rich phase of the material, though care would need to be taken to
determine local effects, if any.

2. Methodology
2.1. Supercell Design

Prior to the design of the supercells used for SFE calculations, the lattice constant of
pure FCC Co was optimized using the 4-parameter Murnaghan equation [26,39]

E(V) = a +
B0V
B′0

(
1 +

(V0/V)B′0

B′0 − 1

)
, (1)

where a = E0− B0V0
B′0−1 is a fitting parameter. In this case, E(V) is the energy of a cell of volume

V, E0 is the equilibrium energy, B0 is the equilibrium bulk modulus, B′0 is the first derivative
of the equilibrium bulk modulus, and V0 is the equilibrium volume [26]. The equilibrium
lattice parameter a0 for FCC Co can be determined by fitting the energy curve that results
from varying the lattice constant. As the crystalline phase of Co can vary based on factors
such as lattice compression and magnetic state, this optimization was performed for both
the FM and NM cases. Figure 1 shows the energy curve for FCC Co in both the FM and NM
states for varying lattice constants, as calculated through DFT. The equilibrium constant
for the FM case is determined to be a0 ≈ 3.514 Å, and for the NM case, is determined to
be a0 ≈ 3.455 Å. This overall behavior of a slightly compressed lattice in the NM case is
consistent with the predictions of Moruzzi et al. [18]. The equilibrium lattice constant for
FCC Co in the FM state is lower than the experimental value of a0 ≈ 3.5370 Å reported by
Owen and Jones [10]. However, deviance of computationally determined lattice constants
from experimentally calculated values of a0 has been observed in other metals [30,31].
As such, we are comfortable with the a0 calculated for this work.
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Figure 1. Energy curves for face-centered cubic (FCC) Co in both a ferromagnetic (FM) and nonmag-
netic (NM) state. Lattice compression of approximately 6.3 at.% from our determined FM lattice
constant of a0 ≈ 3.514 Å causes the NM state to become more energetically favorable than the
FM state. The value aint indicates the lattice parameter at which the FM and NM phases have the
same energy.

Supercells are then formulated using a triple-shift supercell approach, as proposed
by Gholizadeh et al. [40]. While FCC structures are often depicted with {100} as the basal
plane, they can be reoriented such that the close-packed {111} plane becomes the basal
plane. This produces a set of base lattice vectors~a = xêx,~b = x

2 êx +
x
√

3
2 êy, and~c = Ld111 êz,

where x = a0√
2

is the distance between nearest neighbors, L is the number of atomic layers

in the supercell, and d111 = a0√
3

is the distance between {111} planes. In this orientation,
the FCC structure very closely resembles the HCP structure in terms of stacking, as pictured
in Figure 2. This becomes beneficial when generating stacking faults that result in an
intermediate HCP arrangement of atoms, as the shift now only needs to be defined in
the xy plane that serves as the basal plane of the cell. The full dislocation that tends
to occur in this type of system follows the Burgers vector B = 1

2 〈1̄01〉. Typically, this
dislocation occurs as a result of two smaller dislocations known as Shockley partials, which
are lower-energy dislocations that occur along a Burgers vector B′ = 1

6 〈2̄11〉 [41]. In FCC
crystals, this results in an intermediate HCP stacking arrangement, which will be seen along
the dislocation vector defined for the system. We designed the supercell so that it is made of
three smaller cells that are shifted along vectors in the 〈112〉 family, such that there is zero
net displacement within the cell. This triple-shift approach, pictured in Figure 3, allows us
to maintain high symmetry with a fixed supercell shape and a straightforward relaxation
process [40]. The dislocation vector ~u can also be easily determined by taking the sum of the
lattice vectors~a and~b. Figure 3 shows the subcells used in this approach and how they shift
to allow for zero net displacement over the whole supercell. Additionally, this approach
allows relatively easy expansion of the supercell to accommodate varying concentrations
of alloying elements such as Mn. To ensure that the size of the supercell along the c axis
remains the same, and thus the distance between each simulated fault, lattice expansion
only occurs in the x and y directions. We decided to have six atomic layers between each
stacking fault, as seen in the approaches by Su et al. and Gholizadeh et al. [31,40].
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Figure 2. (a) Depiction of atoms in an FCC arrangement, with the (111) plane as the basal plane.

Additionally depicted are the vectors~a = xêx and~b = x
2 êx +

x
√

3
2 êy used to designate the supercell

used in calculations, along with the dislocation vector ~u = ~a +~b. (b) defines key points along the
dislocation vector ~u, an approach used by Bleskov et al. [29] and Su et al. [31].

Figure 3. The triple-shift scheme used for construction of the supercell. Each of the three cells
is shifted in a direction that belongs to the 〈211〉 family, but that, when summed, result in zero
net displacement. This allows for simulating a stacking fault while maintaining periodicity for
DFT calculations. A, B, and C indicate the different layers of the FCC stacking sequence.

For pure Co, the supercell consisted of three subcells, each with one atom per layer,
for a total of eighteen atoms. For the Co1−xMnx alloy, the number of atoms was increased
to four per layer, for a total of seventy-two atoms. As a result of this expansion, the lattice
vectors~a and~b are extended by a factor of 2. Due to symmetries, the Co95.8Mn4.2 system,
simulated using one Mn atom per 24-atom subcell, had three unique cases of Mn placement:
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the first layer (nearest to the stacking fault), the second layer, and the third layer (farthest
from the stacking fault). For the Co91.6Mn8.4 system, simulated using two Mn atoms
per twenty-four-atom subcell, γSF was calculated using six unique cases: layers one and
four, layers one and three, layers one and two, layers two and five, layers two and four,
and layers three and four. In all doped systems, there was no more than one Mn atom
per layer.

2.2. DFT Parameters

All calculations for this work were performed using the Vienna ab initio simulation
package (VASP) [42,43]. For all calculations, the exchange-correlation effects utilized the
generalized gradient approximation, as developed by Perdew, Burke, and Ernzerhof [44],
with a defined cutoff energy of 270 eV. Resources provided by VASP suggest using a higher
cutoff energy in the event that there is difficulty achieving energy convergence. As we
did not experience these difficulties, we decided to keep the cutoff energy near the default
value, as determined by the potential files.

To determine the optimal Wigner–Seitz radius for DFT calculations, the RWIGS pa-
rameter for each self-consistent run was increased from its initial value of 1.302, provided
by the relevant potential file, initially in increments of 0.005, with smaller increments used
when nearing the optimal value. The optimal value, in this case, is one that yields a unit cell
filling of 100%. For our purposes, this was found to be 1.373 for the FM case and 1.351 for
the NM case. Due to their similar atomic sizes, the RWIGS parameters for Co and Mn are
assumed to be approximately equivalent.

For all supercells, regardless of Mn concentration or magnetization state, calculations
were performed for the relaxed and non-relaxed supercells. Relaxation involves allowing
the atoms within the supercell to deviate from their defined lattice positions in order to
find a lower-energy configuration. For a non-relaxed system, we do not allow this process
to occur and thus keep the atoms in their defined lattice sites. This can occasionally lead to
energetic contributions due to an unstable configuration. To relax the systems, we utilize
the selective dynamics functionality in VASP to define the axes along which the atoms
can move. In our case, we permit motion along the z axis and disallow motion along
the x and y axes. This type of relaxation is chosen to preserve the position of atoms in
the xy plane and thus preserve the stacking fault. This also allows atomic motion while
preserving the basal plane lattice. The initial relaxation run utilized a conjugate gradient
algorithm and a loop break condition of an energy difference of 1× 10−4 eV. The second
relaxation step reduced the energy difference to 1× 10−5 eV, while using a RMM-DIIS
ionic relaxation scheme [45]. The final run for the relaxed systems, and the only one for
the non-relaxed systems, was a simple, self-consistent run that terminated upon energy
convergence. The pure Co system utilized an automatically generated Monkhorst–Pack
mesh of k-points [46] with reciprocal lattice vector subdivisions of 11/11/1. This results in
a linear k-point density of roughly 4.57 points per [Å−1] in the FM case and 4.49 points per
[Å−1] in the NM case. Due to the increased scale in the x and y directions for the Co1−xMnx
systems, the subdivisions are changed to 7/7/1, resulting in a linear k-point density of
roughly 5.36 points per [Å−1] in the FM case and 5.28 points per [Å−1] in the NM case.

2.3. Calculating SFE

The SFE can be calculated from the Gibbs free energy of the system such that

γSF(~u) =
Gde f (~u)− Gideal

|Aint|
, (2)

where Gde f is the free energy of the defected system at a specific point along the dislocation
vector ~u, Gideal is the free energy of the system with no defects, and Aint is the area of the
interface over which the fault occurs [26]. As the system used in our calculations contains
three individual stacking faults, we also normalize the γSF with respect to the number
of faults. The energies necessary for the calculations are obtained from the output of the
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self-consistent calculations performed in VASP. For relaxed systems, this involves using the
final energies after all relaxation steps have been performed.

3. Results and Discussion
3.1. SFE Behavior

Regardless of the composition of the system, its magnetic state, or its relaxation state,
the SFE curves followed a similar pattern. As can be expected, the SFE reaches a local
minimum at points along the displacement vector ~u that correspond to arrangements where
close-packed stacking is preserved (FCC or HCP stacking). A maximum is achieved at
points along ~u that correspond to a violation of close-packed stacking. Namely, this occurs
at 1

6~u, where there is partial atomic overlap, and 2
3~u, where there is complete atomic overlap.

The point at which complete atomic overlap occurs is the only region where the NM system
has a lower SFE than the FM system. Additionally, the SFE for the NM system is markedly
higher at the HCP arrangement ( 1

3~u) than for the FM system, as seen in Figure 4. This is
true for both systems that have and have not been relaxed. The relaxation of the system in
all cases reduces the SFE in the 2

3~u region by at least 400 mJ/m2 at the peak, with minimal
changes elsewhere along ~u. Relaxation also affects the magnetic moments of atoms within
the system, so this must be considered when deciding whether to relax the system or to
perform calculations in the non-energetically minimized state.

Figure 4. (a) The stacking fault energies (SFEs) along ~u for FM and NM pure Co systems in both
relaxed and non-relaxed states. The NM system has a higher energy at 1

3~u but a lower energy and
broader peak at 2

3~u. (b) The average magnetic moment per atom in the pure Co system for both
relaxed and non-relaxed states. The system attempts to adjust its magnetic behavior to reduce
overall energy.
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Doping with Mn results in SFE curves displaying similar behavior as the pure Co
system. However, both the location and the amount of Mn appear to influence the SFE to
some degree. Figures 5 and 6 demonstrate the variations between curves as the position of
the Mn atom in relation to the stacking fault is changed. Table 1 provides the calculated
values of γSF for all cases. These results provide several insights. First, the introduction of a
small amount of Mn will influence the calculated SFE. This can be expected as the Mn atom
can be assumed to be a defect within the system. Most notably, however, is that the SFE in
the FM case sees its greatest increase when the Mn is situated nearest to the fault interface.
For the NM cases, the trend is reversed: the Mn decreases the SFE of the system, with few
exceptions, though this also depends on proximity to the fault interface. As the produced
material is magnetic, we can assume from the γISF calculation that Mn will stabilize the
faulting phase and situate itself as far from the fault as possible.

Figure 5. The SFEs along ~u for FM and NM systems with 4.2 at.% Mn compared to pure Co in both
the (a) non-relaxed and (b) relaxed states. While this system exhibits similar behavior to the pure Co
system, the position of the Mn atom in relation to the stacking fault influences the intensity of the
reduction in energy at 1

3~u.

Figure 6. The SFE curves for the 8.4 at.% Mn systems in both the (a) non-relaxed and (b) relaxed
states. The behavior is similar to that of the 4.2 at.% Mn systems in that the positioning of the Mn
atoms influences the deviation of the SFE from that of the pure Co system.
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Table 1. The SFE γSF for the local minimum occurring at 1
3~u of all systems, including some determined

values from [13,15,26]. The effect on the SFE varies depending on the quantity and position of Mn
within the system. Negative values for γSF are indicative of the faulted structure being more stable
than the parent phase. Fields populated with “–” indicate no value reported by that work.

γSF (mJ/m2) at ISF

System FM, Non-Rel. FM, Rel. NM, Non-Rel. NM, Rel.

Co −112.23 −118.77 133.25 132.90
1Mn, layer 1 −18.38 −21.66 72.96 72.38
1Mn, layer 2 −70.45 −77.17 111.02 113.61
1Mn, layer 3 −104.79 −118.25 146.53 149.36
2Mn, layers 1,4 −16.40 −18.93 79.54 82.09
2Mn, layers 1,3 −21.73 −26.94 75.75 82.19
2Mn, layers 1,2 1.89 −1.62 40.40 47.08
2Mn, layers 2,5 −26.28 −27.04 85.94 92.93
2Mn, layers 2,4 −75.91 −87.27 108.93 102.26
2Mn, layers 3,4 −116.62 −129.67 145.51 147.27
Co [13] – −106.2 – –
Co [26] – 0.15 – –
Co (hcp) [15] – ≈75 – –
Co-9 at.% Mn [26] – 4.57 – –
Co-9 at.% Cr [13] – ≈−150 – –
Co-9 at.% Cr [26] – −25.78 – –

The cited results in Table 1, particularly those from Achmad et al. [26], are different
from our calculated results. However, as is noted by Tian et al. [13], the supercell design
of Achmad [26] utilizes a number of layers that is not divisible by three and thus creates
an artificial fault due to cell periodicity in the calculations. As we have chosen 18 as the
number of layers in the supercell, it is safe to assume that our calculations do not exhibit
this sort of artifact. The difference in value between our results and those of Tian [13] for
pure Co may be the result of differing relaxation schemes. Additionally, the positive value
for γSF, as determined by Zheng et al. [15], is indicative of the HCP–FCC phase transition
being less energetically favorable than the reverse. We also note that the reduction in γSF
with the addition of Mn is similar to what is presented by Limmer et al. [16]; however,
the dependence on the positioning of the Mn indicates that the γSF is sensitive to the local
environment, as suggested by Zhao et al. [20].

3.2. Magnetic Behavior

As mentioned previously, the relaxation state of the system, regardless of Mn content,
results in changes in the average magnetic moment per atom within the system. This is
typically seen as the stabilization of the magnetic moment, with the greatest fluctuation
occurring at 2

3~u, as seen in Figures 4, 7 and 8. Upon further analysis, it becomes apparent
that the layers with the greatest relative changes in magnetic moment are those nearest to
the stacking fault interfaces, shown in Figure 9. When introducing Mn to the system, it
becomes readily apparent which layers contain Mn due to the changes in average magnetic
moment in those layers, as shown in Figures 10 and 11. This effect demonstrates that, even
though the Mn atom is predefined in input files as having a magnetic moment of 0 µB,
it gains a moment as a result of the neighboring Co atoms. Changes in the moment at
the stacking fault interface are indicative of a potential relationship between the moment
and the SFE (or the fault itself), similar to the reports for the Ni alloy systems provided
by Zhao et al. [20]. The influence of the Mn atoms on the average moment per atom
can potentially impact such things as the saturation magnetization of the material, so it
is beneficial to have this understanding. Our results indicate FM coupling between all
atoms within the system, regardless of the location or amount of Mn. The average magnetic
moments per atom 〈µ〉 at the fault are provided in Table 2.
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Figure 7. (a) The SFEs along ~u for the FM 4.2 at.% Mn system, in both a relaxed and non-relaxed state.
Relaxation has the greatest effect on the SFE at 2

3~u. (b) The average magnetic moment per atom in
the 4.2 at.% Mn system, for both relaxed and non-relaxed states. The system attempts to adjust its
magnetic behavior to reduce overall energy. The average moment varies depending on the layer in
which the Mn atom is inserted.

Figure 8. (a) The SFEs along ~u for the FM 8.4 at.% Mn system in both a relaxed and non-relaxed state.
Relaxation has the greatest effect on the SFE at 2

3~u. (b) The average magnetic moment per atom in
the 8.4 at.% Mn system for both relaxed and non-relaxed states. The system attempts to adjust its
magnetic behavior to reduce overall energy. The influence of Mn positioning is more apparent than
for the 4.2 at.% systems.



Magnetochemistry 2023, 9, 138 11 of 19

Figure 9. (a) The normalized magnetic moment per layer (%) for the non-relaxed pure Co system.
(b) The normalized magnetic moment per layer (%) for the relaxed pure Co system. Relaxation
causes more apparent changes in the magnetic behavior at the fault interface when the system is
geometrically frustrated, such as at 2

3~u. In both cases, normalization is with respect to the moments at
a displacement of 0~u. (c) The average ∆z per layer (Å) for the FM pure Co system. In an unfavorable
stacking arrangement, relaxation causes the atoms to move away from each other at the fault interface.
This effect dissipates farther from the stacking fault.

Table 2. The average magnetic moment 〈µ〉 for the local minimum occurring at 1
3~u of all FM systems.

The average moment per atom varies as a result of the strength of the induced moment in the Mn
atoms, which in turn varies depending on the atom’s location within the supercell.

〈µ〉 (µB) per Atom at ISF

System Non-Relaxed Relaxed

Co 1.585 1.583
1Mn, layer 1 1.605 1.608
1Mn, layer 2 1.608 1.614
1Mn, layer 3 1.611 1.614
2Mn, layers 1,4 1.633 1.641
2Mn, layers 1,3 1.639 1.630
2Mn, layers 1,2 1.544 1.560
2Mn, layers 2,5 1.635 1.642
2Mn, layers 2,4 1.602 1.604
2Mn, layers 3,4 1.561 1.579
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Figure 10. (a–c) The normalized magnetic moment per layer (%) for the non-relaxed 4.2 at.% Mn
systems. (d–f) The normalized magnetic moment per layer (%) for the relaxed 4.2 at.% Mn systems.
(a,d) show the moments when the Mn atom is in the layer adjacent to the fault interface, (b,e) show
the moments when the Mn atom is one layer removed from the fault interface, and (c,f) show the
moments when the Mn atom is two layers removed. Normalization is with respect to the moment
at a displacement of 0~u. Relaxation causes changes in the moments such that it becomes apparent
which layers contain Mn atoms.

Figure 11. (a–f) The normalized magnetic moment per layer (%) for the 8.4 at.% Mn systems in the
non-relaxed state. (g–l) The normalized magnetic moment per layer (%) for the 8.4 at.% Mn systems
in the relaxed state. (a,g) show the moments for Mn in layers 1 and 4, (b,h) the moments for layers 1
and 3, (c,i) the moments for layers 1 and 2, (d,j) the moments for layers 2 and 5, (e,k) the moments
for layers 2 and 4, and (f,l) the moments for layers 3 and 4. Relaxation not only indicates the layers in
which there are Mn atoms but also shows the changes in moments for Co atoms in neighboring layers.
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To determine the degree to which a magnetic moment of Mn atoms was induced,
additional analysis was carried out that focused solely on the Mn atoms, which can be seen
in Figures 12 and 13. In most cases, the induced magnetic moment has a strength of more
than 2 µB, which is higher than the typical moment of Co, and in some cases, the induced
moment is higher than that of Fe. A significant drop in the magnetic moment is seen when
the system is in its most frustrated arrangement ( 2

3~u). Regardless of Mn concentration,
this steep change is greatest when the Mn atom is in the layer nearest to the stacking fault
interface. Unlike the average moment per atom over the whole system, relaxation does not
stabilize the magnetic moment present in Mn atoms in the same fashion. Rather, it reduces
the minute fluctuations that occur as the subcells are shifted along the displacement vector.
In the Co91.6Mn8.4 system, interesting behavior is observed when the atoms are in layers
that mirror each other (subcell layers two and five, or layers three and four): the average
moment for Mn atoms, independent of relaxation state, is nearly identical. With this in
mind, it can be determined that the induced moment can be affected by three different
factors: the layer in which the Mn atom is inserted, the position along the displacement
vector ~u, and the relaxation state of the system.

Figure 12. The average magnetic moment per Mn atom in the 4.2 at.% Mn systems in both the relaxed
and non-relaxed states. Despite having a defined moment of 0 µB at the start of calculations, the Mn
atom gains a moment that varies depending on its proximity to the fault interface. For these systems,
relaxation increases the induced moment in the Mn atoms regardless of proximity to the interface.

Figure 13. The average magnetic moment per Mn atom in the 8.4 at.% Mn systems in both the relaxed
and non-relaxed states. (a) shows this for Mn in layers 1 and 4, (b) for layers 1 and 3, (c) for layers 1
and 2, (d) for layers 2 and 5, (e) for layers 2 and 4, and (f) for layers 3 and 4. As with the 4.2 at.% Mn
system, the Mn atoms were assigned a moment of 0 µB at the start of the calculations. In situations
where the arrangement is mirrored, as in (d,f), the two Mn atoms have the same induced moment.
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3.3. Relaxation

As ionic motion was only permitted to occur in the z direction during relaxation to
preserve the stacking faults, it was anticipated that the greatest change in position for
atoms would occur at the fault interface. Analysis of the average ∆z per layer of the
supercell confirms that this is mostly the case, with the most drastic changes happening
when close-packed stacking is violated ( 2

3~u), as seen in Figures 9, 14 and 15. Regardless of
the composition and magnetic state, the patterns present in ∆z are relatively similar. There
is occasional variance in the average ∆z per layer depending on the location of Mn atoms
in the supercell of order 0.01 Å.

Figure 14. The average ∆z per layer (Å) for the FM 4.2 at.% Mn systems where the Mn atom is
(a) adjacent to the interface, (b) one layer removed from the interface, or (c) two layers removed from
the interface. The location of the Mn atom affects how rapidly the fluctuations in atomic displacement
dissipate throughout the supercell.
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Figure 15. The average ∆z per layer (Å) for the FM 8.4 at.% Mn systems. (a) shows the ∆z for Mn in
layers 1 and 4, (b) for layers 1 and 3, (c) for layers 1 and 2, (d) for layers 2 and 5, (e) for layers 2 and 4,
and (f) for layers 3 and 4. As with the 4.2 at.% Mn system, the location of Mn atoms influences how
shifts in atomic positions propagate throughout the supercell.

To determine the influence of the Mn atoms on the average ∆z per layer, only the ∆z
of the Mn atoms was analyzed. The ∆z per Mn atom for the 4.2 at.% Mn system is shown
in Figure 16, and the 8.4 at.% Mn system is shown in Figure 17. This analysis revealed
some interesting behavior in both systems. In the former, the case where the Mn atom is
one layer removed from the stacking fault interface is where it experiences the greatest ∆z.
Interestingly, a peak in ∆z is not observed at 2

3~u when the Mn atom is in the layer adjacent
to the stacking fault. Rather, while the ∆z does increase as the dislocation approaches
that point, it actually decreases slightly when there is complete atomic overlap. The ∆z of
the Mn atom if it is two layers removed from the stacking fault varies very little, with a
magnitude less than 0.005 Å.

Figure 16. The average ∆z per Mn atom (Å) of the 4.2 at.% Mn systems in both the FM and NM states.
The magnetic state of the system has an obvious influence on the positional changes of the Mn atoms,
indicating that the system is attempting to attain a lower energy both through physical displacement
and changes in magnetic moment.
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Figure 17. The average ∆z per Mn atom (Å) of the 8.4 at.% Mn systems in the FM state. (a) shows
the ∆z for Mn in layers 1 and 4, (b) for layers 1 and 3, (c) for layers 1 and 2, (d) for layers 2 and 5,
(e) for layers 2 and 4, and (f) for layers 3 and 4. The location of the Mn atom in relation to the stacking
fault interface and other Mn atoms influences the degree to which the atoms shift during relaxation.
As with the magnetic moments in these cases, a similar effect is observed where situations resulting
in a mirror arrangement result in displacements that are equal in magnitude but opposite in direction.

When looking at the Mn displacement in the 8.2 at.% system, it becomes apparent that
the greatest fluctuation in displacement occurs if the Mn atom is closer to the stacking fault
interface. In most of the cases, the Mn atom nearest to the stacking fault sees a positive
∆z at 2

3~u, while the atom farther away sees a negative ∆z. In cases where the Mn atoms
are in layers equidistant from the stacking fault interface, the ∆z values for each atom are
approximately equal to each other in magnitude but result in opposite displacement. Such
behavior can be attributed to the symmetry present within the supercell. In all FM cases,
the effects of relaxation on γISF were strongest when the Mn was isolated from the interface.

4. Conclusions

Through DFT calculations, we have determined that Mn doping has a noticeable effect
on the local moments and stacking fault energies of FCC Co(Mn) systems. We have verified
that the FM phase yields stacking faults that are more stable than those in the NM phase.
We found that the substitution of 8.4 at.% Mn will result in a more stable intrinsic fault
than for pure Co, indicating an increased likelihood of faulting. In this case, we have
determined that the stacking fault is most stable with Mn partitioned away from the fault.
One can thus assume that this composition will exhibit a high rate of faulting, which may
potentially serve to enhance desirable mechanical properties [47,48]. Additionally, for this
configuration, we observed a slight increase in the average magnetic moment per atom
when compared to the pure Co system. This has some implications for the saturation
magnetization and permeability of the material, given that its intended uses benefit from a
higher permeability to reduce energy losses. However, specific determinations cannot be
made without knowing the anisotropy of the material. Relaxation calculations indicate that
atoms deviate relatively little from their initial locations in systems with an ISF. As there is
less energy associated with systems that lack this sort of motion, it is unlikely that this sort
of system will seek to lower its energy further by the nucleation of other types of defects.
As such, we can infer that we can tailor the γISF and 〈µ〉 to suit our needs through doping
with Mn.
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