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Abstract: The utilisation of miniature robots has become essential in the domain of minimally
invasive surgery and long-distance delivery of nanomedicine. Among these, the miniature magnetic
continuum robot (MCR) stands out because of its simple structure and dexterity, which allow it
to penetrate small cavities, transport specialised tools such as a laser, and deliver medications
to support surgical treatment. Nevertheless, because of their soft bodies with a single stiffness,
conventional MCRs have limited controllability when navigating through intricate cavities. To
address this limitation, we propose a novel concentric magnetic continuum robot (C-MCR) comprising
a concentric magnetic catheter with a guidewire having varying stiffness. The C-MCR allows
substantial curvature bending owing to its difference in stiffness, and its detachable nature allows it
to have four working modes to adapt to specific application requirements with improved stiffness
controllability. Experiments demonstrate the ability of the C-MCR to navigate complex pathways
and deliver nanomedicines over long distances to specific areas via its internal channels using a large
homemade eight-coil electromagnetic system. The C-MCR offers promising application prospects for
the long-distance delivery of tailored nanomedicines because of its simple operation, reduced risks,
and larger attainable workspace.

Keywords: magnetic control; continuum robot; stiffness control; drug delivery

1. Introduction

Targeted nanomedicines have drawn significant attention as a strategy for cancer
diagnosis and treatment strategy. Nevertheless, their delivery efficiency to solid tumours is
limited, with a median of just 0.7% [1]. Although local targeting of nanomedicines has been
successful in various organs, such as the brain, bladder, and stomach [2–6], their small size
makes them susceptible to external environmental factors, resulting in suboptimal delivery.
To address this challenge, miniature magnetic continuum robots (MCRs) have emerged as
a viable alternative for improving the long-distance transport of nanomedicines because
of their potential for actively navigating intricate pathways in a remotely controllable
manner [7,8], as shown in Figure 1.

Although conventional continuum robots are more flexible and better adapted to sur-
gical applications than rigid robots, their sizes are limited by their mechanical construction,
materials, and control methods [9]. In contrast, magnetic control offers a remote wireless
drive technique that provides precise control while shrinking the size of continuum robots.
This unique feature enables surgeons to remotely control continuum robots to perform
various surgical tasks, such as brain, eye, gastrointestinal, and other surgeries [10,11].
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Figure 1. Overview of the C-MCR for glioma treatment surgical platform. The orientation of the C-
MCR is primarily controlled by a remotely controllable homemade eight-coil electromagnetic system.

Research on MCRs has primarily focused on miniaturisation, dexterity, and func-
tionalisation to expand their potential applications [12,13]. Using unique manufacturing
techniques, the soft body of MCR can be uniformly distributed with ferromagnetic particles
and covered with a hydrogel skin, providing them with the capabilities of omnidirectional
steering and self-lubrication [14]. Additionally, the inclusion of embedded Hall-effect sen-
sors enables MCRs to receive position feedback [15]. Specially designed catheter tips have
been developed to treat blood clots, panretinal and twin-to-twin transfusion syndrome,
and other diseases [16–19]. However, conventional MCRs have encountered issues with
poor controllability owing to their soft bodies. To address this issue, researchers have ex-
plored various techniques for improving the controllability of MCRs. One viable approach
involves achieving variable catheter stiffness via materials such as a low-melting-point
alloy (LMPA) and conductive shape memory polymer (CSMP) [20–23]. Furthermore, in
our previous work, we designed MCRs embedded with opposing magnets that enable soft
catheters to actively deform in multiple modes, thereby increasing their dexterity [24–26].
However, most of these methods have fixed spacing between magnetic substances, which
still limits the dexterity of MCRs for complicated and tortuous actual paths in the human
body. Additionally, the opposing magnets fail to fully address issues caused by the lack of
stiffness of the catheters, such as the inability to advance when they encounter obstructions.
As a solution to these problems, we propose the C-MCR that employs two materials with
different stiffness. The magnetic catheter and magnetic guidewire are independent of each
other, and the relative position of the magnets can be adjusted and controlled according to
different cavities, providing enhanced adaptability.

A dependable magnetic navigation system (MNS) is crucial for the adequate function-
ing of MCRs. Depending on the magnetic-field generation method, MNS can be classified
into two primary categories: permanent magnets and electromagnets [27]. Although per-
manent magnets can manipulate the orientation of the MCRs to subject them to force or
torque [28–31], the magnetic field size is restricted to a certain range because of the limited
size of permanent magnets. For a larger magnetic field over a certain range, a large perma-
nent magnet and a robot arm connected to it are required. However, the electromagnets
generate a current-dependent magnetic field when energised to control the MCRs. In the
case of electromagnets with an obvious orthogonal distribution, the working area is at the
centre [32–35]. Distributed electromagnets allow for better layout constraints and more
efficient energy use [36–39]. Furthermore, mobile-distributed electromagnetic equipment is
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being investigated to obtain a larger working space [40–42]. For the experiments detailed in
this paper, we employed a large, homemade eight-coil electromagnetic system (Figure 1).

In this paper, we present a novel C-MCR that addresses the issue of poor controllability
in conventional MCRs. The C-MCR consists of two concentric parts: a magnetic catheter
and a magnetic guidewire. The C-MCR achieves controlled stiffness by combining the soft
magnetic catheter with a large magnetic field response and the hard magnetic guidewire
with good controllability. Compared with conventional MCRs, the C-MCR also offers mode
selection and large curvature bending capabilities.

The following are the primary contributions of our work:

(1) We propose the C-MCR, a concentric magnetic continuum robot that combines the
advantages of soft and hard magnetic materials to achieve controlled stiffness;

(2) We analyse the characteristics and potential applications of the four working modes
of the C-MCR based on the response difference in different directions of the mag-
netic field;

(3) We demonstrate experimentally the ability of the C-MCR to navigate through complex
cavities and address the issue of long-distance targeted nanomedicine delivery using
the homemade eight-coil electromagnetic system.

2. Materials and Methods
2.1. Materials

N52 neodymium magnets were tailored to our specifications by Nanjing Chuangken
Magnet Co. (Nanjing, China) and hollow rubber tubing was purchased from the Chunshi
flagship store (Shanghai, China). Meso-Tetra(p-hydroxyphenyl) porphine (m-THPP) and
dimethylsulfoxide (DMSO) were sourced from Aladdin Scientific Corp.
Fluorenylmethoxycarbonyl-Leucine-Leucine-Leucine-OMe (Fmoc-L3-OMe) was obtained
from NJ Peptide Company (Nanjing, China). The murine glioma cell line GL-261 was
obtained from American Type Culture Collection (Manassas, VA, USA). All reagents were
employed as received. Ultrapure water (Milli-Q) with a resistivity of 18.2 MΩ·cm was used
for all experiments.

2.2. Magnetic Navigation System

To ensure a stable magnetic field for the C-MCR, we designed and built an eight-coil
electromagnetic system, as shown in Figure 2. The system can produce a stable magnetic
field in a 300 mm diameter spherical working space with a 120 mT magnetic field generated
at the sphere’s centre.
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Figure 2. (a) Schematic of the main unit of the eight-coil electromagnetic system (where the two coils
in front are hidden for easy observation). (b) Simulation of the magnetic field in the working centre
plane of an eight-coil electromagnetic system, where we set the forward current for the four coils on
one side and the reverse current for the other side.
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2.3. Concentric Magnetic Continuum Robot
2.3.1. Structure Design

The C-MCR was designed to address the challenges associated with controlling and
large curvature bending of conventional MCRs with too-soft bodies. The C-MCR consists
of a hollow rubber catheter with an inner diameter of 1 mm, an outer diameter of 2 mm,
and a 0.3 mm diameter solid nickel–titanium alloy guidewire. The significant discrepancy
in stiffness between the two components can be attributed to the difference in materials.
The front end of the catheter is equipped with two axially magnetised, hollow cylindrical
N52 neodymium magnets, measuring 2.1 mm in inner diameter, 3 mm in outer diameter,
and 3 mm in length. Similarly, the front of the guidewire features ten axially magnetised,
hollow cylindrical N52 neodymium magnets, each measuring 0.4 mm in inner diameter,
0.6 mm in outer diameter, and 2 mm in length (Figure 3a).
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Figure 3. (a) Physical view of the C-MCR. (b) Four working modes of the C-MCR. A: Single magnetic
catheter robot mode; B: Single magnetic guidewire robot mode; AB: Magnetic guidewire inside
magnetic catheter robot mode; BA: Magnetic guidewire outside magnetic catheter robot mode.

Because both the catheter and guidewire have magnets at their front ends, they can
respond to alterations in the magnetic field. However, owing to the varying stiffnesses
of their soft parts, they respond differently to the same magnetic field. We have astutely
used this difference to make the C-MCR available in four different modes (Figure 3b).
Theoretically, Mode A is ideal for large-diameter and small-curvature cavities and can aid
procedures such as drug delivery. Mode B is suitable for cavities with small diameters
and curvatures. Mode AB is better suited for luminal tracts with greater curvature. The
magnetic catheter provides a wider deflection angle to the magnetic guidewire in Mode
BA, thereby creating a protective barrier. Based on these conjectures, we experimentally
test these four working modes and provide a detailed analysis of their applications in the
following sections.

2.3.2. Bending Mode

This section presents the classical AB bending model for the C-MCR, which serves
as the basis for deriving the bending models for other modes. A homemade eight-coil
electromagnetic system is used to control the magnetic field of the C-MCR. The magnitude
of the dipole magnetic field produced by an individual electromagnetic coil is equivalent
to the following equation:

B =
µ0

4π‖p‖3 [3(m · p̂) p̂−m], (1)

where p ∈ ]3 denotes the position of the relative dipole, µ0 = 4π × 10−7Tm/A represents
the vacuum permeability, and m indicates the dipole moment size. Notably, the strength of
the magnetic field decreases at a rate of 3 as the distance increase.

The external magnetic field exerts a magnetic torque on the magnetised object, causing
it to align with the field [43]. As shown in Figure 4, when the C-MCR undergoes a bending
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motion owing to the deflecting magnetic field, the magnetic torque tmi ∈ R3 is generated in
the bending plane, which can be expressed as follows:

‖tmi‖ = ‖mi‖‖b‖sin (γ− θi) i = 1, 2, (2)

where γ represents the pitch angle of the directional magnetic field b ∈ R3 expressed in
Equation (3). The magnetic moment of the ith magnet is denoted by mi and θi represents
the deflection angle of the ith small magnet. As shown in Figure 3, the C-MCR in classical
mode comprises two small magnets. The first magnet is located close to the fixed position,
and its deflection angle with respect to the y-axis is denoted by θ1. The second magnet is
situated near the end of the tube, and its deflection angle with respect to the extension of
the deflection direction of the first magnet is denoted by θ2.

b = Am[sin γcos α sin γsin α cos γ]T , (3)

where Am denotes the magnitude of the magnetic field, and α represents its yaw angle.
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The recovery moment tri ∈ R3 for the C-MCR, which attempts to return to its original
state, is equivalent to the following equation:

‖tri‖ =
Ei IAiθi

LCi
i = 1, 2, (4)

where Ei and IAi represent the modulus of elasticity and area moment of inertia of the ith
segment of the catheter, respectively, and LCi corresponds to the length between the end of
the ith small magnet and the location at which the bending of that section occurs.

‖tmi‖ = ‖tri‖ i = 1, 2, (5)

The steady state of the C-MCR is attained once Equation (5) is satisfied. It is possible
to predict the deflection by tracing backwards.

2.4. Nanomedicine Preparation

We took 16 mg and 2 mg each of lyophilised Fmoc-L3-OMe and m-THPP and, respec-
tively, dissolved them in 1 mL of DMSO. These solutions were mixed thoroughly in equal
proportions. The resulting mixture was diluted tenfold by adding deionised water and
agitating continuously. Subsequently, the mixture was centrifuged at 12,000 rpm for 10 min
and then further diluted with DMEM medium to achieve the desired concentration.
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2.5. Scanning Electron Microscopy

The micromorphology of the nanomedicine was examined using a Quattro S in-
strument (Thermo Fisher Scientific, Waltham, MA, USA) to capture a scanning electron
microscopy (SEM) image. The nanomedicine suspension was uniformly applied onto a
silicon wafer, dried, and then coated with a 20 nm thick gold film through ion sputtering.

2.6. Cell Culture

Commercially acquired GL-261 cells were cultivated in DMEM medium (Gibco),
augmented with 10% fetal bovine serum (FBS) (Gibco), and 1% penicillin-streptomycin
(HyClone), and incubated at 37 ◦C in a humidified atmosphere containing 5% CO2.

2.7. Cell Viability Test

The viability of primary glioma cancer cells was assessed using the CCK-8 kit (Dojindo,
Japan), according to the manufacturer’s instructions. First, the desired concentration of the
cell suspension was added to 96-well plates (0.1 mL per well) and incubated overnight.
Subsequently, the nanomedicines carrying photosensitisers were added to the wells. Fol-
lowing a 5 h incubation period, red laser irradiation at 638 nm was administered to the
sampling sites, and the incubation process was prolonged overnight. Finally, 10 µL of
CCK-8 solution was added to each well and allowed to incubate in the dark for 2–4 h before
being measured using a DNM-9602 G microplate reader (Perlong Medical, Beijing, China)
with a wavelength of 450 nm.

2.8. Nanomedicine Delivery via C-MCR

Our homemade eight-coil electromagnetic system is capable of generating a magnetic
field in any direction to guide the C-MCR. With the magnetic field deflection control and
the advancing device, the C-MCR can precisely navigate through intricate cavities to reach
the target location, such as a recess in a 3D-printed blood vessel-like model. To conduct the
experiment, we placed a coverslip containing GL-261 cells in the recess. Upon reaching
the target location, we removed the magnetic guidewire inside the magnetic catheter and
injected the nanomedicine medium through the internal hollow cavity of the catheter using
a syringe. After co-culturing the nanomedicine with the cells for 5 h, we captured the TIE
image of the cells by Ti2-E inverted optical microscope (Nikon Corporation, Tokyo, Japan).

3. Experiments and Results

The C-MCR addresses the issue of poor controllability faced by conventional MCRs be-
cause of their softness. Leveraging the stiffness differential between the magnetic catheter
and magnetic guidewire achieves variable stiffness, large-curvature bending, and four
selectable working modes. We conducted experiments to evaluate three key aspects: four
working modes, dexterity, and nanomedicine delivery. Based on the results of these
experiments, we analyse and summarise the adaptability of the C-MCR to various ap-
plication scenarios, its performance in vascular-like channels, and its efficacy in targeted
nanomedicine delivery operations.

3.1. Four Working Modes

In this section, we present an experimental validation of the four working modes of
the C-MCR (Mode A, B, AB, and BA) and investigate their unique responses to an identical
magnetic field. Furthermore, we analyse the underlying causes of the observed response
characteristics and explore their practical applicability.

Mode A and Mode B are two distinct modes, where Mode A pertains to a single
magnetic catheter, and Mode B pertains to a single magnetic guidewire. The catheter body
is constructed of soft rubber material, with a highly magnetic magnet at its front end,
which makes it more responsive to changes in the magnetic field. Mode A is essentially a
classical MCR, that satisfies the basic requirements for navigation in a simple large cavity.
However, similar to most conventional MCRs, it suffers from poor controllability because
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of its too-soft body. In contrast, the guidewire body is composed of a hard nickel–titanium
alloy with a small magnet that has a weaker front end owing to its size, resulting in a
relatively small response to changes in the magnetic field. However, the hardness of the
guidewire provides an unobstructed operation in scenarios such as thrombosis. We design
the C-MCR to achieve controlled stiffness by ingeniously combining the catheter’s softness
and the guidewire’s stiffness.

Figure 5a illustrates the classical deformations of Mode A and Mode AB. Mode AB
is an extension of Mode A with a magnetic guidewire inserted into the catheter. With its
greater stiffness, the magnetic guidewire provides more resistance to the deformation of the
catheter near the fixed end. The test results, as shown in Figure 5b, demonstrate that the soft
portion of Mode AB deforms similarly to that of Mode A, with the small magnets at the end
of the catheter pointing in the same direction for both modes. However, the deformation of
the catheter with the guidewire in Mode AB is restricted and smaller, permitting a larger
curvature bend. This is evident from the difference in deformation between the two modes
under a 180-degree magnetic field, as shown in Figure 5b. Furthermore, in Mode AB, the
soft portion’s length can be adjusted to meet the required specifications.
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Figure 5. Typical diagram of the four working modes and experimental test results. (a) Classical
deformation diagram of Mode A and AB. (b) Actual deformation of Mode A and AB under dif-
ferent magnetic field directions. (c) Classical deformation diagram of Mode B and BA. (d) Actual
deformation of Mode B and BA under different magnetic field directions.

Figure 5c illustrates the typical deformation of Mode B and Mode BA. Mode BA is the
guidewire over the catheter based on Mode B. As shown in Figure 5d, Mode BA exhibits
greater bending than Mode B under the same magnetic field, thereby addressing the issue
of insufficient deformation owing to the excessive stiffness of the guidewire. Moreover,
the external catheter offers additional protection to the guidewire during withdrawal,
effectively preventing damage to the surrounding tissues, such as blood vessels, caused by
the rigidity of the guidewire.
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3.2. Dexterity

Dexterity is a crucial indicator of MCR and reflects the ability to navigate complex
channels. By using 3D printing technology to fabricate a vessel-like channel and observing
the C-MCR’s ability to navigate through it, we were able to gauge its dexterity. Figure 6
and the supported video demonstrate that the C-MCR in Mode AB can accurately reach
the target location. In response to changes in the external magnetic field at 3 s, 8 s, and
20 s, the C-MCR successfully navigated the channel by steering itself in the direction of the
magnetic field. The C-MCR demonstrated its ability to negotiate bends smoothly at 9 s, 14 s,
and 19 s by manipulating the relative positioning between the inner guidewire and outer
catheter. However, because of the softness of the catheter, its controllability during turning
is suboptimal. The C-MCR can perform smoother turns by properly adjusting the position
of the internal guidewire at the turning point and then utilising the external magnetic field.
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Figure 6. Dexterity of Mode AB. During the experiment, Mode AB of the C-MCR passes through a
section of the channel. The insets show the relative pose of the C-MCR to each key moment. Please
see the supporting video for more details.

The dexterity of the C-MCR in Mode BA is shown in Figure 7 and the supporting
video. This task not only involves transitioning from Mode AB to Mode BA but also testing
the ability to reach the two endpoints. In addition to the steering capability shown in
Figure 6, the guidewire can extend through the internal hollow cavity of the catheter to
reach more narrow places in 24 s to 30 s. Surprisingly, only the guidewire had difficulty
reaching the endpoint at 30 s. However, this was achieved smoothly with the assistance
of the external catheter. From 30 s to 60 s, the C-MCR deftly reached the other adjacent
end via three operations: retreat, turn, and advance under Mode BA. Both experiments
highlight the impressive dexterity of the C-MCR.
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Please see the supporting video for more details (Video S1).

3.3. Nanomedicine Delivery

Owing to their small size, targeted nanomedicines have attracted extensive research
in the area of long-distance delivery. The internal cavity of the C-MCR’s Mode A is a
good conduit for the delivery of nanomedicines to specific locations. Figure 8a and the
supported video show the efficient long-distance transport of nanomedicines by the C-MCR.
A coverslip with cells grown over a 10 mm× 10 mm area was placed within the recess on the
left side. The C-MCR could reach the recess smoothly by changing the magnetic field and
advancing the catheter and guidewire. Once in position, the guidewire was removed, and
the nanomedicine was injected into the specified recess using a syringe. At 42 s, it is evident
that the nanomedicine in the DMEM medium is visibly transported to the intended location
over a long distance. After that, we took TIE images of the cells after co-culturing them
with nanomedicine for 5 h (Figure 8b). We prepared this nanomedicine incorporating the
photosensitiser m-THPP. The m-THPP is a close congener of the approved photosensitiser
5,10,15,20-tetrakis(3-hydroxyphenyl)chlorin (m-THPC, temoporfin), and they can be used
for photodynamic therapy of diseases of the brain, neck and skin diseases [44,45]. The SEM
images (Figure 8c) demonstrate that the medicine is on the nanometre scale. By assaying
cell viability using the CCK-8 kit, it is evident that low concentrations of the nanomedicine
are innocuous to the cells in a light-deprived milieu (Figure 8d). However, when exposed to
a laser with a central power point of 53.8 MW and a wavelength of 638 nm for 5 min, GL-261
cell viability declined as the concentration of the nanomedicine increased (Figure 8d). This
demonstrates that nanomedicine can be used for photodynamic therapy of glioma cells.
Additionally, this nanomedicine exhibits strong fluorescence emission properties, which
can be easily visualised in a fluorescent environment. As seen in the TIE images (Figure 8b),
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the cells exhibit intense red fluorescence emission, which means that the cancer cells contain
a large amount of nanomedicine. It confirms that the C-MCR delivered the nanomedicine
to the specified location. Despite being a simple experiment, it successfully demonstrates
the potential of the C-MCR to facilitate the long-distance transport of nanomedicines and
offers promise for future applications in this field.
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Figure 8. Nanomedicine delivery experiment with C-MCR. (a) Nanomedicine delivery via C-MCR
in designated locations. The insets show the relative orientation of the C-MCR at each key moment.
Please see the supporting video for more details. (b) TIE images of GL-261 cells stained with C-
MCR delivered nanomedicine suspension after 5 h of co-culture. (c) SEM image of gold-plated
nanomedicine. (d) Viability of GL-261 cells with (red) and without (black) 635 nm wavelength light
irradiation.

4. Discussion and Conclusions

Despite sharing similarities with the MCR with two small magnets in terms of navi-
gation, the C-MCR has a simpler structure and a smaller form factor that allows greater
dexterity and mode changes. Mode AB resolves the issue of poor controllability inherent in
a too-soft catheter and allows bending with a large curvature. On the other hand, Mode BA
addresses the limitations posed by an excessively stiff guidewire, enhances the magnetic
field response, and safeguards the surrounding tissue. Moreover, Mode BA can reach
narrower lumens compared to Mode AB, and its stiff anterior guidewire can pass through
some vessel obstacles such as thrombus. The C-MCR achieves controlled stiffness with
greater flexibility and adaptability by adjusting the relative positions of the small magnet
at the front of the magnetic catheter and the small magnet at the front of the magnetic
guidewire. The surgeon can switch freely between these four working modes based on
specific cavity requirements. In contrast to the conventional MCR, the C-MCR can achieve
a greater bending curvature, controllable stiffness, and mode selectivity. Furthermore, our
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experiments show that the C-MCR not only possesses exceptional dexterity but also pro-
vides a potential solution to the problem of targeted long-range delivery of nanomedicines.
Theoretically, the C-MCR can be utilised for laser irradiation, internal cavity sample collec-
tion, and other related procedures. The above-mentioned experiments provide compelling
evidence of the immense clinical potential of C-MCR.

In this paper, we present the structural design of a C-MCR, along with a preliminary
performance analysis. The C-MCR, which comprises a magnetic catheter and guidewire, is
challenging to miniaturise due to space limitations. Additionally, the limited space within
the magnetic catheter results in a reduced magnet size for the magnetic guidewire, thereby
weakening the magnetic field’s control over the guidewire. The current research on the
C-MCR’s control is inadequate, and our future objective is to integrate a variety of feedback
devices, such as cameras, ultrasound, and other sensors, to establish closed-loop control of
the C-MCR. In addition, we intend to optimise its functionality to target specific diseases,
thereby enhancing its clinical relevance. To explore the practical value of the C-MCR, we
must consider its intended application environment and simulate the environment of the
human body during testing. Ultimately, we hope to conduct experimental tests on isolated
tumour tissues or in vivo, such as rats and rabbits, to validate its clinical application. We
firmly believe in the value of the C-MCR and will continue our in-depth investigation of
this technology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/magnetochemistry9050129/s1, Video S1: Testing of C-MCR for
Dexterity and Nanomedicine Delivery by the Eight-coil Electromagnetic System.
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