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Abstract: We have studied the magnetic properties of ion doped MnFe2O4 nanoparticles with the
help of a modified Heisenberg model and Green’s function theory taking into account all correlation
functions. The magnetization Ms and the Curie temperature TC increase with decreasing particle size.
This is the opposite behavior than that observed in CoFe2O4 and CoCr2O4 nanoparticles. By Co, Mg
or Ni doping, Ms and TC increase with enhancing the dopant concentration, whereas, by La or Gd
doping, the opposite effect is obtained due to the different doping and host ionic radii which change
the exchange interaction constants. The band gap energy Eg is calculated from the s–d model. It can
decrease or increase by different ion doping. The peak observed in the temperature dependence of
the specific heat at TC is field dependent.

Keywords: MnFe2O4 nanoparticles; magnetization; Curie temperature; band gap energy; specific
heat; microscopic model

1. Introduction

Manganese ferrite MnFe2O4 (MFO) nanoparticles (NPs) attract the attention of re-
searchers with remarkable soft-magnetic properties, good chemically stability and biocom-
patibility [1–8]. The last property is useful for application of MFO NPs in the magnetic
hyperthermia for cancer therapy [9–12]. MFO crystallises in a normal spinel cubic struc-
ture with two sublattices—A and B. Mn3+ and Fe2+ prefer to occupy the octahedral sites
while Mn2+ the tetrahedral ones. MFO undergoes two magnetic transitions: one is the
paramagnetic to ferrimagnetic transition at TC ∼ 575 K and the other is the spin-spiral
transition temperature at low temperatures [13,14]. NPs have different properties compared
to those of the bulk compound. For MFO, some controversial results are observed which
are not clarified. For example, the reported behavior by many authors of the spontaneous
magnetization Ms and the phase transition temperature TC is different; they can increase [2]
or decrease [6] with decreasing NP size. The properties of MFO can be modified by ion
doping (for example, Co, Cr, Ni, Cu, La) at the Mn or Fe site [15–18], which can lead to
different applications—for example, Co-doped MFO for energy storage applications as well
as electrochemical supercapacitors [19]. Zhao et al. [20] studied the magnetic properties of
strongly correlated transition metal oxides.

There are not so many theoretical papers about MFO. The spinel structure of bulk
MFO is investigated using density functional theory (DFT) by Singh et al. [21]. Elfalaky and
Soliman [22] studied the magnetic properties of bulk MFO using the generalized gradient
approximation. The cation and magnetic orders in bulk MFO are observed from DFT by
Huang et al. [23]. Rafiq et al. [24] investigated by first-principles approach the magnetic
and optical properties of bulk MFe2O4 (M = Mn, Co, Ni) ferrites. Ab initio study of the
magnetocrystalline anisotropy in bulk MFO is reported by Islam et al. [25]. Exchange
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integrals and electronic structure of bulk MFO are calculated by Zuo et al. [3]. The magnetic
properties of bulk MFO are studied using ab initio calculations by Mounkashi et al. [26].

In our previous work [27], the magnetization, polarization and band gap energy of
CuCr2O4 (CCO) NPs are investigated. In the present paper, we will study for the first
time the magnetization, band gap energy and specific heat of ion doped MFO—bulk
and NPs using a microscopic model and the Green’s function theory. We will clarify the
observed discrepancies. The properties of MFO NPs are compared with those of CoFe2O4
(CFO) and CCO NPs. It should be noted that the most theoretical papers studied the bulk
MFO compounds (and not the nanostructures) using the DFT which is mainly concerned
with ground state properties at zero temperature, whereas we are able to make a finite
temperature analysis of the excitation spectrum and of all physical quantities.

2. Model and Methods

The spinel ferrites crystallize in the face centered cubic spinel structure. In the normal
spinel configuration, the M2+ ions occupy the tetrahedral sites, while the octahedral
sites contain the Fe3+ ions [13]. The modified Heisenberg Hamiltonian Hm describes the
magnetic properties of ion doped MFO:

Hm = −1
2 ∑

i,j
(1− x)JijSi · Sj −∑

ij
xJFe−DI

ij SFe
i · SDI

j −∑
i

Di(Sz
i )

2 − gµB ∑
i

h · Si, (1)

where Si is the Heisenberg operator of the Fe ion at the lattice site i. The spin interaction J
between the two sublattices A and B determines the ferrimagnetic order in MFO where
| JA−B |>| JB−B |>>| JA−A |. D is the single-ion anisotropy, h is an external magnetic field,
and x is the ion doping concentration.

Magnetically, the spinel ferrites display ferrimagnetic ordering where the total magnetiza-
tion is observed from M = (MA + MB). From the spin Green’s function� S+A,B

i ; S−A,B
j �,

the sublattice magnetization MA,B for arbitrary spin value SA,B are calculated as follows:

MA,B = 〈SzA,B〉 = 1
N2 ∑

i,j

[
(SA,B + 0.5) coth[(SA,B + 0.5)βEA,B

ij ]

− 0.5 coth(0.5βEA,B
ij )

]
, (2)

β = 1/kBT. EA,B
ij is the excitation energy observed from the poles of the Green’s functions,

for example for the A subsystem:

Eij =
( 2

N′ ∑m
Jim(〈S−mS+

i 〉+ 2〈Sz
mSz

i 〉)δij − 2Jij(〈S−i S+
j 〉+ 2〈Sz

i Sz
j 〉)

+ 2Di(2〈Sz
i Sz

i 〉 − 〈S−i S+
i 〉)δij + 2gµBH〈Sz

i 〉δij

)
/2〈Sz

i 〉δij, (3)

where N′ is the number of lattice sites.
For the approximate calculation of the Green’s functions, we use a method proposed

by Tserkovnikov [28]. It goes beyond the random phase approximation, taking into account
all correlation functions. Moreover, this method allows us to calculate also the imaginary
part of the Green’s function. We want now sketch it briefly. After a formal integration of
the equation of motion for the Green’s function

Gij(t) = 〈〈ai(t); a+j 〉〉 (4)

one obtains
Gij(t) = −iθ(t)〈[ai; a+j ]〉 exp(−iωij(t)t), (5)
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with

ωij(t) = ωij −
i
t

∫ t

0
dt′t′

(
〈[ji(t); j+j (t

′)]〉
〈[ai(t); a+j (t

′)]〉

−
〈[ji(t); a+j (t

′)]〉〈[ai(t); j+j (t
′)]〉

〈[ai(t); a+j (t
′)]〉2

)
(6)

and ji(t) = 〈[ai, Hinteraction]〉. The time-independent term

ωij =
〈[[ai, H]; a+j ]〉
〈[ai; a+j ]〉

(7)

is the excitation energy in the generalized Hartree–Fock approximation. The time-dependent
term in Equation (6) includes damping effects.

For the calculation of the band gap energy Eg of MFO, we use the s–d model where to
Hm are added the following terms Hel and Hm−el :

Hel = ∑
ijσ

tijc+iσcjσ, (8)

tij is the hopping integral, c+iσ and ciσ are Fermi-creation and -annihilation operators, as
well as

Hm−el = ∑
i

IiSisi, (9)

I is the s–d interaction. si is the spin operator of the conduction electrons at site i and can
be expressed as s+i = c+i+ci−, sz

i = (c+i+ci+ − c+i−ci−)/2.
The band gap energy Eg is the energy difference between the valence and conduc-

tion bands:
Eg = ω+(k = 0)−ω−(k = kσ). (10)

ω±(k) are the electronic energies

ω±(k) = εk −
σ

2
IM, (11)

σ = ±1. εk is the conduction band energy in the paramagnetic state.

3. Numerical Results and Discussion

The NP has a cubo-octahedral shape where a certain spin is fixed in the center of the
NP, and all spins are ordered into shells numbered by n = 1, . . . , N. The following model
parameters are used for MFO which have a cubic spinel structure [15]: J(Mn-Mn) = 8.6 K,
J(Fe-Fe) = 13.7 K, J(Mn-Fe) = -21.8 K [26], D = − 0.1 meV, TC = 575 K, S = 5/2, I = 0.2 eV,
t = 0.05 eV. Jij = J(ri − rj) depends on the inverse proportional on the lattice parameters.
The exchange interaction constant on the surface Js is different from that in the bulk Jb due
to the reduced symmetry and the changed number of next neighbors on the surface. Let us
emphasize that the single-ion anisotropy in a small NP of MFO is observed to be nearly
20 times larger than the bulk value [29].

3.1. Size Dependence of the Magnetization and Curie Temperature

Figure 1 shows the temperature and size dependence of the spontaneous magnetiza-
tion Ms. Upon cooling, for a bulk MFO, Ms increases strongly below the Curie temperature
TC = 575 K, which is connected with the appearance of a collinear ferrimagnetic phase
(curve 1). Below TC in Ms(T), there is an anomaly around the spin-spiral transition tem-
perature TS ∼ 15 K due to frustration which leads to a structural phase transition. Such
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behavior is observed in the most ferrimagnetic spinels due to a transition by decreasing the
temperature from a collinear to a noncollinear spin configuration [8,13,26].
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Figure 1. Temperature dependence of the magnetization Ms in MFO for (1) bulk; and a NP with
(2) N = 20 and (3) N = 10 shells, Js = 1.2 Jb, Ds = 20 Db.

In MFO, the spontaneous magnetization Ms (Figure 1, curves 2 and 3) and the Curie
temperature TC (Figure 2) increase with decreasing particle size due to finite size effects,
to the breaking of Fe-O-Fe paths, whereas the spin-spiral transition temperature TS is
nearly size independent (see Figure 1, curves 2 and 3). Furthermore, there appears an
oxidation of Mn2+ to Mn3+ by the transition from the bulk state to nanoparticles [30].
The ionic radius of Mn3+ (0.66 Ȧ) is smaller than that of Mn2+ (0.97 Ȧ), which leads to
smaller lattice parameters, i.e., Js > Jb. The observed larger values of Ms and TC for MFO
NPs compared to the bulk ones are in good agreement with many authors [2,4,30–35]. In
Figure 2, we have added some experimental data of Zheng et al. [34]. The authors have
measured the magnetization versus temperature for MFO NPs and observed in the NP a
160 K higher Curie temperature than that in the bulk material. It can be seen that there is
a good quantitative agreement between their experimental data [34] and our theoretical
results. This is an indirect evidence for the appropriate chosen model and method. Let
us emphasize that our results for Ms(N) and TC(N) are in disagreement with those of
Refs. [5,6,36,37]. It must be noted that, contrary to MFO, in CCO NPs [38–42] and in
CFO NPs [4,39,43,44], a decrease of the spontaneous magnetization Ms and the Curie
temperature TC with decreasing NP size are observed.
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Figure 2. Size dependence of the Curie temperature TC with Js = 1.2 Jb, Ds = 20 Db. The red triangles
are the experimental data from Ref. [34].
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3.2. Ion Doping Dependence of the Magnetization and Curie Temperature

Let us study now the spontaneous magnetization Ms and Curie temperature TC in
Co2+ ion doped MFO, Mn1−xCoxFe2O4 (x = 0–0.5), where the Co2+ ions substitute the
Mn2+ ions on the octahedral sites. The radius of the Co2+ ion (0.79 Ȧ) is smaller than that
of the Mn2+ ion (0.97 Ȧ), which leads to a compressive strain. Aslibeiki et al. [15] and
Ansari et al. [45] have also obtained in the Co2+ doped MFO NPs smaller lattice parameters
(about 8.34 Ȧ) in comparison to the bulk one (8.51 Ȧ). Furthermore, there appears an
oxidation of Mn2+ to Mn3+ by the transition from bulk to NPs, contributing to an effective
cation distribution [30]. All this causes changes of the exchange interactions in the doped
states (denoted with the index d in our model). In the case of Co ion doping, we have the
following relation Jd > Jb. Moreover, the magnetic anisotropy D increases also strongly
by the doping of Mn ions with Co ones. We observe that Ms(x) and TC(x) (see Figure 3,
curve 1) increase with the increasing of the Co ion doping concentration x. Let us emphasize
that the larger spin moment of Mn2+ ions (S = 5/2) compared to that of Co3+ (S = 3/2),
substituting Co2+ on A sites could also lead to an increasing of the magnetization and affect
the magnetic properties of MFO. This enhancement is in agreement with Aslibeiki et al. [15]
but in disagreement with Reddy et al. [16], which reported enhanced lattice parameters
and reduced magnetization with increasing Co substitution.
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Figure 3. Dependence of the Curie temperature TC in CCO NP with N = 20 shells on the ion doping
concentration x for (1) Co with Jd = 1.2Jb; (2) La with Jd = 0.8Jb.

The magnetic properties of Mg ion doped MFO NPs are also studied. The ionic
radius of Mg2+ (0.72 Ȧ) is smaller compared to that of the Mn2+ (0.80 Ȧ) ion. The lattice
parameters decrease with increasing x, i.e., we have Jd > Jb, and observe an increase
of Ms in coincidence with the experimental data of Mg doped MFO NPs reported by
Kombaiah et al. [46]. By Ni2+ ion doping of MFO NPs, where the Ni ion radius (0.74 Ȧ) is
again smaller compared to that of Mn2+, Mathubata et al. [47] reported a decrease of the
lattice parameters as well as of the spontaneous magnetization Ms. We would observe in Ni
doped MFO a decrease of the lattice parameters but an increase of the magnetization Ms.

We investigate now the rare earth (RE) ion doping effect, for example La3+, on the
magnetization Ms and Curie temperature TC in MFO, MnFe2−xLaxO4 (x = 0–0.2), where
the La ions substitute only the Fe ions. The ionic radius of La3+ (1.61 Ȧ) is larger than that
of Fe3+ (0.64 Ȧ), i.e., by La-doping, a tensile strain appears, and we have to choose Jd < Jb.
This leads to a decrease of the spontaneous magnetization Ms and Curie temperature TC
(Figure 3, curve 2) with increasing La dopants. The decrease of the critical temperature TC
could be useful for application in the magnetic hyperthermia, for cancer therapy, where
TC must be about 310–315 K [48]. The magnetic behaviour of the ferrimagnetic oxides is
mainly due to the 3d spin coupling in the Fe–Fe interaction. By introducing RE ions, a 3d–4f
coupling in the RE–Fe interactions also appears, which changes the magnetic properties.
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The RE–RE interactions are very weak and could be neglected. It must be mentioned
that the single ion anisotropy of RE which slightly increases [15] by the RE ion doping of
MFO is small in comparison with the cation rearrangement in MFO [49]. The reduction
in the magnetic properties could be due to the additive magnetically weak Fe+3-O-Mn+2

interaction weakening the A–B interaction. We could also explain the decrease of the
magnetic properties in a Eu3+ or Gd3+ doped MFO NP due to the larger radius of the Eu3+

(0.95 Ȧ) or Gd3+ (0.94 Ȧ) ions compared to that of Fe3+, i.e., we obtain again a decrease of
Ms and TC with increasing Eu3+ or Gd3+ concentration. Moreover, by replacing Fe3+ by
paramagnetic Eu3+ ions, the ferromagnetic region or super-exchange strength decreases.
The observed decrease in Ms and TC is in coincidence with the behaviour reported by
La [50], Eu [51], Gd [52] doped MFO NPs, Tb doped NiFe2O4 [53], and Ce and Dy doped
CFO [54], but in disagreement with the results in Ho3+ substituted MFO NPs [55].

3.3. Ion Doping Dependence of the Band Gap Energy

Now, we study the ion doping effects on the optical band gap in MFO. Firstly, we will
note that, due to the decreasing of the lattice parameters with decreasing NP size, i.e., we
have Js > Jb, the band gap energy Eg decreases with decreasing size. Figure 4 presents the
observed results by ion doping. The band gap energy Eg of a MFO NP gradually decreases
with an increase of Co doping (curve 1 for Jd > Jb) in agreement with Ansari et al. [45].
The origin of this decrease is that the ionic radius of Co2+ (0.74 Ȧ) is smaller than that
of Mn2+ (0.83 Ȧ), i.e., the lattice parameters decrease in Co doped MFO NPs. The red
triangles in Figure 4, curve 1, present the experimental data from Ref. [45]. The authors have
determined the band gap energy from the UV-visible spectra. It can be seen that there is a
good agreement with the experimental data of [45]. We would also obtain a similar decrease
of the band gap energy Eg in Mg or Ni doped MFO NPs, where the lattice parameters
decrease with increasing the Mg or Ni content. This leads to a decrease of Eg in coincidence
with Kombaiah et al. [46] for Mg doped MFO NPs. However, Mathubata et al. [47] observed
an increase of Eg in Ni doped MFO NPs.
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Figure 4. Dependence of the band gap energy Eg of a MFO NP with N = 20 shells on different ion
doping: (1) Co; (2) La. The red triangles present the experimental data from Ref. [45].

On the other hand, by La3+ ion doping of MFO with Jd < Jb, due to the larger radius
of the La3+ (1.61 Ȧ) ion in comparison with that of Fe3+ (0.64 Ȧ), i.e., the lattice parameters
increase, we obtain an increase of Eg (curve 2) in coincidence with Kour et al. [56]. We would
also observe an increase of Eg by Gd3+ ion doping of MFO NP due to the larger radius of
the Gd3+ (0.94 Ȧ) ion compared to that of Fe3+, i.e., there is again an enhancement of Eg
with increasing Gd3+ dopants. The substitution of La and Gd improved the photocatalytic
efficiency of nanoferrite MFO. Our result is in agreement with the observed enhancement of
Eg in Gd doped NiFe2O4 thin films [57] and Dy doped MFO NPs [58] but in disagreement
with the observed decrease of Eg in La3+ and Mo5+ doped MFO NPs [17,59].
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3.4. Temperature and Magnetic Field Dependence of the Specific Heat

Finally, the specific heat in dependence on the temperature Cp(T) of a MFO NP with
N = 10 shells is studied. Cp is observed from the equation Cp = d〈H〉/dT, where H is
the full Hamiltonian. Longitudinal and transverse correlation functions appear which are
calculated via the Spectral theorem from the corresponding Green’s functions. Figure 5,
curve 1, presents the result for h = 0. At the Curie temperature TC ∼ 575 K, where the Fe3+

ion spins undergo a long-range ferrimagnetic ordering, there is a lambda-shaped peak in
the specific heat. Cp decreases with increasing magnetic field h (see Figure 5, curves 1–3).
The transition temperature TC decreases also with increasing magnetic field h (curve 2).
Applying a strong external magnetic field h, the peak disappears, and the transition is no
longer observable (curve 3). The decrease of the peak at TC in the specific heat Cp could be
due to the depression of spin fluctuation enhancement by increasing the magnetic fields. A
similar field dependent transition temperature in Cp of MFO is reported by Balaji et al. [60].
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Figure 5. Temperature dependence of the specific heat Cp of a MFO NP with N = 10 shells for
different magnetic field h values: 0 (1); 20 (2); 60 (3) kOe.

4. Conclusions

In conclusion, using the modified Heisenberg and the s–d models and the Green’s
function theory pure and ion doped MFO, bulk and NPs are investigated for the first time.
MFO NPs are appropriate for various applications such as hyperthermia for cancer therapy,
drug delivery, magnetic resonance imaging and storage devices. From the spontaneous
magnetization Ms in bulk MFO, as a function of the temperature, a ferrimagnetic transition
at TC = 575 K is observed, where Ms vanishes, and an anomaly at low temperatures around
the spin-spiral transition temperature TS ∼ 15 K corresponding to the helicoidal order
temperature. The different strains appearing at the surface due to the reduced symmetry
and the changed number of next neighbors as well as at the doped states due to the
differences in the doping and host ionic radii lead to changes of the exchange interaction
constants and therefore to changes of the properties in doped MFO NPs. Thus, we can
consider the macroscopic physical quantities on a microscopic level. With decreasing
particle size, the spontaneous magnetization Ms and the Curie temperature TC decrease,
whereas the spin-spiral transition temperature TS is nearly size independent. Due to a
compressive strain by the substitution of the Mn ions on the octahedral sites with Co, Mg
or Ni, the spontaneous magnetization Ms and the Curie temperature TC increase with
enhancing the doping concentration x, whereas, due to a tensile strain by the substitution
of the Fe ions on the tetrahedral sites with La or Gd ions, we obtain the opposite effect. The
decrease of the ferrimagnetic transition temperature TC could be useful for application in
the magnetic hyperthermia, for cancer therapy, where TC must be about 310–315 K. The
band gap energy Eg decreases by Co, Mg or Ni ion substitution, but it increases by La or Gd
ion doping. The substitution of La and Gd which enhances Eg can be used for improvement
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of the photocatalytic efficiency of nanoferrite MFO. The lower band gap by Co, Mg or
Ni ion doping could increase the conductivity of the NP, which in turn can enhance its
capacitance. A lambda-shaped peak appears in the specific heat at the critical temperature
TC, which vanishes applying high external magnetic fields.

Finally, we have tried to clarify some discrepancies in the reported experimental data.
In our opinion, this could be due to the different synthesis and growth methodology, to the
different doping methods and to the way of annealing.

As already mentioned in the Introduction due to their nontoxicity and biocompatiblity,
MFO NPs are useful for application in the magnetic hyperthermia for cancer treatment [9–12].
In this context, the magnetic properties of MFO NPs for magnetic hyperthermia will be
investigated in a future paper.
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