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Abstract: Interventional biopsy needles need to be accurately localized to the target tissue during
magnetic resonance imaging (MRI) interventions. In this context, severe susceptibility artifacts
affect the visibility of structures in the MR images depending on the needle’s material composition.
In particular, standard needles for the spinal cord made of nickel-titanium alloys (NiTi) generate
massive susceptibility artifacts during MRI. Consequently, this does not allow the precise placement
of the needle to the target. The aim was to prove that using a non-metallic material for the needle
can significantly reduce the appearance of artifacts. Hence, this work used a new combination of
non-metallic materials based on an enforced fiber bundle as an inner core with different outer hollow
sheets to fabricate seven prototypes of interventional spinal needles to optimize their visualization in
MRI scans. Susceptibility artifacts for the non-metallic needles were evaluated in MRI images by an
automatic quantification based on a K-means algorithm and compared with manual quantification.
The width and length of the artifacts were measured for each needle. The non-metallic needles
showed significantly lower artifacts in comparison to the standard needle. K-means provided the
capability for detecting needle artifacts in MRI images, facilitating qualitative and quantitative
assessment of MRI artifacts.

Keywords: unsupervised machine learning; K-means clustering; susceptibility artifacts; MRI
compatibility; biopsy needles; non-metallic materials

1. Introduction

Magnetic resonance imaging (MRI) is an imaging modality widely used in medical
diagnostics and therapy. The use of MRI guidance has several advantages compared to
other image modalities such as computed tomography (CT) and ultrasound (US) guid-
ance [1,2] MRI provides detailed anatomical and physiological images of the body. The
images have superior soft tissue contrast, without exposing the patient to ionizing radi-
ation. In addition, this imaging technique has the ability to detect malignant tumors, as
well as to provide anatomical and functional diagnostics of the heart and brain activity.
Besides diagnostic imaging, MRI is also used to guide minimally invasive interventions, i.e.,
for monitoring and guiding therapeutic procedures [3,4]. Exemplary applications for an
MRI-guided minimally invasive intervention are liver biopsies [5], pain therapy for spinal
cord application [6], drainage placements, radiofrequency ablation, and drug delivery [7].

Image-guided procedures combine MRI with needle biopsy to provide physicians
with quick access to abnormal areas that may not be visible through the skin during the
procedure. The physician will ensure the needle reaches the desired location using real-
time images. Recent advancements in interventional MR systems and MRI-compatible
needles have enabled precise tracking and an open configuration, facilitating near-real-time
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localization strategies for interventional procedures. Other benefits include improved
contrast in soft tissues, multi-planar imaging, and non-ionizing radiation for the patient or
the medical staff [8,9].

However, performing image-guided procedures in an MRI environment can be chal-
lenging due to the presence of a strong magnetic field. Interventional needles used in
MRI-guided procedures must meet the essential requirements of electromagnetic compat-
ibility and the avoidance of mechanical forces due to magnetic attraction [7,10]. In this
context, most standard needles for interventions are limited for use in the MRI environment
due to safety concerns related to a magnetic attraction. Despite the benefits of using MRI-
compatible needles, it is still challenging due to severe susceptibility artifacts appearing
during the MRI scan because of the material’s interactions with the magnetic field. As a
consequence, it does not allow the precise placement of the needle within the MRI scan [11].
An MRI-guided biopsy is performed using either an open- or closed-bore MRI system.
The recent commercial availability of open MR systems has become the preferred type
for MRI-guided procedures because it provides direct access to the patient. There have
been continuous efforts, which have concentrated on developing strategies for MR-guided
biopsies. They have focused on the safety, performance success, and visualization of the
needles relative to surrounding tissues. In addition, the visualization of the needles in the
MR environment is connected directly to the principal phenomena, called susceptibility
artifacts, caused by needle-induced field inhomogeneities in the MR image [12,13].

The phenomena of the MRI susceptibility artifact effects depend on many factors,
mainly on the materials used for the biopsy, then the field strength, the MRI sequence
parameters, and the orientation of the biopsy needle to the main magnetic field. Under-
standing these dependencies is essential to evaluate the positioning accuracy obtainable
under MRI guidance. Several groups have experimentally examined the appearance of
needles in MR images [14,15].

The development of a high-quality interventional needle for use in the MRI environ-
ment requires careful consideration of its visibility in the image while minimizing any
resulting massive artifacts, i.e., the size of the visible needle should be close to the geometric
size of the needle. On the one hand, it is crucial to provide precise measurement techniques
that can accurately quantify artifacts during the developmental stage of MRI biopsy nee-
dles [16]. On the other hand, the mechanical performance of the developed needle has to
fulfill the same functional requirements as a standard biopsy needle according to its desig-
nated use [17]. Several groups have conducted experimental studies on the appearance of
needles in MR images [18,19]. For example, standard interventional needles made from
stainless steel and nickel-titanium (NiTi) provide the required mechanical properties, but
they are known to produce significant artifacts in MR images because of their material com-
position [20]. Ceramic needles could produce less or no artifacts. However, a needle made
from ceramics has the potential risk of being brittle, which limits its usage in medical appli-
cations. Alternatively, an approach that utilizes fiber-bundle-reinforced composites is being
explored for needle production. Such needles produce artifacts that are distinctly smaller
in size than standard NiTi needles [11,21]. Before being made commercially available, these
needles undergo clinical studies to optimize their mechanical performance.

Currently, the majority of the research has been conducted aiming to design inter-
ventional biopsy needles for MRI-guided procedures with minimum artifacts. Since the
artifacts mainly depend on the materials used to build these biopsy needles, the current
trend is to develop new MRI-compatible materials or devices producing minimum artifacts
in an MR image, but at the same time, keeping their mechanical properties at an acceptable
level [22]. Many research groups and medical manufacturers are working on interventional
devices for MRI-guided interventions.

Due to the demanding MRI environment, the users use and adapt materials such
as nylon, polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), wood, copper,
alumina ceramics, acetal co-polymers, nylon, aramid, polyester, and fibers. These materials
can be a solution for the construction of biopsy needles that have the required mechanical
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properties and many other materials that come under the MRI-compatible category and
present almost negligible artifacts. Other materials that have produced higher susceptibility
artifacts, such as aluminum, titanium, nitinol, and magnesium, will present noticeable
artifacts, but they may still be acceptably used due to their mechanical properties in medical
applications [23].

In current clinical practice, clinicians evaluate the artifacts of biopsy needles in MRI im-
ages manually, according to the standard of the American Society for Testing and Materials
(ASTM): F2119 for the evaluation of the artifacts directly from MR images [24]. However, it
is a time-consuming procedure for medical staff with limited reproducibility [25]. Therefore,
recent studies have proposed various assessment methods for measuring artifacts in MR
images, such as automatic and machine learning detection approaches [17,26]. These ap-
proaches apply to specific algorithms such as the density-based clustering algorithm (DBS),
which have been developed to address the limitations of traditional clustering techniques.
Traditional clustering methods may not perform well on sparse datasets or data points
with varying densities, which can lead to inaccurate or noisy clustering results. In addition,
we cannot control the K value (number of clusters) such as in K-means. DBS requires the
radius and number of cluster member parameters to be pre-determined, which may be
challenging to identify accurately in this case. A hierarchical algorithm (HDA) clustering
needs a set of nested clusters that are arranged as a tree. HDA generates overlapping,
nested clusters [27]. Our aim was to generate non-overlapping clusters using K-means
to distinguish between cluster members clearly. To this end, each pixel was assigned to
only one cluster and was not included in multiple or overlapping clusters. However, these
algorithms are often limited to specific medical applications, such as those related to the
brain and breast [28–30]. Furthermore, automatic detection of biopsy needles has been
restricted to specific imaging modalities such as photoacoustic, computed tomography
(CT), and MRI [25,31,32]. Regarding MRI applications, Mehrtash et al. developed a detec-
tion approach specifically for visualizing a prostate biopsy needle [25]. There is a lack of
applying a simple machine learning approach for detecting the artifacts for MRI spinal
biopsy needle applications [16,31]. Therefore, To address this gap, our work proposes an
unsupervised machine learning approach based on K-means clustering that is simple to
implement and computationally efficient. The method utilizes only one hyperparameter,
which is the number of clusters (K) [32,33]. Moreover, K-means clustering is unaffected by
varying densities of data points since it uses pixel intensity values for clustering. Clustering
involves dividing the set of data objects into non-overlapping subsets (clusters) such that
each data object is part of only one subset. Additionally, unsupervised machine learning
saves time on annotation for generating the ground truth, which is required for performing
supervised machine learning tasks [34].

The main contribution of our work is to explore the feasibility of using an automatic
workflow based on K-means clustering as a fast and reliable approach to quantify suscep-
tibility artifacts caused by biopsy needles in MRI. We applied the proposed algorithm to
quantify the susceptibility artifacts of eight needles for spinal cord applications, including
one standard NiTi needle and seven fabricated non-metallic needles, and compared the
results with manual quantification. We also compared the automatically and manually
determined needle dimensions from the MR images with their actual geometric dimensions.

2. Materials and Methods

Figure 1 is a schematic representation of our proposed workflow for detecting and
quantifying needle artifacts in MR images using two approaches: automatic quantification
using K-means clustering and manual quantification. We began by fixing one NiTi needle
and seven fabricated non-metallic needles in an acrylic glass filled with gelatin for MRI
data acquisition. We fabricated seven needles based on fiber-bundle-reinforced composites
made from different materials for the outer sheet and widths, as shown in Table 1. The
needle fabrication concept was based on a multi-layer design to enhance the biopsy needle’s
strength and stability and by taking into account the ISO standard requirements for spinal
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needle design (ISO7864:2016), which is in the range of 21–22 Gauge [35,36]. The fabrication
process for the proposed needles was mentioned in detail in a previous publication [11].
However, Figure 2 shows the difference between the standard needles and the proposed
needle from the structural perspective. The structure of the proposed needle was composed
of an inner core, consisting of fiberglass (FG), a matrix glue, a shrinking tube, and a hard
tip made of glass or NiTi. 3 × FG with an average diameter of 0.245 mm were inserted
inside the Polyester shrinking tube. Then, a heated fan shrank the tube to create a single
FB. After that, a 3 mm tip was made out of a glass rod (GR) with a diameter of 0.6 mm
for the 6 needles, and the seventh one was made from 3 mm of NiTi with a diameter of
0.5 mm glued into the inner rod. Two needle tips were sharpened using an angled abrasive
paper to achieve a simple Chiba cut. A group of polymeric outer sheet tubes was chosen
considering MRI compatibility with two types of wall thicknesses (0.15 mm light wall LW,
0.25 mm thin wall TW) based on the American Wire Gauge (AWG). The dimensions of the
outer sheets are listed in Table 1. The objective of selecting different outer sheet tubes was
to explore their mechanical performance for these polymeric materials. The outer sheets
were combined with the proposed inner cores, resulting in seven primary prototypes with
a length of 10 cm labeled as L1, L2, L3, L5, L6, L7, and L8.

Figure 1. Proposed workflow for detecting and quantifying the needle artifacts from the MR images
using two approaches: automatic quantification using K-means clustering and manual quantification.

Table 1. Materials specifications used to fabricate the needles from L1 to L8, polyimide (Pl), fiber
bundle (FB), polytetrafluoroethylene (PTFE), polyether ether ketone (PEEK), fluorinated pethy-
lene propylene (FEP), nickel-titanium (NiTi), glass rod (GR), outer diameter (OD), thin wall (TW),
lightweight wall (LW), and fiber bundle (FB).

Labeled
Needles Materials Used for Needles’ Fabrication Specifications

L1 Inner core (3FB) + outer sheet (PTFE AWG 21) OD: 1.00 mm, TW: 0.15 mm
L2 Inner core (3FB) + outer sheet (PTFE AWG 22) OD: 1.00 mm, TW: 0.15 mm
L3 Inner core (3FB) + outer sheet (PTFE AWG 20) OD: 1.00 mm, LW: 0.15 mm

L4 ITP Standard needle
(inner core + outer sheet) = NiTi OD: 1.00 mm. LW: 0.15 mm

L5 Inner core (3FB) + outer sheet (PTFE AWG 22) OD: 1.00 mm, TW: 0.25 mm
L6 Inner core (3FB) + outer sheet (PTFE AWG 21) OD: 1.00 mm, LW: 0.15 mm
L7 Inner core (3FB) + outer sheet (PEEK) OD: 0.78 mm, TW: 0.25 mm
L8 Inner core (3FB) + outer sheet (FEP AWG 22) OD: 1.00 mm, TW: 0.25 mm



Magnetochemistry 2023, 9, 79 5 of 13

Figure 2. Present longitudinal section for the needle structures used in this work, standard needle
and proposed needle.

2.1. Data Acquisition

Before the data acquisition step, the needles should be fixed in the gelatin phantom.
The use of the gelatin phantom allowed the researchers to simulate human tissue, stan-
dardize their experiments, reduce costs, and eliminate the need for animal or human
testing [37,38]. In this work, a custom-made MRI phantom was made from gelatin powder
called Paltin, reinst, 240 Bloom from Carl Roth GmbH (Germany) [38]. The phantom
was prepared by mixing 300 g of gelatin in 1800 L hot water at a temperature of 70 ◦C.
Hence, the mixture was left over the night, then the next day, the eight needles were fixated
in an acrylic glass phantom filled with gelatin and subjected to a 3T MRI scan model
(Skyra, Siemens, Germany). In the data acquisition step for the biopsy needles, several
MRI parameters can contribute to the formation of artifacts in the resulting images. To
minimize the appearance of these artifacts, the parameters were optimized in this study.
Specifically, the MRI scan parameters were selected based on their ability to reduce the
appearance of needle artifacts, resulting in optimal images. In this context, the optimal
MRI scan parameters were found at a T1-weighted MRI sequence, which was selected
to perform the scan due to better contrast, brightness, the well-distinguished needle bor-
der, and the distinct pixel values of the needles in the image. It was possible to obtain
well-differentiated cluster regions (good-quality clusters) for the K-means algorithm since
the clustering was performed based on pixel values. The image acquisition parameters
used in this work to mimic an MRI intervention for the T1-weighted sequence were: a
gradient-echo flash sequence, slice resolution = 1 mm, slice thickness = 7 mm, repetition
time = 7 ms, echo time = 4.76 ms, magnetic field strength = 3, pixel bandwidth = 230, and
field of view (FOV) = 244 × 244 mm. The needles in the resulting MR image were labeled
from left to right as L1 to L8 to facilitate the quantification process of the artifacts. The
proposed needles are L1–L3 and L5–L8, while the standard needle is stated as L4 in the
middle of the MR image, which is shown in Figure 3. Moreover, all the proposed needles
have a glass rod tip, except needle L1, which has a NiTi tip, as shown in Figure 3 as a small
circular artifact.
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Figure 3. MRI scan for the needles inside the gelatin phantom labeled from L1 to L8 with a magnifi-
cation scale of 50 mm.

2.2. Manual Quantification

In this step, the quantification of the artifacts was performed by importing the MR
images into a DICOM viewer (RadiAnt DICOM, 2020.2.3). The manual evaluation was
achieved by measuring the artifact width and length for each needle. The measurements
and the uncertainty assessment for the eight needles were based on the mean (X) of three
repetitive measurements of the data and the standard deviation (SD) [39].

The second quantification approach used in this study was based on unsupervised
image processing using K-means clustering. Before applying the K-means clustering, the
MR images were subjected to a preprocessing step, where the needle images were converted
to the type of file format in neuroimaging called neuroimaging informatics technology
initiative (NIFTI) format and then clustered based on pixel intensity [40]. Finally, a cropping
step was applied to each needle, before the K-means clustering was applied. The clustering
was computed by using the opencv and scikit-learn libraries in Python. For the dataset,
random cluster centroid initialization was used, wherein the centroids are further refined
over several iterations to obtain optimal clusters. Additionally, the K-means clustering
includes a parameter to validate the quality of the cluster, which is called the silhouette
coefficient [34], and based on the literature [35,36], the silhouette score can be utilized to
measure the goodness of clustering for a different number of clusters (K) ranging from 3
to 7 in this study. Similar to the manual quantification approach described in this section,
the width and shaft measurements were repeated for the clustered images to quantify the
artifact appearance of the automatic approach.

2.3. K-Means Quantification

The second quantification approach used in this study was based on unsupervised
image processing using K-means clustering. Before applying the K-means clustering, the
MR images were subjected to a preprocessing step, where the needle images were converted
to the type of file format in neuroimaging called neuroimaging informatics technology
initiative (NIFTI) format and then clustered based on pixel intensity [40]. Finally, a cropping
step was applied to each needle, before the K-means clustering was applied. The clustering
was computed by using the opencv and scikit-learn libraries in Python. For the dataset,
random cluster centroid initialization was used, wherein the centroids were further refined
over several iterations to obtain optimal clusters. Additionally, in this work, we compared
the K-means results (width and shaft) for each needle with the original dimensions for
each needle as a ground truth. Moreover, the K-means clustering includes a parameter to
validate the quality of the cluster, which is called the silhouette coefficient [34,41]. Even
without using the ground truth, and based on the literature [35,36,42], the silhouette score
can be utilized to measure the goodness of clustering for a different number of clusters (K)
ranging from 3 to 7 in this study. Similar to the manual quantification approach described
in Section 2.2, the width and shaft measurements were repeated for the clustered images to
quantify the artifact appearance in the automatic approach.
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3. Results and Discussion

Generally, in this work, needle artifacts that appeared in the MRI image depended
on the material composition and the alignment of each needle inside the gelatin phantom.
In particular, from the qualitative perspective, the proposed non-metallic needles (L1, L2,
L3, L5, L6, L7, L8) in Figure 3 showed remarkable improvement in reducing susceptibility
artifacts compared to the standard NiTi needle L4, which generated massive artifacts.
From a quantitative perspective, the artifacts were quantified after applying the K-means
algorithm to the needles in the MRI image. The clustered images output are shown in
Figure 4. The proposed non-metallic needles were labeled as L1, L2, L3, L5, L6, L7, and
L8. while the NiTi needle was labeled as L4. Three cluster numbers were employed for
each needle in the MRI image. The results’ assessment for each needle’s width and shaft is
presented in the following section.

Figure 4. Clustered images for the 8 needles from the MR image; non-metallic needles labeled as L1,
L2, L3, L5, L6, L7, and L8, while the NiTi needle labeled as L4 using cluster range from (K3 to K7).

3.1. Artifacts Quantification: Needles’ Widths

The width quantification results for manual and K-means clusters that were applied
to the eight needles are shown in Figure 5. The results included the uncertainty quantifi-
cation for the artifact width of the eight needles. Therefore, Figure 5 has eight subfigures
corresponding to each needle. Each subfigure shows a comparison of two quantifications
in the form of the mean (X) of the data and the standard deviation (SD) for each needle
measured in mm.

The manual measurements were made directly on the MR images presented in Figure 3
using the RadiAnt Dicom viewer, and the results are plotted as gray bars for each needle
from L1 to L8 in Figure 5, while the width measurements for K-means clustered images
are shown as light blue bars for each needle after applying different cluster numbers (K).
Moreover, a red dotted reference line for each subfigure in Figure 5 was used as the ground
truth to indicate the geometric needle width in mm. The K-means images were selected
based on how the specified cluster number could detect the complete body of the proposed
non-metallic needles and the standard needle. Additionally, the clustered image width
dimensions achieved values close to the reference line for different numbers of clusters.
For needle L2, the highest degree of similarity between the reference line and the width
dimension obtained in the MRI was observed for the highest number of clusters with K = 7,
whereas for needle L3, the closest match was observed for the lowest investigated cluster
number K = 3. This indicates that no unique K-value achieved optimal performance in
all of the investigated needles. It is essential to mention that the new proposed needle
L1 recorded high susceptibility artifacts due to the NiTi structure attached as a tip to the
needle shaft. However, as expected, the needle L4, which represents the standard NiTi
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needle, showed the highest artifacts in the width direction in both quantification approaches
compared to the proposed non-metallic needles.

Figure 5. Results of the comparison of the width of the artifact in mm between manual quantification
and K-means quantification; the manual quantification is represented by the gray color bars from L1
to L8, while K-means cluster quantification is represented by the light blue bars. The x-axis represents
the manual and the K-means clusters that have been applied to the needles. Meanwhile, the y-axis
corresponds to the values of the artifacts for the width measurements in mm. The reference line
mapped to standard needle width used as the ground truth corresponds to 1 mm.

3.2. Artifacts’ Quantification: Needles’ Shafts

This section presents the results concerning the artifact shaft quantification for the
same eight needles by applying the same approaches for artifact detection. Therefore,
the results for quantifying the shafts of the artifact for MRI needles from L1 to L8 are
shown in Figure 6. It includes uncertainty values of the eight needles based on the mean
and standard deviation. The K-means approach achieved promising results close to the
reference line in these measurements, as shown in Figure 6. The clustered image for the
needle shafts obtained values close to the reference line for different numbers of clusters.
The results showed that the highest cluster K = 7 reached close to the reference line in
needles numbered L2, L5, L6, and L7. Besides, it was observed that the quantification
results for the needle labeled as L8 were lower than the ground truth for the cluster numbers
K = 5 and K = 7. This was due to the alignment and bending status of the needle in the
gelatin phantom.
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Figure 6. Results of the comparison of the artifacts’ shafts in mm between manual quantification
and K-means cluster quantification; the manual quantification is represented in the gray color bars
from L1 to L8, while K-means cluster quantification is represented by the light blue bars. The x-axis
represents the manual and K-means clusters that were applied to the needles. Meanwhile, the y-axis
corresponds to the values of artifacts for the shaft measurements in mm. The reference line mapped
to the standard needle shaft used as the ground truth corresponds to 50 mm.

3.3. Cluster Validation: Silhouette Coefficient

From the quantification results and comparing with the reference line, the K-means
cluster performed well in needle numbers L2 at K7, L3 at K3, and L5 at K6, while the
K-means cluster for the needle shaft was at needle L2 at K7, L3 at K3, L5 at K7, and L7
at K6. In this work, the silhouette coefficient was used to calculate the accuracy of the
K-means clustering approach [43,44]. The Silhouette coefficient is a metric utilized to detect
the performance of a cluster measurement. It can point out which cluster number was
able to detect the needle inside the group for the silhouette score and which cluster was
considered as an outlier. In this work, the silhouette score function from the scikit-learn
library was used to calculate the average silhouette score for each clustered image across
all of its clusters. A silhouette coefficient close to 1 indicates a high cluster quality, whereas
scores close to −1 indicate that the pixels have been assigned to the wrong clusters. The
silhouette coefficient for each cluster number was measured and represented in the y-axis.
In contrast, the x-axis represents the number of clusters from K = 3 to K = 7 applied across
all non-metallic and standard needles. In our dataset, it was observed that most of the
silhouette scores lied in the range of 0.52 to 0.72, which indicates the good quality of clusters,
as illustrated in the boxplot in Figure 7. At K = 3, an outlier was observed at 0.63, and
it was attributed to needle number L4, which was the standard NiTi needle. In addition,
the outlier observed in K = 4, K = 5, and K = 6 also corresponded to the standard NiTi
needle L4. In this work, according to the silhouette score criteria, a score closer to one
is considered a more optimal cluster [45]. Following the boxplot in Figure 7, the highest
median value was observed for the number of clusters K = 3. The silhouette coefficient for
the standard NiTi needle appeared as an outlier for several investigated cluster numbers.
Moreover, to validate the significance of our silhouette results, we compared them with
already published literature of related studies that used the K-means clustering algorithm
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for images. Our silhouette scores were in the range of 0.52 to 0.72. The interpretation
for this is that if the mean silhouette record is from (0.71–1.00), this indicates an excellent
split for the cluster applied to the image. If the silhouette is from (0.51–0.70), this means a
reasonable split for a cluster that is used in the image [45–48]. This demonstrates that the
clustering algorithm was successful and able to detect the needles’ boundaries from the
MRI images.

Figure 7. Boxplot showing the silhouette coefficient according to the K-means clusters that were
applied to the needles in the MRI image. The green line represents the median of the data, and the
circles are the outliers.

4. Conclusions

This study proposed a non-metallic concept for the fabrication and evaluation of
biopsy needles for spinal cord applications that showed promising results in reducing
susceptibility artifacts during MRI-guided interventions. Accordingly, the needles were
evaluated based on their artifact performance in MR images using K-means clustering and
compared with the manual approach using the geometric needle size as a reference line.
Among the tested needles, L2 and L5 exhibited the lowest levels of artifact production
even when subjected to bending (in the case of L5). The composition of needle L2 was the
inner core from three fiber bundles and the outer sheet was from polytetrafluoroethylene
(PTFE AWG 22) with an outer diameter of 1.00 mm and a thin wall thickness of 0.15 mm.
Needle L5 was composed of three fiber bundles used as the inner core, and the outer
sheet was polytetrafluoroethylene (PTFE AWG 22) with an outer diameter of 1.00 mm
and a wall thickness of 0.25 mm. It is important to note that the K-means algorithm
showed remarkable results for detecting the width and shaft of the eight needles in one
group of MRI images, especially for the proposed non-metallic needles. This indicates
that it is possible to use it as an efficient qualitative and quantitative assessment method
for MRI artifacts. In addition, it provides comprehensive clustering capabilities with non-
overlapping image features. The silhouette coefficient can indicate the efficiency of the
used K-means cluster. Future work will apply the algorithm to medical MRI images in
3D mode, providing a manually selected sentry feature for the K-means and applying
more cluster numbers to the MRI images. In addition, K-means will be implemented when
the needle is captured inan individual scan of an MRI image. Moreover, based on our
research, we recommend that other practitioners use clustering based on the MRI image
pixel intensity of the needle instead of measuring the needle with a manual approach. In
addition, the parameters of the K-means algorithm can be fine-tune to select the correct
number of clusters that provide the most-accurate measurements.
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