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Abstract: Iron oxide compounds have naturally formed during the whole of Earth’s history. Synthetic
compositions with iron oxides are produced with the use of various techniques and widely used for
scientific and applied purposes. This review considers an attempt to classify all the information on
different iron oxide compound formation mechanisms and intended applications in biomedicine,
catalysis, waste remediation, geochemistry, etc. All the literature references analyzed were divided
into several groups by their number of included iron oxide compounds: compositions containing
only one compound (e.g., magnetite or wüstite), including various polymorphs of iron(III) oxide
(α-, β-, γ-, ε-, ζ-, δ-Fe2O3); compositions with two different distinguishable iron oxide phases (e.g.,
maghemite and hematite); compositions containing non-crystalline phases (amorphous iron oxide or
atomic clusters); and compositions with mixed iron oxide phases (indistinguishable separate iron
oxide phases). Diagrams on the distribution of the literature references between various iron oxide
compounds and between various applications were built. Finally, the outlook on the perspectives of
further iron oxide studies is provided.

Keywords: iron oxides; phase diagrams; mechanisms of formation; synthetic materials; biomimetic
materials; biogenic materials; iron oxide application

1. Introduction

The chemistry of iron is of great interest because iron is an abundant element present
in various fields [1]. The elemental abundance of oxygen, hydrogen and iron at the surface
of and within the Earth’s crust has fostered widespread occurrences of iron oxides and
oxyhydroxides in a diverse range of aquatic and terrestrial environments; most of the
known iron oxides and oxyhydroxides are known to occur in nature [2]. Iron oxides are
formed naturally through the weathering of Fe-containing rocks both on land and in the
oceans and play an important role in geochemistry [3]. Iron-rich sedimentary rocks have
had important implications in the evolution of Earth’s atmosphere and hydrosphere [4].
Iron oxide copper gold, apatite-magnetite and other ore deposits have very important
heavy industrial applications [5,6]. There are iron oxides on the surface of Mars, in the
depths of Earth, in old rusting factories, in pigeon brains and magnetotactic bacteria [7].
Despite the precise mechanism of biogenic magnetite mineralization on early Earth still
being unknown, the understanding of this mechanism includes the origin of banded iron
formations [8]. Iron oxides are also linked to pathological states of the human body, such
as iron dysregulation in the brain and neurological disorders [9,10].

Metallurgy has been developed relating to iron and iron oxides and used for various
applications including colored pigments, magnetic materials, catalysts, water oxidation,
biomedical uses including therapy and diagnostics, etc. [1,11–14]. The stability of the struc-
tural incorporation of uranium into the hematite crystal structure suggests the feasibility
of iron oxides for inhibiting the mobility of aqueous uranium (VI) [15]. The use of special
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stainless steels (i.e., Eurofer steel) for some portions of the main wall of a nuclear fusion
experimental reactor may come into consideration in industrial applications of nuclear
fusion; therefore, the detailed knowledge and quantification of their interactions between
atoms, molecules and plasma, including electron impact ionization cross sections of iron
oxide molecules, is of considerable interest [16]. Iron oxides are, furthermore, of great
interest with regard to the corrosion and oxidation processes of iron metal and steel, which
are mediated by the surface whose structure depends greatly on environmental variables
such as temperature, oxygen or water partial pressures [17,18]. Additionally to the various
Fe oxidation states, ferric oxide (Fe2O3) may be stable or metastable in the known α, β, γ, ε,
ζ and δ polymorphs [19–22]. Polymorphism in this case means a possibility for a compound
to exist in two or more solid phases that are isochemical but have distinct crystal structures
and thus, different physical properties. Due to their different physical properties, which
arise from the differences in their crystal structures, all of the polymorphs have found
applications in nanotechnology [20]. Moreover, there are also not simply polymorphs
of known iron oxides, but distinct compounds with the formula Fe4O5 [23]. Other iron
oxides with unconventional stoichiometry, such as Fe5O6, Fe5O7, Fe7O9 and more compli-
cated compounds have been predicted in theory, some of which have been successfully
synthesized at pressures of 10 ∼ 80 GPa and annealed from high temperatures [24]. Mag-
netite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), including in the form of the
oxidized zerovalent iron core-shell structure, are widely used in heterogeneous catalysis
processes and have been used as attractive alternatives for the treatment of wastewaters
and soils contaminated with organic compounds [25–27].

Structures containing the various iron oxide crystalline or amorphous phases can
either be macro- (ceramics [18]), micro- (microbial-induced precipitates [28]) or nanometer-
sized (nanoparticles and nanoclusters [29]). The nucleation and growth of inorganic
crystals, including iron oxides, from solutions occurs throughout geochemical, biological
and synthetic systems [30]. Iron oxide biominerals are formed under “green” conditions
without a loss of functionality such that they have the potential for numerous scientific as
well as industrial applications [31]. Global iron cycling is driven by both abiotic and biotic
reactions, and in the presence of oxygen and under circumneutral pH conditions, ferrous
iron is quickly oxidized to Fe(III) and precipitates as iron oxides [32,33].

The physical properties of the various iron oxide compounds can be extremely differ-
ent, e.g., magnetite and maghemite have been commonly used in biomedicine because of
their saturation magnetization being the highest [34]. The ε-polymorph of Fe2O3 possesses
the highest coercive force (up to 2 T at room temperature [20,35–37]) among the other
ferrimagnetic oxides, while maghemite-magnetite nanoparticles (NPs) can have almost
zero coercivity [38] with a very low difference in their average size. In some applications,
e.g., in catalysts, amorphous iron oxide NPs can be more active than crystalline polymorphs
of the same diameter thanks to their “dangling bonds” and higher surface–bulk ratio in
their amorphous phase [39]. Based on the literature data, a generalized scheme illustrating
the diversity of the known iron oxide compounds, including stable, metastable, atomic
clusters and amorphous, is given in Figure 1.

The current review attempts to summarize the main information on the various iron
oxide compounds to date. The next section is devoted to a comparison of some of the main
physical properties of the various iron oxide compounds.
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2. Physical Properties of Various Iron Oxide Compounds

An Fe–O phase diagram is given in Figure 2. According to the ratio of Fe2+ and Fe3+,
the phase diagram of Fe–O can be divided into six phase zones from right to left [40].
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The shown phase diagram does not take into account the polymorphisms of ferric
oxides. Sakurai et al. [41] discuss the crystal structures and magnetic properties of the
four phases are the following: ferrimagnetic γ-Fe2O3 with a spinel structure; ferrimagnetic
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ε-Fe2O3 with an orthorhombic structure; antiferromagnetic β-Fe2O3 with a bixbyite struc-
ture; and weak ferromagnetic α-Fe2O3 with a corundum structure. The observed phase
transformations for Fe2O3 phases inside of the mesoporous silica matrix are due to the
surface (or interface) energy GS contribution to the total free energy G = GB + (6Vm/d)GS,
where GB is the free energy in the bulk, Vm is the molar volume and d is the diameter of
the NP. The G vs. d curves should appear as shown in Figure 3.
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Figure 3. Representation of free energy G vs. particle diameter d curves for the four Fe2O3 phases.
Gray, blue, green and red lines represent the G values of γ-, ε-, β- and α-Fe2O3, respectively. Thick
solid lines indicate the most stable Fe2O3 phases over the corresponding size ranges. Copyright 2009
by the American Chemical Society. Reprinted with permission from [41].

Such a strong correlation between the most stable iron oxide crystal phase and the
matrix makes it possible to create nanomaterials with diametrically different magnetic prop-
erties. Our team has provided the studies on the natural and synthetic silica-based systems
containing inclusions of iron oxide NPs. Figure 4 illustrates the static magnetic characteris-
tics of the silica-based systems with NPs of ε-Fe2O3 with a coercive force Hc = 1.07 T [37],
γ-Fe2O3–Fe3O4 with Hc = 0.5 mT [38] and natural magnetite from the Kovdor deposit
with Hc = 4 mT [6]. Thus, despite their almost identical chemical composition, the similar
structures with iron oxides can possess different Hc values by more than three orders
of magnitude.
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Figure 4. Static magnetic properties of various samples of silica–iron oxide systems: (a)—Hysteresis
loop and backfield demagnetization curve of a sample containing ε-Fe2O3. Reprinted from [37],
license CC BY 4.0; (b)—Magnetic hysteresis curve of FemOn-SiO2 synthetic colloidal nanoparticles.
Reprinted from [38], with permission from Elsevier; (c)—Backfield curve and central part of the
hysteresis loop of magnetite ore powder; full loop in the 1.8 T maximum field is shown in the inset.
Reprinted from [6], with permission from Elsevier.

Iron oxide compounds can differ not only by their coercive force, as shown above, but
also by their other physical characteristics. Some of them are shown in Table 1.

Table 1. Comparison of the physical characteristics of various iron oxide compounds [42–73].

Parameter
Iron Oxide Compound

FeO Fe3O4 α-Fe2O3 β-Fe2O3 γ-Fe2O3 ε-Fe2O3

Mineral name Wüstite Magnetite Hematite – Maghemite –

Crystal
structure

Cubic
[42]

Cubic spinel
[43]

Rhombohedral
[44]

Cubic
[62]

Cubic spinel
[45]

Orthorhombic
[46]

Static dielectric
permittivity

22.6
[47]

20–40
[48,49]

12–26
[48–50] n/a 20

[48] n/a

High-frequency
dielectric

permittivity

10.8
[47]

7–16
[51]

7.6–7.9
[50] n/a 14.2

[52]
4–10

[53,54]

Saturation mass
magnetization 1

at 300 K, emu/g

11–18
[55,56]

92–94
[57]

0.3–1.9
[58,59]

0.02–0.05
[63,64]

74–80
[60,61]

15
[46]

Curie/Neel
point, K

196
[47,55]

838–856
[66]

948–963
[41,58]

110–119
[62,64]

618–928
[41,67]

480–495
[41,46]

Optical band
gap at 300 K, eV

1.0
[47]

0.2
[68,69]

1.9–2.2
[59,70–72]

1.7–1.9
[64,65]

2.0
[60]

2.0–2.4
[73]

1 The values of saturation mass magnetization are given for the bulk materials.

The crystal structure of an iron oxide compound can be attributed to various symmetry
groups: cubic for FeO [42], Fe3O4 [43] and γ-Fe2O3 [45], rhombohedral for α-Fe2O3 [44],
and orthorhombic for ε-Fe2O3 [46]. Crystal structure variation influences the electron zone
structure, which can be semi-metallic with an optical band gap (at 300 K) of 0.2 eV for
Fe3O4 [68,69] and semiconductive for FeO with an optical band gap of 1.0 eV [46], as well
as for α-, γ- and ε-Fe2O3 with an optical band gap of 1.9–2.4 eV [58,59,70–73]. There is no
clear correlation between the crystal structure of an iron oxide compound and its dielectric
permittivity, for which values are in the range of 12–40 for static permittivity [46–49] and
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4–16 for high-frequency permittivity [46,49–53]. Since the various iron oxides can possess
antiferromagnetic or ferrimagnetic properties, their value of saturation mass magnetization
can differ by a few orders of magnitude: from 0.3 emu/g (at 300 K) for pure hematite [57,58]
to 92–94 emu/g for stoichiometric magnetite [56]. Such variation in electrical and magnetic
characteristics lies in the versatility of the structures containing iron oxides for their wide
spectrum of possible applications. The next section is devoted to the main mechanisms of
iron oxide formation disclosed in the scientific literature.

3. Mechanisms of Iron Oxide Formation

The literature data on the iron oxide formation mechanisms were divided into several
groups according to the iron oxide compounds in the studied structures: the structures
containing pure crystal iron oxide phases, the ones containing iron oxide atomic clusters
and amorphous iron oxides, the ones containing two co-existing iron oxide crystal phases,
and the ones containing three or more co-existing iron oxide phases. Their formation
mechanism, either natural or synthetic, is briefly described based on the data in the cited
reference. Furthermore, their existing and potential (declared) applications are also given.

3.1. The Structures Containing Pure Phases of FeO, Fe4O5, Fe3O4, and α-, β-, γ-, δ-, ε- and
ζ-Polymorphs of Fe2O3

The information on the structures with a pure iron oxide crystal phase is given sepa-
rately for each iron oxide compound in Tables 2–6.

Based on the gathered information, it was possible to determine the most frequently
obtained form of the structures containing FeO (Table 2). This form is FeO NPs produced
for biomedical applications via various chemical or physical routes, but not naturally origi-
nated, since this iron oxide compound is metastable under normal conditions [42,74–80].

As one of the stable iron oxide compounds, magnetite can be obtained from the various
structures, including natural abiotic or biogenic and synthetic ones (Table 3). Fe3O4 NPs
can be considered as one of the most frequently used iron oxide magnetic materials and
their production techniques are mostly chemical since this approach is most suitable for
biomedical applications [81–89]. Additionally, “green” techniques, involving the use of
natural plant extracts [90,91], biomimetic formation [92] or microbial mineralization [93–98],
are widely used. Other commonly described forms of magnetite are its inclusion within ore
samples [6,99–104] widely used in geosciences and the external magnetite layer of metal
surfaces [105–109], which is an important object of iron corrosion studies.

The most stable (under normal conditions) iron oxide compound, hematite, attracts
the highest attention of scientists, according to the overall amount of published papers
(Table 4). Similarly to magnetite, the most frequently obtained form of α-Fe2O3 is a
chemically synthesized NP, predominantly used for photocatalysis, biogeochemistry and
the bioremediation of toxic compounds [105–119]. The second important form of hematite
is the natural ore with inclusions of α-Fe2O3, which is used in Earth sciences [117–124]. The
use of the pure γ-Fe2O3 is quite rare. The most frequently produced form of γ-Fe2O3 is as
NPs (Table 5), including chemically synthesized [125–129] or biogenic [93].

Structures with β-Fe2O3, ε-Fe2O3, ζ-Fe2O3, δ-Fe2O3 or Fe4O5 metastable phases (Ta-
ble 6) are much less described compared to the main stable compounds of iron oxides.
ε-Fe2O3 is the only one seriously applicable in biomedicine [130,131], electronics [132,133]
or geosciences [134,135] and can be obtained both synthetically [37,136,137] or by extraction
from various archeological objects [138–140]. There have also been some attempts to use
β-Fe2O3 NPs in biomedicine [63], sensors and lithium-ion batteries [20,64].
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Table 2. Data on the structures containing an FeO phase.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

FeO NPs

Thermal decomposition of the
iron(II) precursor, mechanochemical

reduction of magnetite, flame
synthesis, laser target interaction in

liquid carrier media

Biomedicine, electronics,
spintronics, magnetic force

microscopy, metastability studies

XRD 1, UV–Vis 2, MALDI-TOF MS 3,
EELS 4, F-AAS 5 HAADF-STEM 6,

[41,74–80]

Ultra-thin FeO film

Oxidation of iron
monocrystal surface Iron oxidation kinetics study RMDS 7 [141]

Electron-beam deposition on
Au(111) surface

Iron catalysis,
electronics, biomedicine STM 8 [142]

Millimeter-sized iron oxide particles Magnetite reduction with iron as
reducing agent Catalysts for ammonia synthesis TG-DSC 9 [40]

FeO layer on the metal alloy surface Invar oxidation in a static
carbon dioxide atmosphere Iron oxidation kinetics study XRD, TG-DSC, TEM 10 [143]

Wüstite inclusions in
titanomagnetite particles

Titanomagnetite ironsand-fluidized
bed reduction by hydrogen Commercial iron making XRD [144]

FeO powder Reduction of hematite in a
gas-controlled electric furnace

Earth’s mantle sound
velocity studies XRD, IXS 11 [145]

FeO inclusions in the mold flux Iron oxide formation in molten
mold flux

Study of the oxidation mechanism
of mold flux-covered molten iron XRF 12 [146]

FeO inclusions within the dense
iron shell

Porous hematite gas reduction
under isothermal conditions

Industrial exploitation of low-grade
iron ores TG-DSC, XRD [147]

FeO clusters within the stable iron
oxide matrix

The reduction of
magnetite/hematite at temperatures

of 400~500 ◦C
Iron catalysis Quantitative theoretical analysis [148]

1 X-ray powder diffraction. 2 UV–visible(-NIR) spectroscopy. 3 Matrix-assisted laser desorption ionization time-of-flight mass spectrometry. 4 Electron energy loss spectroscopy.
5 Flame atomic absorption spectroscopy. 6 High-angle annular dark-field scanning transmission electron microscopy. 7 Reactive molecular dynamics simulations. 8 Scanning tunneling
microscopy. 9 Thermogravimetry/differential scanning calorimetry. 10 Transmission electron microscopy. 11 Inelastic X-ray scattering. 12 X-ray fluorescence.
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Table 3. Data on the structures containing an Fe3O4 phase.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Fe3O4 NPs

Co-precipitation from iron salt
solution, co-precipitation from iron

oxyhydroxide solution,
solvothermal synthesis,

electrochemical formation from a
pure iron, thermal decomposition of
the iron oleate complex, biomimetic

process with use of a leaf extract,
nucleation mediated by

iron-binding protein Mms6,
biogeneration with a use of amyloid

peptide Aβ42

Biomedicine, magnetic separation,
antimicrobial and antioxidant

applications, contaminant removal,
black pigment

production, ferrofluids

TEM, XRD, SAXS 1, RS 2, FTIR 3,
XPS 4, HAADF-STEM, EELS,

TG-DSC, UV–Vis, PL 5,
MSP 6, SAED 7

[81–91,149–162]

Bacterial magnetosomes

Bacterial biomineralization,
transient phosphate-rich ferric

hydroxide reduction to magnetite,
formation by dissimilatory

iron-reducing bacteria

Biomedicine, paleomagnetism,
microbial iron cycle studies,

bioremediation of toxic compounds

HAADF-STEM, TEM, XAS 8,
SAED, XMCD 9 [93–98,163]

Inclusions of Fe3O4 within
ore samples

Abiotic hydrothermal
mineralization, iron oxide formation

derived from continental
weathering, extrusive magmatic

formation from iron
oxide-melt liquid

Geochemistry, environmental
magnetism studies, early Earth iron
cycle studies, origin and evolution

of iron oxides studies

XRD, RS, XPS, EDS 10, ICP-AES 11 [99–102]

External magnetite layer on a
metal surface

Oxidation of a steel surface, slow
oxidation of green rusts at room

temperature,
high-temperature corrosion

Corrosion studies XRD, EDS, XRF, RS, XPS, AES 12 [105–110]

Fe3O4 microparticles

Microbial-induced precipitation
with the use of Sporosarcina pasteurii Green synthesis of magnetite EDS [28]

Aging of ferrous hydroxide gels at
elevated temperatures Colloidal crud formation studies XRD, TEM [162]
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Table 3. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Self-assembled Fe3O4
mesocrystalline films

Heat-up method with the use of
iron(III) chloride and sodium oleate

Biomedicine and
industrial applications TEM, SAED, XAS, SAXS [163]

Fe0/Fe3O4 composite
Controlled reduction of the starting

Fe3O4 with H2
Treatment of wastewater MSP, XRD [164]

Magnetite nanowires Supercritical fluid inclusion
within a mesoporous silica matrix Soft magnetic materials TEM, SAED, XRD, FTIR [165]

Inclusions of Fe3O4 NPs Bacterial reduction of amorphous
hydrous ferric oxide Biogeochemistry TEM, SAED, XRD, EDS [166]

Fe3O4 layer on the zerovalent
iron surface

Surface oxidation of iron by oxygen
in an aqueous medium Organic pollutant removal EDS, XRD [167]

Epoxy/magnetite nanocomposites Reduction of anhydrous ferric
chloride by ammonium hydroxide Marine coatings of steel FTIR, XRD, TEM [168]

Iron oxide nanocomposite hydrogel Co-precipitation process by
ammonium hydroxide Biomedicine XRD, TEM, TG-DSC, EDS [169]

Surface film containing Fe3O4 NPs
Bacterial mineralization in the
air–water interface in Arctic

tundra waters
Anaerobic microbial carbon cycle TEM, EDS, STEM, EELS, FTIR, RS [170]

Nanocomposite hydrogel with
Fe3O4 NPs

Reduction with ammonia from a
remixed solution of FeCl3 and FeCl2

Biomedicine TEM, XRF, EDS, TG-DSC, FTIR [171]

Biochar composite with Fe3O4 NPs One-pot solvothermal method using
phoenix tree leaf-derived biochar Treatment of wastewater TEM, XRD, FTIR, XPS, ICP-AES [172]

Fe3O4 NP inclusions in the
surface layer

Formation of NPs along with cracks
and pores during pre-oxidation Plasma nitriding of steel XRD [173]

Chitosan/graphene oxide
composite with Fe3O4

Co-precipitation of Fe3O4 and
chitosan/graphene oxide Organic pollutant removal XRD, XPS, RS, FTIR [174]

Fe3O4 layer on carbon fibers of a
carbon paper

Deposition on the carbon paper gas
diffusion layer at the cathode Corrosion studies XRD, EDS [175]
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Table 3. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Mesocrystals assembled from
Fe3O4 nanocubes

Heat-up method with the use of
iron(III) chloride and sodium oleate Mesocrystal applications TEM [176]

Fe3O4 nanorods
Formation in

electron-beam-induced deposition
from iron pentacarbonyl

Electronics TEM, EELS [177]

Lipase immobilized on coated
Fe3O4 NPs

Solvothermal method with the use
of FeCl3·6H2O and ethylene glycol Biodiesel production TEM, XRD, FTIR [178]

Spherical mesoporous
magnetite aggregates

Precipitation from iron(III) ethoxide
with ethanol in the
surfactant solution

Catalysis, sustainability FTIR, XPS, EDS, TEM, MSP [179]

Perfluorocarbon-loaded
hydrogel microcapsules

Coaxial interface shearing double
emulsion method Biomedicine – [180]

Mesoporous magnetite Ball milling of Fe3O4 and SiO2
followed by partial reduction

Recyclable absorbent for toxic
Cr(VI) ions TEM, XRD, XPS, ICP-AES [181]

Magnetite crystal model Local spin-density approximation
density-functional calculation Magnetite electron structure studies Density-functional calculations [43]

Spherulite nanostructure with
inclusions of Fe3O4

Electron-beam irradiation of the
precursor solution with iron nitrate Crystal growth dynamics studies TEM, STEM, EDS [182]

1 Small-angle X-ray scattering. 2 Raman spectroscopy. 3 Fourier-transform infrared spectroscopy. 4 X-ray photoelectron spectroscopy. 5 Photoluminescence spectroscopy. 6 Mössbauer
spectroscopy. 7 Selected area electron diffraction. 8 X-ray absorption spectroscopy. 9 X-ray magnetic circular dichroism. 10 Energy-dispersive X-ray spectroscopy. 11 Inductively coupled
plasma atomic (optical) emission spectroscopy. 12 Auger electron spectroscopy.
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Table 4. Data on the structures containing an α-Fe2O3 phase.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

α-Fe2O3 NPs

Hydrothermal synthesis,
precipitation from a ferric salt

solution using a natural leaf extract,
precipitation and aging of

ferrihydrite in an oxidized system,
direct transformation of α-FeOOH

via high-energy ball milling

Biomedicine, bioremediation of
toxic compounds, photocatalysis,

geochemistry, electronics,
antibacterial activity studies,

geochemistry

XRD, FTIR, UV–Vis, EDS, TEM, RS,
XPS, XAS, ICP-AES, EPR 1,

HAADF-STEM, WAXS 2
[105–111,180–192]

Inclusions of α-Fe2O3
in ore samples

Precipitation from oxygenated
iron-rich water or biomineralization,
dissolution of Fe(III) hydroxides by
Fe(III)-reducing bacteria, terrestrial
subglacial oxidation of glacial iron

fluvial deposition

Terrestrial iron oxide concretion
studies, Precambrian iron formation

studies, Antarctic glacier studies,
biogeochemistry

EDS, RS, TEM, HAADF-STEM,
XRD, SAED, FTIR, UV–Vis [112–119]

α-Fe2O3 layer on a metal surface

Anodic potentiostatic oxidation of
stainless steel sheet Anodic passivation of stainless steel AES [193]

Oxidation of steel in an O2-N2
atmosphere at high temperature

Improvement of steel
coating quality TEM, EDS, GD-OES 3 [194]

Corrosion of chromia-forming
alloys in simplified

combustion atmosphere
Fireside corrosion studies EDS, XRD [195]

Porous α-Fe2O3 nanostructures

Hydrothermal synthesis from
FeCl3·6H2O in a microwave reactor Lithium-ion batteries XRD, TEM, SAED, XPS, TG-DTG [196]

Sol–gel transformations of
precursors in self-organized

nanocellulose
Energy conversion and storage XRD, TEM, SAED, XPS, TG-DSC [197]

Martian hematite deposits Precipitation from oxygenated
iron-rich water or biomineralization Search for evidence of life on Mars EDS, TEM [198]

Hematite layers on sandstone grains Precipitation from oxidizing
iron-saturated fluid Geochemistry XRD, ICP-MS 4 [199]

Double-walled hematite nanotubes Growth of Fe nanowires inside
porous templates and oxidation Photocatalysis, biomedicine XRD, EELS, HAADF-STEM, RS [200]
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Table 4. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Coral-like and nanowire α-Fe2O3
Thermal oxidation of iron foils in air-
and water vapor-assisted conditions

Removal of Cr ions from aqueous
systems XRD, RS, TEM, XPS [201]

α-Fe2O3 NPs on mineral surfaces
Weathering of Fe-bearing silicate

minerals or partial oxidation
of Fe3O4

Paleoclimate studies XRD, TEM, SAED [202]

α-Fe2O3 nanorods Controlled aqueous growth from
FeCl3·6H2O and NaNO3

Photoelectrochemical water splitting XRD [203]

Inclusions of α-Fe2O3 in
regolith simulant

Ball milling of commercial α-Fe2O3
samples in isopropyl alcohol Combustion studies XRD, TG-DSC [204]

Inclusions of α-Fe2O3 in
stone matrix Bacterial mineralization Heritage sciences XRD, EDS, RS [205]

Inclusions of α-Fe2O3 in
auriferous quartz Terrigenous abiotic mineralization Geochemistry EDS [206]

Hematite layers on sandstone grains Terrigenous co-precipitation with
sandstone and uranium Geochemistry of radionuclides Gamma-ray spectrometry, ICP-MS [207]

Hematite inclusions encapsulated
in chert

Dehydration of the interstitial
goethite to hematite microplates Geochemistry TEM, XRD, EDS [208]

Hollow α-Fe2O3 nanofibers Electrospinning with a use of iron
chloride and poly(vinylpyrrolidone) Photoelectrochemical water splitting EDS, TEM, SAED, TG-DSC, UV–Vis [209]

Fossilized bacteria with α-Fe2O3
Biomineralization by anoxygenic

photoferrotrophy Biogeochemistry RS [210]

Porous α-Fe2O3 xerogel and aerogel Sol–gel synthesis from Fe(III) salts
with addition of propylene oxide Catalysis, sensors, biology TEM [211]

Iron oxide nanostructures
Microbial Fe(II) oxidation of

carbonate green rust by
Fe(II)-oxidizing bacteria

Precambrian iron formation studies MSP [212]

Iron oxide biogenic precipitates Bacterial mineralization Biogenic iron oxide formation
studies XAS [213]
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Table 4. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Steel-wearing ejected debris with
α-Fe2O3

Steel fretting wear controlled by
oxygen ingress to the contact Steel fretting wear studies XRD [214]

α-Fe2O3 NPs on a steel surface Oxidation of iron-bonded diamond
precision-polishing wheel

Grinding of hard and
brittle materials XRD, XPS, TEM [215]

Nanostructured α-Fe2O3 films Electrochemical anodization of steel
in an alkaline solution Photocatalysis, anti-bioadhesion RS, UV–Vis [216]

Monodispersed micaceous α-Fe2O3
Hydrothermal synthesis from iron
chromium hydroxide precursors

Iron chromium grinding
waste recycling ICP-AES, XRD, XPS [217]

Nanoporous α-Fe2O3 layer on an
iron foil

Anodization of iron is an ethylene
glycol and NH4F aqueous solution Photocatalysis TEM, RS, XRD, UV–Vis, EDS, EELS [218]

Natural α-Fe2O3 from
the iron deposits Terrigenous abiotic mineralization Photocatalytic recycling of

toxic wastewater RS, EDS, UV–Vis [219]

Nanocomposite containing α-Fe2O3
Wet impregnation of Co3O4 powder

with an Fe(NO3)·9H2O solution Catalysis XPS, XRD, TG-DSC, EDS, TEM [220]

Stepped α-Fe2O3 (0001) surfaces
First principles spin-polarized

density-functional theory
simulation

Chloride-induced iron
depassivation studies

Density-functional theory
calculations [221]

α-Fe2O3 powder In situ generation of iron oxide via
decomposition of Fe(NO3)3·9H2O Catalysis XRD [222]

α-Fe2O3 nanorods Hydrothermal precipitation and air
calcination of goethite nanorods

Catalysis, lithium-ion
batteries, sensors XRD, MSP, UV–Vis, EDS, TG-DSC [223]

α-Fe2O3 nano- and microparticles Chemically synthesized commercial
α-Fe2O3 samples

Mechanisms of oxide toxicity
toward bacteria FTIR, XAS [224]

α-Fe2O3 nanowires Heating of iron wires suspended
between two electric contacts Vacuum electronic devices TEM, EDS, XPS, RS [225]

α-Fe2O3 layer on zerovalent
iron NPs

Iron oxide film formation under
aerobic conditions Remediation of water pollutants TEM, FTIR, XPS, XRD [226]

Inclusions of α-Fe2O3 in
rock varnish

Terrigenous abiotic mineralization
or biotic processes Geomicrobiology XRD, RS, EDS [227]
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Table 4. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Nanolayers of α-Fe2O3 in
polymer composite

Iron pentacarbonyl transformation
with diamond anvil cells in Ar gas High-energy density solid studies RS, TEM, XRD [228]

Jian ware blue-colored glaze
with α-Fe2O3

Calcination of a milled mix at a high
temperature in oxidizing

atmosphere
Ancient ceramics studies XRD, UV–Vis, TEM, XPS [229]

Inclusions of α-Fe2O3 in
sediment samples

Microbial reduction of surface Fe(III)
by iron-reducing bacteria Microbial iron reduction studies XRD [230]

Core-shell iron/iron oxide NPs Zerovalent Fe core-controlled
oxidation during deposition

Oxide formation under e-beam
radiation studies TEM, EELS [231]

α-Fe2O3 film on a
dielectric substrate

Liquid-phase atomic layer
deposition of crystalline hematite

Catalysis, sensors, lithium-ion
batteries XRD, UV–Vis [232]

Cube-shaped α-Fe2O3
microstructures

Facile hydrothermal method using
hydrated ferric nitrate and NaOH Ethanol gas sensing XRD, FTIR, EDS, RS [233]

Iron oxide/Ti composites Plasma electrolytic oxidation,
impregnation and annealing Phenol photodegradation XRD, EDS, FTIR, XPS [234]

Microporous α-Fe2O3 NPs Precipitation from iron(II) sulfate
using a natural leaf extract Sustainability XRD, UV–Vis, XPS, FTIR [235]

Inclusions of α-Fe2O3 in
artificial clay

Fe(OH)3 colloid mixing into
chemically pure kaolin Laterite engineering XRD [236]

Iron oxide nanotubes Potentiostatic anodization of iron
foil in electrolytes containing NH4F Catalysis, sensors, supercapacitors XRD, TEM, SAED [237]

α-Fe2O3 thin film Spray pyrolysis from FeCl3 and
methanol solution Electrochemical supercapacitors XRD, UV–Vis [44]

Corroded steel tube samples
with α-Fe2O3

Steel corrosion in an aqueous
medium with oxygen and chlorine Pipeline corrosion assessment XRD, EDS, TEM, SAED [238]

Inclusions of α-Fe2O3 in
stone samples

Formation by washing and leaching
of a stone object by rainwater Limestone artifact studies RS, FTIR, EDS, XRF [239]

Iron oxide-loaded slag Precipitation from FeCl3 solution
with NaOH into melted slag Arsenic removal from water ICP-AES, XRD [240]



Magnetochemistry 2023, 9, 119 15 of 50

Table 4. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

3D-ordered macroporous α-Fe2O3
Impregnation of polymer matrices
and high-temperature calcination Catalysis XRD, TG-DSC, FTIR, SAED,

UV–Vis, XPS [241]

α-Fe2O3/mesoporous silica
core-shell NPs

Solvothermal synthesis from ferric
nitrate with sol–gel silica coating Catalysis, biomedicine XRD, TEM, FTIR, UV–Vis [242]

Spindle-shaped
α-Fe2O3 mesocrystal

Interface-driven nucleation by
ferrihydrate oxidation

and attachment

Thermoelectronics, photonics,
catalysis, photovoltaics TEM, SAED, FTIR, EDS [243]

Hematite nanopillars

Electron-beam evaporation using
anodized aluminum oxide

templates with well-defined
pore diameters

Photoelectrochemical water splitting XRD, XPS, UV–Vis [244]

1 Electron paramagnetic resonance spectroscopy. 2 Wide-angle X-ray scattering. 3 Glow-discharge optical emission spectrometry. 4 Inductively coupled plasma mass spectrometry.
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Table 5. Data on the structures containing a γ-Fe2O3 phase.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

γ-Fe2O3 NPs

Solvothermal synthesis from iron
salts, bacterial mineralization,

lepidocrocite calcination in an air
atmosphere, hydrothermal and

solvothermal synthesis from
salt solutions

Catalysis, biomedicine, nucleation
and formation of biogenic iron oxide
studies, electronics, maghemite to

hematite transition studies, sensors

TEM, EDS, SAED, XRD, XPS, EPR,
FTIR, UV–Vis, ICP-AES,

HAADF-STEM, MSP, in situ total
scattering, XAS, SAXS, RS

[93,125–129]

γ-Fe2O3 NPs in silica matrix

Gas-phase synthesis in a furnace
aerosol reactor from iron

pentacarbonyl
Biomedicine XRD, TEM, EDS, FTIR, UV–Vis [245]

Dehydration of iron(III) hydroxide
to magnetite followed by oxidation Catalysis XRD, FTIR [246]

γ-Fe2O3 powder Chemically synthesized commercial
γ-Fe2O3 samples Catalytic oxidation of S(IV) ICP-MS, FTIR [247]

26-faceted maghemite polyhedrons Direct burning of ferrocene in
different solvents in an alcohol lamp Lithium-ion batteries XRD, TEM [248]

Magnetic polymeric NPs
with γ-Fe2O3

Co-precipitation of
FeCl3/FeCl2·4H2O with

NH4OH solution
Biomedicine TEM, TG-DSC, FTIR [249]

γ-Fe2O3 NP superlattice thin films Chemically synthesized commercial
γ-Fe2O3 samples Electronics, optical coatings Grazing incidence small angle

X-ray scattering [250]

Maghemite-decorated graphene
nanoscrolls

Hydrolysis of FeCl3·6H2O and
W(CO)6, promoted with hydrazine Energy storage TEM, XPS, TG-DSC, RS [251]

Hollow iron oxide NPs Gas-phase vaporization synthesis of
Fe NPs and oxidation to γ-Fe2O3

Optics, nanoelectronics TEM, HAADF-STEM, EDS [252]

Mesoporous iron oxide Inverse micelle synthesis from
Fe(NO3)3·9H2O butanol solution Arsenic removal from water XRD, FTIR, RS, XPS [253]
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Table 6. Data on the structures containing a β-Fe2O3, ε-Fe2O3, ζ-Fe2O3, δ-Fe2O3 or Fe4O5 metastable phase.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

Pristine and co-substituted ε-Fe2O3

Simulated crystal structure with a
use of density-functional

calculations

Magnetoelectric
material development

Density-functional
theory calculations [254]

ε-Fe2O3 embedded in
biomimetic graphene

Precipitation from ferric and ferrous
chloride with

a biocompatible polymer
Biomedicine XRD, TEM, SAED, RS, XPS,

TG-DSC, FTIR [130]

Epitaxially stabilized
thin-film ε-Fe2O3

Epitaxy on (100)-oriented
yttrium-stabilized
zirconia substrates

Electronics, permanent
magnets, biomedicine XRD, HAADF-STEM [136]

ε-Fe2O3 in ancient black
glazed wares

Surface iron enrichment and a firing
of wares under reducing conditions Electronics, spintronics XRF, XAS, XRD, RS, TEM, EDS [132]

ε-Fe2O3 NPs
Hydrolysis of tetraethoxysilane in a

solution of ferric nitrate
and annealing

Wireless technologies, electronics XRD, TEM, THz-TDS 1 [255]

ε-Fe2O3 inclusions in fired
clay samples

Stabilization of ε-Fe2O3 NPs in a
matrix of silicates during firing

of clays
Paleomagnetism XRD, EDS [134]

Y3Fe5O12 matrix including ε-Fe2O3

Formation of ε-Fe2O3 in the
Y3Fe5O12 matrix using the

sol–gel method

Magnetoelectric material
development XRD, XPS, TG-DSC, FTIR [256]

δ-Fe2O3 in layered double hydroxyl
Dry impregnation of layered double

hydroxyl structure with
ferric nitrate

Photocatalysis XRD, FTIR, XRF, TG-DSC, UV–Vis [22]

ε-Fe2O3-SiO2
Reverse micelle method with the

use of ferric nitrate
Oxidative dehydrogenation of

n-butene
XRD [136]

β-Fe2O3
Milling of Fe2(SO4)3 and NaCl and

calcination at 550 ◦C in air

Ga-substituted ε-Fe2O3 NPs Calcination of a mesoporous silica
impregnated with metal nitrates Biomedicine XRD, XRF, TEM, ICP-MS [131]
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Table 6. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

ε-Fe2O3 in archeological brick and
baked clay

High-temperature firing of bricks
and clays in air

Archaeomagnetism,
paleomagnetism

RS [138]

ε-Fe2O3 in archeological samples,
ε-Fe2O3 NPs

Sol–gel synthesis from ferric and
barium nitrate with tetraethyl

orthosilicate
XRD, RS [135]

ε-Fe2O3 coatings on
Si(100) substrates

One-pot sol–gel recipe assisted by
glycerol in an acid medium

Paleomagnetism, biomedicine,
electronics RS, XAS, EELS, HAADF-STEM [257]

ε-Fe2O3/SiO2 composite powder
Sol–gel synthesis from ferric and

barium nitrate with tetraethyl
orthosilicate

Electronics XRD, TEM [133]

ε-Fe2O3 nanorods Chemical vapor deposition from the
Fe organic liquid source Photocatalysis, electronics XPS [258]

ε-Fe2O3/SiO2 composite
Sol–gel synthesis from nitrate with

tetraethyl orthosilicate and
nitric acid

Electronics, spintronics,
magnetizable printing TG-DSC, XRD, TEM [259]

ε-Fe2O3 NPs
Immersion of mesoporous silica

with an FeSO4 or Fe(C10H9CHO)
solution and high-temperature

calcination

High-coercivity material
development

TEM, XRD, MSP, TEM, SAED [20,41]
β-Fe2O3 NPs Sensors, lithium-ion batteries

Epitaxial ε-Fe2O3 films on
GaN substrate

Pulsed laser deposition on the
Ga-terminated surface of the

GaN (0001)
Electronics XRD, RHEED 2, TEM, XAS, XMCD [260]

Silica-coated ε-Fe2O3 NPs
Sol–gel treatment of β-FeOOH

nanorods with tetraethoxysilane
and calcination

Electronics XRD, TEM, EDS, MSP [261]

ε-Fe2O3 in a Hare’s Fur Jian ware High-temperature firing of local
iron-rich area on the ceramic glaze Magnetoresistance materials XRF, XAS, EDS, XRD, RS [140]

Metal-substituted
ε-Fe2O3

Impregnation of mesoporous silica
NPs with rhodium-substituted

ε-Fe2O3

Electronics, magnetic force
microscopy, biomedicine XRD [262]
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Table 6. Cont.

Composition Main Mechanisms of Iron Oxide
Formation Declared Applications Phase Verification Techniques Refs.

β-Fe2O3 NPs
Thermally-induced solid-state

reaction of NaCl with Fe2(SO4)3
in air

Sensors, lithium-ion batteries

XRD, MSP, TEM, SAED [20]

ζ-Fe2O3
Pressure treatment of β-Fe2O3 NPs

at pressures above 30 GPa n/a

ε-Fe2O3 in a thin MgO(111) layer
Pulsed laser deposition from MgO
and Fe2O3 targets ablated using a

KrF laser
Electronics RHEED, XRD, neutron

reflectometry [263]

Single crystal of Fe4O5
Synthesis in the diamond anvil cell
at high pressure after laser heating Solid Earth studies Density-functional theory

calculations [23]

Nanometer-scale lamellae of Fe4O5

High-pressure and
high-temperature multi-anvil

synthesis
Deep Earth studies XRD, TEM, SAED, EDS, STEM [264]

Powder of Fe4O5

High-pressure and
high-temperature direct synthesis
from a mixture of Fe3O4 and Fe

Electronics XRD, neutron diffraction [265]

β-Fe2O3 NPs

Thermally-induced solid-state
reaction of NaCl with Fe2(SO4)3

in air

Optoelectronics, sensors,
lithium-ion batteries XRD, MSP, TEM [64]

Hydrolysis of 2M FeCl3 in boiling
water and cooling down slowly at

room temperature
Biomedicine UV–Vis, TEM, XRD, FTIR, EDS,

SAED [63]

1 Terahertz time-domain spectroscopy. 2 Reflection high-energy electron diffraction.
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3.2. The Structures Containing Iron Oxide Atomic Clusters and an Amorphous Iron Oxide Phase

In their thermodynamic equilibrium state under normal conditions, iron oxides possess
a crystal structure; therefore, there are only a few papers describing compositions with
amorphous or poorly crystalline iron oxides, which are obtained via chemical [266–269]
or biomineralization routes [270] and intended for various potential applications (Table 7).
Iron oxide atomic clusters are a more frequently studied object and can be obtained either by
synthetic chemical [271–274], physical [275] or biomimetic [276,277] techniques. Potential
applications for iron oxide clusters include biomedicine [271,273], electronics [271,276],
catalysis [273,274], and natural iron storage process studies [276].

The next type of iron oxide structure is ultra-thin, including two-dimensional films
on metal surfaces [142,278–280], which are obtained using various chemical and physical
techniques and can be applied to the production of molecular hydrogen [278], removal
of contaminants [279], catalysis [142] and electronics [280]. Simulated iron oxide atomic
clusters [281] and ultra-thin layers on a metal surface [282] are also described and can be
useful for the prediction of the magnetic properties of FeOx NPs [281] and chemical water
treatment technique development [282].

3.3. The Structures Containing Two Co-Existing Iron Oxide Crystal Phases

Real structures containing iron oxides in various cases are inhomogeneous, for ex-
ample, due to the partial oxidation of magnetite to maghemite for synthetic [38,283–293],
natural abiotic [6] and biogenic [294] origins. In this section, compositions with iron oxides
containing two co-existing crystal phases are described (Tables 8–11).

Crystal phases of α-Fe2O3 and γ-Fe2O3 quite rarely co-exist (Table 8), in comparison,
for example, with the phases of magnetite and maghemite, according to the analyzed
research articles. Nevertheless, such a combination can be found in natural and synthetic
objects, including oxidized iron items [295], α/γ-Fe2O3 isoelement synthetic heterostruc-
tures with different crystal content [296], loess and paleosol [297] and saprolite soils [298]
samples, graphene-iron oxide nanotube composites [299] and polyacrylonitrile/iron oxide
composites [300]. The main applications of such structures are in the removal of contami-
nants [299–301], pedogenic process studies [297,298] and corrosion studies [302].

A more frequently discovered combination is the co-existence of α-Fe2O3 and Fe3O4
crystal phases (Table 9). They can be found in natural ore samples and can be explained
by abiotic [303–308] or biogenic [309–311] processes. Besides these natural formations,
such combinations of iron oxide phases can be synthetically obtained with the use of
chemical [312–314], physical [315] or biomimetic [316] techniques. The main applications
of the compositions are geosciences [306,307,310,311], biomedicine [312,314,317] and catal-
ysis [313,316,317].

Cubic iron oxides, wüstite and magnetite can be co-existing (Table 10), despite these
cases being rare, in comparison to the structures containing co-existing α-Fe2O3 and Fe3O4
phases [303–328], and can be attributed to applications of iron oxides in Earth’s mantle
studies [329], porous iron growth mechanism studies [330], environmental remediation,
electronics, catalysis, biomedicine and energy storage [331].

Structures containing iron oxides with a spinel structure, magnetite and maghemite,
are widely used in various applications with a predominance of NPs intended for
biomedicine [45,332–337] (Table 11). It is possible to propose the partial oxidation of
magnetite NPs to maghemite in the vast majority of cases (except those with inert at-
mospheric preservation), but this effect can be distinguished only by the use of some
additional instruments, including Mössbauer spectroscopy [6], zero-field and field cooling
measurements to reveal a Verwey transition and high-resolution transmission electron
microscopy [295] to show the crystal structure, while more widely used X-ray powder
diffraction cannot resolve magnetite and maghemite [38]. The most frequently used syn-
thetic routes used to obtain γ-Fe2O3–Fe3O4 NPs are by thermal decomposition [337–340]
and chemical precipitation [332,336,341,342].
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The iron oxide layer on metal surfaces is also a possible structure containing co-existing
magnetite and maghemite phases. Such structures can originate from both natural [343,344]
and synthetic [345–349] routes, generally implying chemical or electrochemical oxidation
in a liquid medium. Overall, such compositions play an important role in iron corro-
sion studies [344,346,347,350,351]. Finally, compositions with magnetite and maghemite,
presumably due to the presence of iron(II) and iron(III) cations, are actively used for the
remediation of waste [348,352–357].

Table 7. Data on the structures containing iron oxide atomic clusters and an amorphous iron oxide
phase.

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification Techniques Refs.

Iron oxide atomic clusters

Combustion synthesis from
Fe(CO)5 mixed with hydrogen

and oxygen, high irradiance laser
ionization from pressed Fe2O3

and Fe3O4 tablets,
biomineralization inside the
ferritin shell, reaction of laser
ablated iron foil with 5% O2

seeded in a helium carrier gas

Catalysis, biomedicine,
electronics, sensors, prediction of
the magnetic properties of FeOx

NPs, natural iron storage process
studies, photovoltaics

MBMS 1 , PMS 2 , RMDS 3 , TEM,
LI-TOFMS 4 , density-functional
theory calculations, European
Synchrotron Radiation Facility

[271–277,281]

Surface iron oxide layer on metal

Multicycling of an iron foil
electrode between the switching

potentials, formation of iron
oxide species after reaction with

Cr(VI) and Cu(II)

Chemical water treatment,
production of molecular

hydrogen, removal of
contaminants

RMDS, XRD, XPS, FTIR, EDS [278,279,282]

Amorphous ferric oxides

Adding Fe(II) or Fe(III)
to seawater Bioavailable iron studies XAS, XRD [266]

Addition of Fe(III) to synthetic
buffered solution or soluble

microbial systems
Chemical water treatment UV–Vis [267]

Amorphous Fe2O3 in a
silica matrix

Impregnation of mesoporous
silica with ferric nitrate

and calcination
Antibiotic adsorption TEM, XRD, FTIR, UV–Vis [268]

Poorly crystalline iron oxides Iron oxide biomineralization by
iron-reducing bacteria Geochemistry ICP-MS [270]

Amorphous iron oxide
nanostructures

Photothermal reaction inside
a droplet

of iron(III) acetylacetonate
solution

Electronics, sensors TEM, SAED, EDS, RS [269]

Two-dimensional iron oxide on
Au(111)

Evaporating iron atoms,
annealing and cooling down to

300 K in O2

Catalysis STM, density-functional theory
calculations [142]

Iron oxide layer on zerovalent
iron NPs

Zerovalent iron corrosion in an
electrolyte solution

Treatment of contaminated
aquifers UV–Vis, XAS [283]

Ferric oxide NPs
Protein-promoted conversion of
Fe(II) into insoluble ferric iron

oxides

Mitochondrial iron mishandling
studies UV–Vis [284]

Ultra-thin iron oxide
nanowhiskers

Iron oleate complex followed by
selective decomposition at 150 ◦C Biomedicine TG-DSC, TEM, SAED, RS, XPS,

FTIR [285]

High valent iron oxo complexes
Fluorine-substituted

Fe−tetra-amidomacrocyclic
ligand oxidation

Photocatalysis UV–Vis, EPR, high-resolution
mass spectrometry [286]

FeO(111)-like film on
Fe(110) surface

Initial oxidation of Fe(110) in
oxygen via Frank–Van der

Merwe mechanism
Catalysis, pigments, electronics

XPS, XAS, STM, AES,
LEED 5 , STS 6 [280]

Colloidal Fe-FexOy
composite NPs

Oxidation of metal NPs via a
nanoscale Kirkendall process

Clean fuels, catalysis,
electrochemical energy TEM, SAXS, WAXS, RMDS [287]

Biogenic microtubular iron oxides
Biotic formation of organic

sheaths and subsequent abiotic
deposition of Fe

Catalysis, pigments EDS, RS, TEM, XRD, STEM [288]

Iron oxide model thin-film
electrodes

Thermal oxidation of pure metal
iron substrates at 300± 5 ◦C in air Lithium-ion batteries RS, XPS, SIMS 7 [289]

Iron(III) oxide/
hydroxide nanonetworks

Synthesis of iron(III)
oxide/hydroxide xerogels from a

hydrated ferric nitrate
Electronics, catalysis, sensors XPS, FTIR, XRD, TEM [290]

Fe0-iron oxide core-shell NPs
Precipitation from ferrous sulfate

with leaf extracts
Removal of nitrate in aqueous

solution EDS, XRD, FTIR [291]

Soil samples with amorphous
iron oxides

Abiotic mineralization in soil
pore structures Soil weathering studies XRD, ICP-AES [292]

Reticular pipeline cracks filled
with iron oxide

Decarburization and diffusive
oxidation

of steel matrix
Corrosion resistance studies EDS [293]

1 Molecular beam mass spectrometry. 2 Particle mass spectrometry. 3 Reactive molecular dynamics simulations.
4 Laser ionization orthogonal time-of-flight mass spectrometry. 5 Low-energy electron diffraction. 6 Scanning
tunneling spectroscopy. 7 Secondary ion mass spectrometry.
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Table 8. Data on the structures containing co-existing α-Fe2O3 and γ-Fe2O3 phases.

Composition Main Mechanisms of
Iron Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Saprolitic soil samples Aerobic weathering of
Fe-bearing minerals

Pedogenic process
studies

XRF, UV–Vis, XRD [298]

Loess and paleosol
samples with
iron oxides

Aerobic weathering of
Fe-bearing

silicate minerals
XRD, UV–Vis [297]

Oxidized iron items
Soil iron corrosion

limited by the diffusion
of dissolved oxygen

Heritage science EDS, XRD, RS [295]

Surface iron oxide layer
on metal

Anodic film formation
on steel immersed in

sour acid media

Corrosion resistance
studies XRD, EDS [302]

Graphene-iron oxide
nanotube composite

An adept template-free
hydrothermal route
from ferrous sulfate

Removal of the toxic
heavy metal Cr(VI)

EDS, XRD, FTIR,
UV–Vis, TEM [299]

Polyacrylonitrile/iron
oxide composite

Hydrothermal method
for in situ growth of

iron oxide; iron
alkoxide hydrolysis

Removal of Congo red
dye from water

FTIR, XRD, EDS,
ICP-AES [300]

Carbon/FexOy
magnetic composites

Mechanical mixing and
thermal treatment

under N2 atmosphere
Wastewater treatment XRD, TG-DSC, EDS,

FTIR [301]

Isoelement synthetic
heterostructures

Hydrothermal method
combined with

controlled partial
annealing process

Visible-light
photocatalysis

XRD, TEM, XPS,
UV–Vis, EPR [296]

Table 9. Data on the structures containing co-existing α-Fe2O3 and Fe3O4 phases.

Composition Main Mechanisms of
Iron Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Inclusions of iron oxides
in ore samples

Precipitation during
protracted hydrothermal

fluid/rock interaction,
biological oxidation of

Fe(II) by photoautotrophs,
microbial sedimentary

ferric iron flux, infiltration
by hypogene and

supergene fluids during or
after deformation

Banded iron formation
studies, geochemistry, late

Archean and early
Paleoproterozoic studies,
iron oxide copper gold

system studies

ICP-MS, EDS, XRF, SAED,
TEM, XRD, ICP-AES,

TG-DSC
[303–311]

Surface iron oxide layer
on metal

Tribo-oxidation wear of
the cast iron disc Brake system wear studies EDS, XRD, TEM, SAED [315]

Iron oxide NPs
Anodization of Fe sheet in
ethylene glycol electrolyte

and calcination

Biomedicine, catalysis,
photovoltaics, electronics XRD, EDS, XPS, RS, FTIR [312]

Iron oxide inclusions in
concrete samples

Corrosion of a
steel-reinforcing bar in
air-entrained concrete

with chlorides

Corrosion resistance
studies EDS [318]
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Table 9. Cont.

Composition Main Mechanisms of
Iron Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Iron oxide nanosheets
and nanowires

Thermal oxidation of iron
foils in the presence of

water vapor
Cr(VI) removal XRD, TEM, RS, UV–Vis [319]

Iron oxide hollow spheres

Microwave–hydrothermal
ionic liquid method,

calcination and
autocatalysis

Photocatalysis XRD, TEM, UV–Vis [314]

Inclusions of iron oxides
in mineralized rocks

Abiotic formation of a
mineral deposit Geochemistry XRF [320]

Theoretically calculated
iron oxide phases

Radiation-chemical
oxidation of Fe depending
on pH and oxygen content

Precambrian studies Kinetics of iron oxidation
calculations [321]

Iron oxide NPs supported
on biogenic silica

Iron oxide NP
impregnation under

hydrothermal conditions
and calcination

Rhodamine B
photocatalytic
degradation

EDS, XRD, UV–Vis, TEM [316]

Sediment samples with
inclusions of iron oxides

Mineralization by variable
diagenetic processes Rock magnetism studies XRD, EDS [322]

Iron oxide nanorods
Sols of ferric hydroxide

radiolysis in water under
gamma irradiation

Electronics, biomedicine XRD, TEM [314]

Spinel-bearing peridotite
Oxidation of ferrous iron
in olivine and pyroxene

into ferric iron
Serpentinization studies FTIR, EDS [323]

Iron oxide inclusions in
kaolin clay samples

Abiotic chemical
precipitation

Clay chemistry and
morphology studies

ICP-AES, XRD, XRF,
TG-DSC [324]

Precipitates containing
iron oxide inclusions

Biomineralization by
photosynthetic

Fe(II)-oxidizing bacteria

Banded iron
formation studies XRD, EDS [325]

Iron-mineralized biofilms
Dissolution and

re-precipitation of iron
oxide minerals

Bioremediation of iron
ore mines – [326]

Iron oxide nanotubes

Template-based
electrodeposition and

calcination under
oxidizing atmospheres

Biomedicine, electronics,
gas sensors, catalysis TEM, XRD, SAED [317]

Iron oxide powder
Hydrothermal process

with a use of pyrite cinder
lixivium

Pyrite cinder reutilization FTIR, XRD, TEM, SAED [327]

Growth model for
submarine deposits

Transformation of primary
(hydr)oxides via reduction

by organic matter

Banded iron
formation studies – [328]

Table 10. Data on the structures containing co-existing FeO and Fe3O4 phases.

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Fe-rich carbonates with
inclusions of iron oxides

Laser heating of natural
goethite in a diamond anvil

cell in CO2

Earth’s mantle studies XRD, XAS, TEM, EELS,
HAADF-STEM, SAED [329]

Samples with partially
reduced FeO and Fe3O4

Porous iron growth from
wüstite in CO/CO2 and

H2/H2O systems

Porous iron growth
mechanism studies – [330]

Fe/oxide core-shell NPs

Formation of Fe3O4 during
the oxidation of Fe NPs;

high-temperature reduction
of Fe3O4 to FeO by an

electron-beam

Environmental remediation,
electronics, catalysis,

biomedicine, energy storage

TEM, SAED, EELS,
HAADF-STEM, EDS [331]
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Table 11. Data on the structures containing co-existing γ-Fe2O3 and Fe3O4 phases.

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification Techniques Refs.

Iron oxide NPs

Thermal decomposition of iron
oleate, continuous flow synthesis,
co-precipitation of Fe3+/Fe2+ ions,

aerosol spray pyrolysis with the use
of ferric nitrate and ferric chloride,
precipitation from iron salts with

natural leaf extract

Biomedicine, soil remediation, metal
removal, wastewater treatment,

electronics, catalysis, energy storage,
groundwater remediation

TEM, XRD, FTIR, SAED, TG-DSC,
UV–Vis, SAXS, neutron diffraction,

EDS, MSP, EELS, EPR, ICP-MS,
XAS, RS

[45,332–340,352–355,358–362]

Surface iron oxide layer on metal

Oxidation of a pure iron surface in
oxygen, electrochemical reduction
of lepidocrocite and ferrihydrite, in

situ formation on an iron surface
depending on the applied potential

Iron oxidation studies, atmospheric
steel corrosion studies, groundwater

remediation, corrosion
protection studies

XPS, XRD, XAS, RS, AES,
ellipsometry [345–349]

Oxidation layer on
archaeological steel

Combined iron oxidation/iron(III)
oxyhydroxide reduction without O2

Corrosion studies on ancient
metallic objects EDS, RS [343]

Iron oxide-TiO2 nanorod
heterostructures

Precipitation by injection of Fe(CO)5
into stirred TiO2 containing mixture

Optoelectronics, biomedicine,
catalysis XRD, XAS, ICP-AES, TEM, UV–Vis [363]

Iron oxide in nanoscrolls and
nanoribbons

Precipitation from ferric and ferrous
chloride with ammonia solution

Lithium-ion storage, photocatalysis,
biosensors TEM, FTIR [364]

Iron oxide hollow core/Shell NPs
Solvothermal synthesis from FeCl3

and urea in ethylene glycol
and calcination

Biomedicine XRD, TEM, TG-DSC, UV–Vis [365]

Thin-film nanocomposite
membrane with iron oxide

In situ synthesis from aqueous
solutions containing ferric chloride Biofouling protection EDS, TEM, XPS, UV–Vis, XRD,

TG-DSC [366]

Magnetoferritin iron oxide NPs Controlled mineralization from
recombinant human H-chain ferritin Biomedicine TEM [367]

Iron oxide-based hollow magnetic
nanoparticles

Synthesis from iron pentacarbonyl
in 1-octadecene and oleylamine Exchange bias studies XRD, TEM, FTIR, MSP, F-AAS [368]

Albumin protein-based
magnetic NPs

Co-precipitation of FeCl2 and FeCl3
by ammonia in the presence

of protein
Biomedicine TEM, TG-DSC [369]
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Table 11. Cont.

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification Techniques Refs.

Composite of organic matrix and
iron oxide NPs

Thermal decomposition of iron(III)
oleate complex Biomedicine TEM [370]

Iron oxide powder Photochemical oxidation of siderite
(FeCO3) by ultraviolet radiation Banded iron formation studies XRD [371]

Interfacial iron oxide layer on
iron artifacts

Iron corrosion in an anoxic
environment after a pH increase at

the interface

Anoxic corrosion of archaeological
steel studies

HAADF-STEM, RS, EDS, SAED,
SIMS [344]

Iron oxide hydroxyapatite
core/shell nanocomposites

Precipitation from ferric and ferrous
chloride with ammonia under N2

Biomedicine TEM, FTIR, XRD, AAS, EDS [372]

Chitosan-based beads with iron
oxide NPs

Co-precipitation from ferric and
ferrous chloride with

NaOH solution
Remediation of water sources XRD, FTIR, TG-DSC, EDS [356]

Silica–iron oxide nanocomposite
Co-precipitation from ferric and

ferrous chloride with
ammonia solution

Toxic species removal XRD, TEM, FTIR, UV–Vis, SAED [357]

Vertical tube-shaped iron-oxide
accumulations Deep water corrosion of carbon steel Marine corrosion studies EDS [351]

Hydrogels with embedded iron
oxide NPs

In situ mineralization of iron ions in
a hydrogel matrix Dye removal XRD, FTIR, TG-DSC, TEM [373]

Corroded reinforced concrete Iron corrosion in a laboratory
corrosion chamber Steel rebar corrosion studies XRD, EDS [350]

Porous hollow iron oxide NPs on
carbon nanotubes

Etching of Fe-FexOy intermediate
with nitric acid aqueous solution

and drying
Biomedicine, catalysis, separation TEM, XRD [374]

Iron oxide embedding of bacterial
cells

Biomineralization by thermophilic
iron-reducing bacteria

Biogenic iron mineral formation
studies XRD [375]

Activated carbon aerogel with iron
oxide inclusions

Hydrothermal synthesis from
ferrous sulfate with ammonia Catalytic oxidation of pesticides XRD, FTIR, XPS, TEM [376]

Polyglycerol-grafted
iron oxide NPs

Thermal decomposition of iron(III)
acetylacetonate in triethylene glycol Biomedicine TEM, TG-DSC, FTIR, ICP-AES [377]
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3.4. The Structures Containing Three or More Co-Existing Iron Oxide Phases

The co-existence of three or more iron oxide compounds in a single heterogeneous
composition makes it useless to try to precisely distinguish every standalone phase. Thus,
studies devoted to such a case are considered in this section and listed in Table 12. Iron
oxide NPs and the surface oxide layer on metal surfaces are the largest groups of papers
on the structures containing mixed iron oxide phases. Synthesis techniques for obtaining
mixed iron oxide NPs include physical ones (flame synthesis [378], thermal oxidation [379]
and laser ignited combustion [376]) and chemical ones (thermal decomposition [82,380]
and precipitation [341], including “green” process [381]). The main application of such NPs
is in biomedicine [82,378–380].

Table 12. Data on the structures containing mixed iron oxide crystal phases [42,79,380–407].

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Iron oxide NPs

Thermal decomposition of an
iron oleate in the presence of

oleic acid, flame synthesis
from Fe(CO)5, precipitation

from ferric chloride in a
natural leaf extract, thermal
oxidation of polycrystalline

Fe foils

Biomedicine, ferrofluids,
electronics, immobilization of

Cd in soils, catalysis,
metal fuel

PMS, TEM, EDS, TG-DSC,
SAED, XRD, XPS, FTIR,

UV–Vis, EELS
[79,380–384]

Surface iron oxide layer
on metal

Carbon steel corrosion at
room temperature, iron

carboxylate transformation to
iron oxides, electrochemical

anodization of metal in
simulated acid rain solution

Corrosion resistance studies,
railway industry, fireside

corrosion studies

EDS, XRD, XRF, RS, XPS,
FTIR, TG-DSC [385–389]

Powder containing iron oxide
microparticles

Carbothermal reduction of
red mud by heating in a

microwave furnace

Alumina production
by-product recycling XRD, EDS, XRF, TG-DSC [400]

Iron oxide microfibers
arranged in a complex
hierarchical structure

Thermal decomposition of
Fe(CO)5 and silicone oil and

microwave vaporization

Environmental safety,
biomedicine, sensors EDS, XRD [396]

Fe-based nanocomposite
catalysts containing

agglomerates of the two types

Melting of iron, aluminum
and copper salts and

reduction

Low-temperature catalytic
oxidation of CO XRD, TEM, XAS, EDS [393]

Iron oxide powders
containing hematite,

magnetite and maghemite

Chemical precipitation from
ferric nitrate and ferrous

sulfate and heating

Inositol phosphate selective
retention in soil XRD [399]

Silica–iron oxide
nanocomposite with hematite,

magnetite and wüstite

Silica promotion upon the
reduction of amorphous iron

oxide in hydrogen
Catalysis XRD, TEM, EELS, STEM,

SAED [394]

Iron(II) and (III) oxides
inclusions in char composites

Microwave pyrolysis of Moso
bamboo samples with ferric

chloride
Syngas production XRD [401]

Ultra-thin magnetic iron
oxide films containing Fe3O4,

γ-Fe2O3 and FeO

Thermally induced phase
transformation of ultra-thin

iron oxide films
All oxide heterostructures XRD, XPS [402]

Surface iron(II) and (III) oxide
layer on iron granules

Atomization of the molten
semi-steel with a rotary cup

atomizer
Iron powder production TG-DSC, XRD [403]

Iron oxide (Fe3O4, γ-Fe2O3
and α-Fe2O3) inclusions in fly

ash samples

Coal combustion and flue gas
cooling at various

temperatures

Selenium adsorption by iron
minerals XRF, MSP, XPS [404]

High-pressure metastable
phases mFeO·nFe2O3

Formation of complex iron
oxide crystals under

high-pressure conditions

Earth and planetary deep
interior studies – [24]

Iron(III) oxide submicron
inclusions in a biofilm on a

basalt surface

Microbial direct or non-direct
biomineralization Biovermiculation studies EDS [388]

Inclusions of poorly
crystalline iron(III) oxides in

ore samples
Microbial biomineralization Mine remediation, waste

stabilization SIMS [390]

Iron oxide (Fe3O4, γ-Fe2O3
and α-Fe2O3)/iron composite

Reactive spark plasma
sintering of mechanically

activated Fe powders

Magnetic material
development XRD, TG-DSC [405]
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Table 12. Cont.

Composition Main Mechanisms of Iron
Oxide Formation Declared Applications Phase Verification

Techniques Refs.

Core−shell Fe@Fe2O3
nanowires containing Fe(II)

and Fe (III) oxides

Ferric chloride reduction with
sodium borohydride and

surface oxidation
Cr(VI) removal XRD, UV–Vis, TEM, XPS [406]

Iron oxide submicron
particles accumulated in the

cytoplasm of cells

Intracellular or extracellular
microbial biomineralization

Hydrothermal vent field
studies XRD, TEM, SAED, EDS [389]

Deposit samples with
inclusions of iron(II) and (III)

oxides

Anoxygenic photosynthesis
by a photoferrotrophic

bacterium

Banded iron formation
studies – [391]

Bovine serum albumin–iron
oxide suspensions

Precipitation from ferric
nitrate with NaOH in N2

atmosphere
Boreal forest studies FTIR [398]

Iron oxide (Fe3O4, γ-Fe2O3
and α-Fe2O3) magnetic short

nanotubes

Anion-assisted hydrothermal
route by using phosphate and

sulfate ions

Biomedicine, ferrofluids,
electronics, spintronics TEM, SAED, XRD [407]

Fe-biochar composites
containing iron(II) and (III)

oxides

Pyrolysis of ferric chloride in
a biochar matrix at various

temperatures

Arsenic removal,
environmental remediation XRD, XPS, RS, FTIR [397]

FexOy@C spheres embedded
with highly dispersed iron

oxide NPs

One-pot hydrothermal
cohydrolysis-carbonization

using iron
Catalysis TEM, EDS, XAS, XRD, MSP [395]

Powder with inclusions of
submicron iron oxide

particles

Reduction of solid ferric
hydroxide by iron-reducing

bacteria

Microbial iron reduction
studies EDS, RS [392]

An iron oxide layer on the metal surface is the second commonly considered structure,
which plays an important role in corrosion studies [383–385] and can be formed both
naturally (e.g., iron carboxylate transformation in a leaf contamination on rails [386] or
fireside corrosion of steel in the furnace walls in boilers [384]) and synthetically (e.g., in situ
oxidation of the surface of a steel sample in a controlled atmosphere [387] or electrochemical
anodization of metal in a simulated acid rain solution [385]).

Compositions with mixed iron oxides can originate via a biogenic route, including
microbial direct or non-direct biomineralization [388–390], anoxygenic photosynthesis
by a photoferrotrophic bacterium [391] and the reduction of solid ferric hydroxide by
iron-reducing bacteria [392]. Biogenic iron oxide structures can be used in microbial
iron reduction studies [392], banded iron formations [391] or hydrothermal vent field
studies [389] and waste remediation [390].

Similarly to the above mentioned iron oxide structures, various compositions contain-
ing mixed iron oxide phases can be applied for catalytical purposes. These compositions
include iron oxide NPs [379], Fe-based nanocomposites [393], silica–iron oxide nanocompos-
ites [394] and FexOy@C spheres [395] and can be obtained with the use of chemical [394,395]
or physical [379,393] synthesis.

Finally, in some cases, such structures are used for various environmental tasks, includ-
ing environmental safety [396], environmental remediation [397], boreal forest studies [398],
inositol phosphate selective retention in soil [399], biovermiculation studies [388] and the
Earth and planetary deep interior studies [24].

3.5. The Main Characterization Techniques Used to Verify Phase Composition

From analyzing Tables 2–12, the most frequently used characterization techniques can
be revealed. These techniques include X-ray powder diffraction (XRD), energy-dispersive
X-ray spectroscopy (EDS), transmission electron microscopy (TEM), Fourier-transform
infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV–visible(-NIR)
spectroscopy (UV–Vis), selected area electron diffraction (SAED), Raman spectroscopy
(RS), thermogravimetry/differential scanning calorimetry (TG-DSC), X-ray absorption
spectroscopy (XAS), Mössbauer spectroscopy (MSP) and X-ray fluorescence (XRF). The
diagram showing the partial distribution between these techniques is presented in Figure 5.
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In some cases, while the crystal structure of the co-existing iron oxide compounds
differs significantly (e.g., for hematite and magnetite), the most common and available
techniques are suitable for phase composition verification, including XRD and XRF. For
instance, XRF and XRD techniques were used to determine the chemical and crystalline
phase composition, accordingly, of clay samples containing iron oxides [324]. Another
possible example is ε-Fe2O3, a crystal structure that is also quite distant from the other
iron(III) oxide polymorphs and can be distinguished with the use of RS and XAS [258], or
even with the use of a standalone XRD technique [37]. Contrary to the above, the simulta-
neous existence of magnetite and maghemite crystal phases cannot be adequately analyzed
with XRD, SAED or some other techniques due to the similar crystal structure of these
compounds and non-stoichiometry of synthetic [38] or natural [6,295] magnetite. In this
case, the MSP technique can give additional information on the crystal structure, including
magnetite to maghemite partial transition or the superparamagnetic state of NPs [38]. MSP
can be applied to characterize samples composed of homogenously sized iron oxide NPs
above the blocking temperature in a superparamagnetic regime [368]. Mössbauer measure-
ments were performed to investigate detailed iron mineralogy compositions in magnetic
fractions of fly ashes [405]. Perecin et al. showed that although Mössbauer spectra with two
sextets were expected for pure magnetite, an extra sextet suggested the maghemite phase’s
presence in the sample, in agreement with the FTIR results [89]. The high oxidation degree
of magnetite can be confirmed by low isomer shift values [342]. MSP results can show a
shift of the Morin transition in hematite upon increasing Ru3+-to-Fe3+ substitution, similar
to the shift in the Morin transitions occurring in temperature-dependent magnetization
measurements [224].

3.6. The Analysis of the Distribution of Iron Oxide Compounds by their Frequency of Mention

Based on the data provided in Tables 2–12 (in total, more than 300 research articles
were analyzed), a histogram was built (Figure 6). Compositions containing magnetite are
the most frequently considered in scientific articles. This can be explained by taking into
account the highest saturation magnetization of this iron oxide compound among others
and also because of the wide biomedical application of magnetite NPs. The second most
commonly described compound is hematite, presumably due to its use in photocatalysis
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and its abundance (the same for magnetite ores) in nature. The third important iron oxide
compound is maghemite, since γ-Fe2O3 NPs are often used instead of magnetite NPs due
to the high oxidation instability of Fe3O4 in air atmospheres and, therefore, difficulties
in its preservation without an inert atmosphere or a protective shell. Other iron oxide
compounds, including FeO, β-Fe2O3 and ε-Fe2O3, are metastable and/or their synthesis
procedure is too complex, therefore scientific studies on them are relatively rare.
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3.7. The Main Mechanisms of Iron Oxide Formation

Using the information given in Tables 2–12, the generalized scheme illustrating some
widely considered mechanisms of iron oxide formation was drawn (Figure 7). Terrigenous
formation implies abiotic mineralization [100,102,206,219,292,324]. Extraterrestrial forma-
tion including samples from Mars [113] originated from precipitation from oxygenated
iron-rich water [198] and abiotic formation in an aqueous environment of deposition [124].

Biomineralization implies bacterial magnetosome formation [94,96–98], formation by
dissimilatory iron-reducing bacteria [95], bacterial reduction of iron hydroxide [122,166,392],
biomineralization by anoxygenic photoferrotrophy [210], biomineralization inside the
ferritin shell [276,277], biogeneration of magnetite with a use of the amyloid peptide Aβ42
in the case of brain diseases [160], etc.

Iron and iron alloy corrosion include chemical [106,109,238,350] and electrochemi-
cal [86,349,385] processes, either natural or intended. Ceramics firing implies the calcination
of a milled mix at a high temperature in an oxidizing atmosphere [229], high-temperature
firing of local iron-rich area on a ceramic glaze [140] and surface iron enrichment and firing
of wares under reducing conditions [132]. Biomimetic synthesis refers to a process using
natural plant extracts [91], iron oxide NP formation on biogenic silica [316], nucleation
of Fe3O4 NPs mediated by the iron-binding protein Mms6 [92] and protein-promoted
conversion of Fe(II) into insoluble ferric iron oxides [284].

Chemical precipitation includes co-precipitation by sodium hydroxide from an iron
chloride solution [82], precipitation from Fe3+ and Fe2+ ions by urea with chitosan [149],
precipitation from iron(II) sulfate heptahydrate with NaOH [158] and precipitation from
iron(III) ethoxide with ethanol in the surfactant solution [179]. Physical deposition im-
plies electron-beam deposition [142], liquid-phase atomic layer deposition [232], pulsed
laser deposition on the Ga-terminated surface of a GaN (0001) [260] and chemical vapor
deposition from an Fe organic liquid source [258]. Finally, mechanochemical synthesis
includes mechanical mixing and thermal treatment under a N2 atmosphere [301], reactive
spark plasma sintering of mechanically activated Fe powders [405] and milled zerovalent
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iron corrosion in anaerobic synthetic groundwater [348]. All the listed routes of iron oxide
formation can be either intended (controlled) or natural (uncontrolled).
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(j)—Mechanochemical synthesis.

4. The Main Applications of the Structures Containing Iron Oxides

The largest amount of scientific papers being analyzed describes various biomedical
applications of iron oxides, mainly magnetite/maghemite NPs. Photocatalytic oxidation
and other applications in catalysis are the second major practical use of iron oxides, with a
predominance of compositions with hematite. The third important field of use is electronics,
including spintronics, data storage development and optoelectronics, mainly for thin
ferrimagnetic or antiferromagnetic iron oxide films. Corrosion science is a quite obvious,
but still very important area of application, since iron oxide passivation can provide
a better reliability of steel pipelines, safety of ancient artifacts for heritage science, etc.
Waste remediation is generally based on the possibility of iron oxidation from iron(II) to
iron(III) and to absorb or bind inorganic and organic pollutants. Finally, serious attempts
in geosciences with the use of various iron oxide compositions are still being made, despite
a long history of research. Studies of natural iron ores can give much information about
Earth’s evolution, including Precambrian research.

Biomedical applications of iron oxides include T2 magnetic resonance imaging (MRI).
MRI contrast agents are based on superparamagnetic NPs; their nanocluster formation
increases the magnetic signal and subsequently enhances imaging sensitivity or cell labeling
efficiency [29]. Magnetic hyperthermia with alternating magnetic fields requires magnetic
NPs having an effective heating rate to enable therapeutic applications [11]. There are
diverse bioinspired approaches for the synthesis of magnetic nanochains with optimal
properties for biomedical applications, including magnetically guided drug delivery [13].
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The integration of magnetic NPs and organic dyes into single platforms demonstrated their
use as bimodal imaging agents for both in vitro and in vivo imaging and in multifunctional
platforms that perform several tasks in parallel (e.g., dual-mode imaging and photodynamic
therapy or drug delivery) [14].

Iron oxide formation mechanisms are important for understanding formation pro-
cesses of iron-relevant minerals in Precambrian banded iron formations, granular iron
formations and associated iron-poor strata [4,33]. This understanding also includes the ori-
gin of probably the first protosensory system evolved on Earth, i.e., magnetotaxis, while the
precise mechanism of biogenic magnetite mineralization on early Earth is still unknown [8].
Well-known processes of the biomineralization of iron can help in better understanding
human body iron metabolism and in curing diseases linked with iron-damaged regula-
tion [10]. Today, by far the single most important use (by volume) of iron oxides is as
a source of Fe, which is subsequently processed to make steel [3]. Another important
iron oxide industrial application is photoelectrochemical water splitting. It is a leading
strategy for producing a promising renewable store of energy—hydrogen [12]. Iron oxides,
including magnetite, maghemite and hematite, are widely used in heterogeneous catal-
ysis processes and have been attractive alternatives for the remediation of polluted soil,
groundwater and wastewater based on a heterogeneous Fenton reaction (a combination of
a solid Fe-based catalyst and H2O2) [25,26]. Partially oxidized zerovalent iron NPs with a
core-shell structure can be used to remediate groundwater and wastewater contaminated
by chlorinated organic compounds, heavy metals, dyes and phenols [27].

Rare iron(III) oxide polymorphs can also be practically used. Thus, β-Fe2O3 has
found a few applications in an electro-catalyst for the reduction of hydrogen peroxide, in
optoelectronics and in red ferric pigments [19]. A very high room-temperature coercive
field makes ε-Fe2O3 suitable for use in recording media; its magnetoelectric coupling and
millimeter-wave ferromagnetic resonance are useful in electric/magnetic field tunable
devices and for millimeter wave absorption on the walls of an interior room or on the
body of a car, train or airplane [36]. In some cases, e.g., in catalysts, amorphous Fe2O3
NPs can be more active than nanocrystalline polymorphs or particles of metallic iron of
the same diameter [39]. The structures of iron oxides are common to many binary systems
and complex solid solutions; therefore, a rich set of isostructural compounds and solid
solutions with tunable properties may be synthesized [23].

Ceramics, including composites containing inclusions of amorphous iron oxides, are
suitable for various industrial applications. The process of transforming iron oxides from a
glass network into a crystal nucleus was studied for the novel field of glass ceramics based
on waste glass [408]. Prim et al. showed that iron oxide from a metal sheet treatment process
may be used as a ceramic pigment by encapsulation in a crystalline and amorphous silica
matrix [409]. Intended for hazardous waste incineration, glass ceramics containing hematite
exhibited a superior compressive strength, volume density and water absorption [410].
Alumina–zirconia–titania ceramic membranes coated with a nanosized hematite layer can
be applied in a combined ozonation–membrane filtration process [411]. The formation of
solid solutions between mullite and transition metal cations, including iron, affects the
thermal expansion of mullite ceramics through the distortion of the Al–O octahedral [412].

Less than 20 a wt% addition of iron oxide significantly lowered the softening and
melting temperatures of CaO–Al2O3–MgO–SiO2-based glass ceramics [413]. The lower
melting temperature leads to a significant decrease in the price of the vitrification procedure
and to the suppression of heavy metal evaporation during glass melting [414]. Such a class
of glass ceramics possessing excellent mechanical characteristics (bending strength of 120
MPa, hardness of 9 GPa and fracture toughness of 1.6 MPa·m1/2) was discussed, together
with the remarkable effect of their vitrification on heavy metal immobilization [415]. One
of the most low-temperature techniques, the sol–gel method, which involves the hydrolysis
of the precursors of constituent oxides followed by their gelation, has the potential to yield
magnetic ceramics, including bioceramics, with a more flexible composition range, better
homogeneity, better bioactivity and controllable porous structure [416]. Nanostructured
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catalyst-modified composite cathodes can be obtained by infiltrating a metal ion solution
into a ceramic scaffold, followed by heating at a high temperature. A 3D heterostructured
electrode decorated by amorphous iron oxide that works stably at 650 ◦C with an oxygen
reduction reactivity comparable to that of a Pt-decorated one was obtained [417].

A wide range of metals such as gold, silver, copper, zinc, iron, platinum and palla-
dium are fabricated in the form of NPs using algae and cyanobacteria and can be applied
for infection control, diagnosis, drug delivery, biosensing and bioremediation [418]. An
approach for the synthesis of highly pure, crystalline and biocompatible hematite NPs
through the sole use of Psidium guajava leaf extract was proposed. The antibacterial efficacy
of the obtained hematite NPs against Gram-positive as well as Gram-negative bacteria
was established [419]. Both plants and microbes offer various ways to synthesize mag-
netite and maghemite NPs for potential dye degradation from industrial effluents from
a variety of routes due to their vast genetic diversity and presence of various enzymes,
respectively [420]. Co-substituted magnetite NPs were produced during the enzymatic
reduction of a synthetic co-ferrihydrite using Geobacter sulfurreducens as an analogue to
bioreduction processes in the natural environment to understand the natural biogeochem-
ical cycling of cobalt in Fe-rich environments undergoing microbially mediated redox
transformations [421]. Natural biogenic iron oxide extracted from banded iron formations
showed high removal potential with the maximum sorption efficiency of 88.65% at a 30
g/L adsorbent dose [422].

Amorphous iron oxides are the promising material for various energetic and catalytic
applications, including biomedicine. Compared to well crystalline Fe2O3, amorphous
Fe2O3/graphene composite nanosheets exhibited superior sodium storage properties such
as high electrochemical activity, a high initial Coulombic efficiency of 81.2% and a good
rate of performance for sodium-ion batteries [423]. Efficient water oxidation catalysts have
nominally amorphous mixed-metal oxide phases on their surface which are responsible for
catalytic activity [424]. Amorphous iron oxide-packaged oxaliplatin prodrugs can be effec-
tive for cancer treatment, since the Fe2+/Fe3+ ions released by the amorphous iron oxide
NPs produce a large amount of reactive oxygen species through Fenton’s reaction [425].
Nanosized amorphous iron oxide showed higher catalytic activity with lower oxidant
consumption in comparison to Fe3O4- and Fe2O3-based clay composites [426]. Amorphous
Fe2O3 nanoflakes were biosynthesized by a novel sol–gel method using Aloe vera leaf
extract, and their catalytic effect on the thermal decomposition of ammonium perchlorate
was investigated [427]. Amorphous Fe2O3 NPs can act as efficient and robust photocat-
alysts for solar H2 evolution without any cocatalysts [428]. Amorphous Fe2O3/reduced
graphene oxide/carbon nanofiber films were tested as flexible and freestanding anodes for
lithium-ion batteries [429].

Corrosion resistance studies involving iron oxides are also important. Thus, potas-
sium and chlorine may interplay to accelerate the corrosion of Fe-rich oxide scales, and
an understanding of this process may open up new ideas for ways to decrease corrosion
in highly corrosive environments [430]. Wheat straw fiber-reinforced polyvinyl chloride
composites pigmented with iron oxide pigment have better seawater corrosion resistance,
including better fiber/matrix interfacial interaction, lower total discoloration and higher
surface hydrophobicity, mechanical properties and thermal stability [431]. Hydroxyapatite-
bioglass-Fe3O4-chitosan coatings showed an effective improvement of the surface prop-
erties, hemocompatibility and in vitro corrosion rate of a biodegradable magnesium al-
loy [432]. The corrosion resistance of the epoxy coating was experimentally improved
using micaceous iron oxide and Al pigments [433]. In the case of stainless steel, iron oxide
formation corresponds to a low pitting potential and corrosion resistance and leads to the
degraded protective property of the oxide film [434].

Based on the data in Tables 2–12, a diagram illustrating the main declared applications
of various compositions with iron oxides was built (Figure 8).



Magnetochemistry 2023, 9, 119 33 of 50

Magnetochemistry 2023, 9, x FOR PEER REVIEW 33 of 52 
 

 

effective for cancer treatment, since the Fe2+/Fe3+ ions released by the amorphous iron ox-
ide NPs produce a large amount of reactive oxygen species through Fenton’s reaction 
[425]. Nanosized amorphous iron oxide showed higher catalytic activity with lower oxi-
dant consumption in comparison to Fe3O4- and Fe2O3-based clay composites [426]. Amor-
phous Fe2O3 nanoflakes were biosynthesized by a novel sol–gel method using Aloe vera 
leaf extract, and their catalytic effect on the thermal decomposition of ammonium per-
chlorate was investigated [427]. Amorphous Fe2O3 NPs can act as efficient and robust pho-
tocatalysts for solar H2 evolution without any cocatalysts [428]. Amorphous Fe2O3/re-
duced graphene oxide/carbon nanofiber films were tested as flexible and freestanding an-
odes for lithium-ion batteries [429]. 

Corrosion resistance studies involving iron oxides are also important. Thus, potas-
sium and chlorine may interplay to accelerate the corrosion of Fe-rich oxide scales, and an 
understanding of this process may open up new ideas for ways to decrease corrosion in 
highly corrosive environments [430]. Wheat straw fiber-reinforced polyvinyl chloride 
composites pigmented with iron oxide pigment have better seawater corrosion resistance, 
including better fiber/matrix interfacial interaction, lower total discoloration and higher 
surface hydrophobicity, mechanical properties and thermal stability [431]. Hydroxyap-
atite-bioglass-Fe3O4-chitosan coatings showed an effective improvement of the surface 
properties, hemocompatibility and in vitro corrosion rate of a biodegradable magnesium 
alloy [432]. The corrosion resistance of the epoxy coating was experimentally improved 
using micaceous iron oxide and Al pigments [433]. In the case of stainless steel, iron oxide 
formation corresponds to a low pitting potential and corrosion resistance and leads to the 
degraded protective property of the oxide film [434]. 

Based on the data in Tables 2–12, a diagram illustrating the main declared applica-
tions of various compositions with iron oxides was built (Figure 8). 

 
Figure 8. Main applications of iron oxides. 

5. Summary and Perspectives 
Iron oxide compounds are widely presented in various scientific and industrial areas 

due to their abundance on Earth. The possibility of changing the iron oxidation state be-
tween Fe2+ and Fe3+ lies in the basement of the biogenic iron cycle, which results in band 
iron formation accumulations and the deposition of fossilized magnetotactic bacteria, 
called magnetofossils [435]. The mass production of metallurgy and large iron deposits, 
e.g., the Kovdor deposit [6], provides a low cost of iron oxides compositions and their 

Figure 8. Main applications of iron oxides.

5. Summary and Perspectives

Iron oxide compounds are widely presented in various scientific and industrial areas
due to their abundance on Earth. The possibility of changing the iron oxidation state
between Fe2+ and Fe3+ lies in the basement of the biogenic iron cycle, which results in band
iron formation accumulations and the deposition of fossilized magnetotactic bacteria, called
magnetofossils [435]. The mass production of metallurgy and large iron deposits, e.g., the
Kovdor deposit [6], provides a low cost of iron oxides compositions and their applicability
for different technical purposes. High biocompatibility and modern synthesis techniques,
including continuous-flow, biomimetic and biogenic processes, make it possible to translate
academic research to clinical practice [435–437].

Integrating magnetic NPs with polymers allows for the fabrication of multifunc-
tional systems for chemotherapy and magnetic hyperthermia therapy, which can also be
simultaneously monitored by utilizing the magnetic resonance imaging capabilities of mag-
netic nanoparticle–polymer conjugates [14]. Such systems, e.g., iron-loaded crosslinked
magnetic chitosan/graphene oxide, can also be widely applied for the practical environ-
mental remediation of wastewater effluents containing organic pollutants [174]. The novel
iron oxide-based materials can be used to improve solar fuel production [110]. The use
of ferritin protein as a carrier of iron oxide NPs renders it more suitable for cancer di-
agnosis as an effective T2 contrast agent with an expected reduced toxicity due to the
prevention of NP interaction with the environment [367]. Two-phase iron oxide NPs (e.g.,
magnetite/maghemite core-shell structures) are promising for applications implying an
intrinsic exchange bias effect [368].

As paleoenvironmental proxies, the iron abundance, speciation and isotopic composi-
tion recorded for an Archean ocean analogue in the future can assist in understanding the
iron biogeochemistry in the water column and explain the information recorded in sedi-
mentary rocks of the Precambrian ocean [104]. More empirical and experimental research
is needed to quantify controlling factors of fractionation that occur with iron oxide crys-
tallization in hydrothermal mineral systems [303]. Future work that reconstructs Archean
seawater iron and Si concentrations will be crucial in evaluating the extent to which ferrous
hydroxide auto-oxidation controlled the Archean iron cycle and the oxidation of the young
Earth [103]. The crystal structure of iron oxides synthesized under high pressures, their
bonding nature and build-up structural motifs may guide us in discovering novel iron ox-
ide phases and will be useful in revealing the chemistry and physics of Earth and planetary
deep interiors [24].

Despite the long history of iron oxide research, they continue to attract the high atten-
tion of scientists all over the world; therefore we can suppose the future fundamental and



Magnetochemistry 2023, 9, 119 34 of 50

applied discoveries in this field. The main possible tendencies, which can be predicted from
the current state of the research, include the further integration of various scientific analyti-
cal approaches, e.g., well-developed in geosciences and nanotechnologies [37,38,294,438],
a wider implementation of “green” and biomimetic technologies [439] and a combined use
of natural iron oxides and synthetic components in a single structure [6].
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