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Abstract: Polymetallic complexes with covalently bridged metal centers that interact magnetically are
important in the molecular magnetism field, with binuclear compounds receiving special attention
because they represent the simplest type of multinuclear species with covalently bridged metal
centers. Herein, we report the synthesis and properties of two new binuclear FeII complexes, namely,
{[Fe(abpt-TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1) and {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2
(2) (bpym = 2,2′-bipyrimidine). The crystal structure is analyzed at different temperatures, and its
properties are analyzed by variable-temperature magnetic susceptibility and variable-temperature
fluorescence emission spectroscopy tests. Variable-temperature magnetic susceptibility measurements
of two binuclear compounds show different types of magnetic behavior. Complex 1 exhibits two-step
spin transition behavior with an intermediate state near 150 K (Tc1 = 191 K, Tc2 = 111 K); 1 undergoes
an [LS–LS]↔ [LS–HS]↔ [HS–HS] spin transition during thermal induction. On the other hand,
complex 2 exhibits intramolecular antiferromagnetic coupling, with J = −0.47 cm−1. The analysis of
correlations between the structural characteristics and different types of magnetic behaviors for two
binuclear complexes, revealed that the different magnetic behaviors shown by the two complexes are
attributable to different degrees of [FeN6] octahedral distortion caused by different lattice solvents,
ligand strain and crystal stacking.

Keywords: magnetic bistability; spin crossover; antiferromagnetic interactions; two-step spin transition;
supramolecular structures

1. Introduction

Designing and developing molecular switches capable of storing or transmitting
information are among the most attractive research endeavors [1–6]. As typical bistable
magnetic materials, spin crossover (SCO) complexes exhibit bistable high-spin (HS) and
low-spin (LS) characteristics that interconvert when exposed to external stimuli, such as
temperature, light and pressure; hence, SCO materials are ideal molecular systems for
realizing magnetic switches and information storage elements. Cooperativity caused by
crystal stacking interactions or size/shape differences between the HS and LS states is a
crucial characteristic of SCO, which may significantly impact the SCO properties of solid
complexes [7–9]. Compared with mononuclear systems, which are currently the most
researched SCO systems [10–12], bridging SCO centers through covalent bonds represents
an important way of exploring and enhancing system cooperativity [13–19]. Moreover,
covalently bridged metal centers can effectively couple magnetically [20–23].
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Designing and synthesizing multinuclear systems, which includes effectively control-
ling the number of nuclear centers as well as crystal characterization techniques, is still
somewhat challenging [24]. Exploring binuclear systems is a valuable endeavor because
they are the simplest and smallest systems in which two metal centers interact and in which
intramolecular and intermolecular cooperativity can be investigated [25]. The first binuclear
FeII SCO complex was synthesized by bridging a ligand with µ-bipyrimidine (bpym).

In this study, we used an N-(3,5-di(pyridine-2-yl)-4H-1,2,4-triazol-4-yl)-1-(4-(1,2,2-
triphenylvinyl)phenyl)methanimine (abpt-TPE) [26,27] fluorescent ligand as the terminal
ligand and bpym (with a suitable medium field strength) as the bridging ligand [28–34]. By
adjusting the synthetic scheme, we prepared two new binuclear complexes, namely, {[Fe(abpt-
TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1) and {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2).
Complex 1 exhibited two-step spin transition behavior, whereas complex 2 remained in the
HS state throughout the examined temperature range, with intramolecular antiferromag-
netic FeII

HS coupling observed (J =−0.47 cm−1). In addition, we speculate that the different
magnetic behaviors exhibited by the two complexes are due to differences in [FeN6] octa-
hedral distortion. We studied the fluorescence properties of 1 using variable-temperature
fluorescence spectroscopy, which revealed that complex 1 exhibits concurrent fluorescence
and SCO behavior. Herein, we aim to contribute to the design and synthesis of binuclear
and multinuclear magnetic complexes.

2. Results and Discussion

The acquired powder X-ray diffraction (PXRD) data for complexes 1 and 2 were com-
pared with simulated data (Figure S1), with consistent sets of spectra obtained, confirming
that 1 and 2 are pure. Complexes 1 and 2 were subjected to thermal gravimetric analysis
(TGA) to examine their thermal stabilities (Figure S2). The TGA traces of both complexes
reveal that solvent molecules are gradually lost with increasing temperature.

Crystalline samples of complex 1 were subjected to magnetic susceptibility experi-
ments in the 5–300 K temperature range in a 1000 Oe external magnetic field. Figure 1a
shows that complex 1 exhibits gradual two-step spin crossover behavior, for which the spin
transition temperature is Tc1 = 191 K and Tc2 = 111 K. A χMT value of 7.25 cm3 K mol−1

was observed at 300 K, which corresponds to FeII
HS; χMT was observed to continuously

decrease with decreasing temperature to an intermediate state at 150 K with a χMT value
of 3.79 cm3 K mol−1, which corresponds to the first SCO step. The χMT value decreased to
0.68 cm3 K mol−1 as the temperature was further decreased to 10 K, consistent with the
second SCO step. The HS and LS states of FeII account for approximately 50% each at 150 K.
Measurements in heating and cooling modes revealed identical thermal hysteresis-free
magnetic behavior, which was reproducible in consecutive cycles.
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Figure 1. Magnetic susceptibilities (χMT) of (a) {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1) 

and (b) {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2) as functions of T. The solid red line shows the 

line of best fit obtained using the PHI program. 
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The magnetic susceptibility of 2 was measured under the abovementioned conditions.
Figure 1b shows that complex 2 exhibited a χMT value of 6.97 cm3 K mol−1 at 300 K,
which decreased at first with decreasing temperature and then rapidly from 50 K to a value
of 2.29 cm3 K mol−1 at 5 K. The observed change in χMT with temperature reveals the
presence of antiferromagnetic coupling between intramolecular [HS–HS] pairs in complex
2 [35]. We fitted the experimental magnetic susceptibility data using the PHI program
to further examine the intramolecular antiferromagnetic FeII

HS coupling, as described by
Wang et al. [22], the results of which are shown in Figure 1b, which yielded J = −0.47 cm−1

and g = 2.18. The negative J value further confirms the existence of antiferromagnetic
coupling between intramolecular [HS–HS] pairs.

We also acquired the magnetization (M–H) curve for complex 2 in the 0–7 T range
(Figure S3). The magnetization of 2 increased linearly with increasing magnetic field in the
0–4 T range; however, the slope of the M–H curve increased in the 4–7 T range. Complex 2
exhibited a maximum magnetization of 3.6 µB at 7 T, which is lower than its theoretical
value of 4 µB. These values are consistent with the antiferromagnetic interaction generated
by the [HS–HS] state in 2.

Differential scanning calorimetry (DSC) at 5 K min−1 was used to further explore the
thermally induced spin crossover behavior of complex 1. Figure S4 shows broad exothermic
and endothermic peaks at 186 and 193 K, respectively, with ∆H values of approximately
2.89 and 2.71 kJ mol−1 and ∆S values of approximately 15.53 and 14.36 J mol−1 K−1,
respectively. The temperature range corresponding to the exothermic and endothermic
peaks is consistent with the first step in the magnetically measured SCO process. Complex 1
exhibited a second spin crossover temperature Tc2 = 111 K that approached the temperature
limit of the DSC instrument, and its peak value was difficult to determine.

Single-crystal structures of complex 1 were collected at 100, 150, and 300 K, while
single crystal data were collected at 100 K for 2. Complexes 1 and 2 crystallize in the triclinic
P-1 (Z = 1) and monoclinic P21/n (Z = 2) space groups, respectively (Tables S1 and S2).
Figures 2 and 3 show the molecular structures and corresponding atomic numbering
systems for 1 and 2 at 100 K, respectively. The two complexes exhibit similar coordination
modes: FeII exists in a distorted N6 octahedral environment, coordinated by two NCS
nitrogen atoms, the bridging bpym ligand, and two nitrogen atoms of the abpt-TPE ligand.
1 and 2 consist of centrally symmetric binuclear units. The midpoint of the bpym ligand
connected to the metal center coincides with the inversion center. The smallest asymmetric
unit of 1 contains half a molecule, as well as a methanol and acetonitrile molecule, while the
asymmetric unit of 2 contains half a molecule and a dichloromethane molecule. Complete
structures 1 and 2 were generated using the inversion center.
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drogen atoms and solvent molecules have been omitted for clarity.
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Figure 3. Molecular structure of {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2) at 100 K. Hydrogen
atoms and solvent molecules have been omitted for clarity.

The Fe(1)–N(1)–C(1) angles in 1 were determined to be 176.7(4)◦, 175.8(3)◦, and
173.6(7)◦, respectively, at 100, 150, and 300 K, leading to nearly linear structures; the
corresponding Fe(2)–N(2)–C(2) angles were determined to be 157.9(4)◦, 157.4(3)◦, and
158.0 (8)◦, respectively, at the same temperatures, which deviate significantly from linearity.
Complex 2 exhibits an Fe(1)–N(1)–C(1) angle of 168.0(3)◦, which significantly deviates from
the linearity observed in 1, while the Fe(2)–N(2)–C(2) angle is 159.3(3)◦, which deviates less
than the corresponding angle in 1 (Tables 1 and 2).

Table 1. Selected bond lengths [Å] and angles [◦] in the structures of complex 1 at various temperatures.

Complex 1 100 K 150 K 300 K

Fe(1)–N(1) 1.967 (4) 1.994 (3) 2.083 (8)
Fe(1)–N(2) 1.933 (5) 1.953 (5) 2.024 (9)
Fe(1)–N(3) 2.059 (3) 2.097 (3) 2.215 (6)

Fe(1)–N(4A) 2.065 (3) 2.115 (3) 2.278 (6)
Fe(1)–N(5) 2.055 (4) 2.088 (3) 2.211 (7)
Fe(1)–N(6) 1.980 (3) 2.019 (3) 2.148 (6)

av. Fe–N(Å) 2.010 2.045 2.161
Σ 51.83 60.37 90.75

Fe–Feintramolecular(Å) 5.544 5.645 5.970
N(1)–Fe(1)–N(2) 92.04 (16) 93.07 (13) 96.8 (3)
N(1)–Fe(1)–N(3) 96.54 (15) 97.77 (12) 101.2 (3)

N(1)–Fe(1)–N(4A) 88.80 (14) 88.48 (12) 87.3 (3)
N(1)–Fe(1)–N(5) 93.85 (15) 93.67 (12) 94.1 (3)
N(1)–Fe(1)–N(6) 171.35 (14) 169.78 (11) 164.5 (3)
N(2)–Fe(1)–N(3) 91.21 (15) 91.99 (12) 92.6 (3)

N(2)–Fe(1)–N(4A) 171.19 (15) 170.40 (12) 166.0 (3)
N(2)–Fe(1)–N(5) 97.75 (15) 98.82 (13) 103.8 (3)
N(2)–Fe(1)–N(6) 93.65 (15) 94.22 (13) 95.9 (3)

N(3)–Fe(1)–N(4A) 79.99 (13) 78.42 (10) 73.5 (2)
N(3)–Fe(1)–N(5) 166.02 (13) 163.81 (10) 156.1 (3)
N(3)–Fe(1)–N(6) 89.85 (13) 89.13 (10) 87.0 (2)

N(4A)–Fe(1)–N(5) 90.93 (13) 90.52 (10) 89.2 (2)
N(4A)–Fe(1)–N(6) 86.57 (13) 85.52 (11) 82.4 (2)
N(5)–Fe(1)–N(6) 78.93 (13) 78.14 (10) 74.3 (2)
Fe(1)–N(1)–C(1) 176.7 (4) 175.8 (3) 173.6 (7)
Fe(1)–N(2)–C(2) 157.9 (4) 157.4 (3) 158.0 (8)

Symmetry code A: −x + 1, −y, −z + 1 (complex 1 at 100 K); Symmetry code A: −x + 1, −y + 2, −z + 1 (complex
1 at 150 K and 300 K). Octahedral distortion parameter Σ (sum of the deviations from 90◦ of the 12 cis N–Fe–N
angles in the FeN6 coordination sphere).
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Table 2. Selected bond lengths [Å] and angles [◦] in the structure of complex 2 at 100 K.

Complex 2

Fe(1)–N(1) 2.088 (3) N(1)–Fe(1)–N(6) 89.30 (13)
Fe(1)–N(2) 2.050 (4) N(2)–Fe(1)–N(3) 109.33 (14)
Fe(1)–N(3) 2.207 (3) N(2)–Fe(1)–N(4A) 94.25 (14)

Fe(1)–N(4A) 2.246 (3) N(2)–Fe(1)–N(5) 93.27 (13)
Fe(1)–N(5) 2.229 (3) N(2)–Fe(1)–N(6) 166.35 (14)
Fe(1)–N(6) 2.178 (4) N(3)–Fe(1)–N(4A) 73.76 (12)

av. Fe–N(Å) 2.167 N(3)–Fe(1)–N(5) 151.56 (12)
Fe–Feintramolecular(Å) 5.9401 N(3)–Fe(1)–N(6) 84.24 (12)

Σ 88.16 N(4A)–Fe(1)–N(5) 87.94 (12)
N(1)–Fe(1)–N(2) 91.19 (14) N(4A)–Fe(1)–N(6) 88.11 (13)
N(1)–Fe(1)–N(3) 93.61 (13) N(5)–Fe(1)–N(6) 73.36 (12)

N(1)–Fe(1)–N(4A) 167.30 (13) Fe(1)–N(1)–C(1) 168.0 (3)
N(1)–Fe(1)–N(5) 103.22 (13) Fe(1)–N(2)–C(2) 159.3 (3)

Symmetry code A: −x + 1, −y + 1, −z + 2 (complex 2 at 100 K). Octahedral distortion parameter Σ (sum of the
deviations from 90◦ of the 12 cis N–Fe–N angles in the [FeN6] coordination sphere).

The crystal data acquired at 100 and 150 K show that the unit cell of complex 1 is
equivalent to that at 300 K at these temperatures, albeit with smaller unit cell volumes; the
cell volume changed from 2254.91 (18) Å3 (at 300 K) to 2162.95 (14) Å3 (at 150 K), which
corresponds to a contraction of approximately 4.1% and is indicative of a change in spin
state. The cell volume further contracted to 2151.0 (2) Å3 at low temperature (100 K). The
Fe–N bond lengths in complex 1 at 300 K range between 2.024 (9) and 2.278 (6) Å, with an
average value of 2.161 Å, which indicates that the two FeII ions in the binuclear molecule
are in the high-spin state. The average Fe–N bond length was determined to be 2.010 Å
at 100 K, which indicates that the two FeII ions are in the [LS–LS] state; the average Fe–N
bond length was determined to be 2.045 Å at 150 K, which lies between the high- and
low-spin values, consistent with an intermediate state. However, no change in space group
symmetry was observed, and the structure of the centrally symmetric binuclear molecule
was found to be similar to that observed at room temperature. The crystal structures
associated with the FeII coordination environment at various temperatures are similar to
those reported in the literature [36–39]. As expected, the intramolecular Fe–Fe distances
that correspond to the three temperature points are 5.970, 5.645, and 5.544 Å, respectively,
moving from high to low temperature, which means that the intramolecular FeII distance
decreases as the state of the FeII ion changes from HS to LS.

The lattice solvents (methanol and acetonitrile) in complex 1 are distributed around
the {[Fe(abpt-TPE)(NCS)2]2(bpym)} unit at 100 K, with no typical weak π···π interactions
observed due to various degrees of aromatic ring distortion and large distances; however,
intramolecular C–H···N hydrogen bonds are observed in the molecular packing arrange-
ment. In addition, three intermolecular hydrogen bonds, namely, C–H···S, O–H···N, and
C–H···O (pale purple and red dashed lines), that involve the lattice-solvent molecules are
observed. These three intermolecular hydrogen bonds cause complex 1 to form an infinite
linear one-dimensional chain (red solid line) along the b axis (Figure 4). The corresponding
Fe–Fe distance between the shortest dimers in the chain was determined to be 12.294 Å;
this distance increased with increasing temperature to 12.325 Å at 150 K and 12.451 Å at
300 K. Identical molecular packing arrangements were observed at both low and room
temperatures; however, weaker intermolecular hydrogen bonds were observed at the latter.
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The lattice solvent molecules (dichloromethane) are distributed around the {[Fe(abpt-
TPE)(NCS)2]2(bpym)} unit in complex 2 at 100 K, and intramolecular C–H···N (red dashed
lines) and C–H···S hydrogen bonds between these solvent molecules and the binuclear
molecules (green dashed lines) are observed. Adjacent molecules form a one-dimensional
chain through π···π interactions involving coordination pyridines (red dashed lines) in the
c-axis direction. Figure 5 shows that two different stacking modes of the one-dimensional
chain alternately expand in the ab plane (red and green solid lines).

What factors are responsible for the different magnetic behaviors exhibited for com-
plexes 1 and 2? Complexes 1 and 2 crystallize in different space groups with different
lattice solvents, ligand strains, and crystal stacking modes; these differences may cause the
octahedral [FeN6] geometries of 1 and 2 to distort to different degrees [40]. The solvent
effects on the SCO behavior are well documented in the literature [41–46]. In general, higher
octahedral distortion (Σ) corresponds to stronger distortion and indicates that ligand-field
weakening stabilizes the HS state. Complex 1 exhibited Σ values of 51.83, 60.37, and 90.75
at 100, 150, and 300 K, respectively. The data show that Σ increases and the ligand field
weakens with increasing temperature, which benefits the HS state. On the other hand,
complex 2 was determined to have a Σ value of 87.53 (100 K); this high Σ value indicates
that 2 contains stable FeII

HS ions within its [FeN6] units in the examined temperature
range. Different degrees of distortion cause complexes 1 and 2 to exhibit different magnetic
behaviors: complex 1 exhibits two-step spin transition behavior during thermal induction,
while complex 2 exhibits antiferromagnetism.



Magnetochemistry 2023, 9, 69 7 of 11Magnetochemistry 2023, 9, x FOR PEER REVIEW 7 of 12 
 

 

 

Figure 5. Schematic showing the crystal packing, lattice solvent distribution, hydrogen bonding, 

and π···π interactions of 2 at 100 K. The red dashed lines represent π···π interactions, and the green 

and pale purple dashed lines represent intramolecular hydrogen bonds. 

What factors are responsible for the different magnetic behaviors exhibited for com-

plexes 1 and 2? Complexes 1 and 2 crystallize in different space groups with different 

lattice solvents, ligand strains, and crystal stacking modes; these differences may cause 

the octahedral [FeN6] geometries of 1 and 2 to distort to different degrees [40]. The solvent 

effects on the SCO behavior are well documented in the literature [41–46]. In general, 

higher octahedral distortion (Σ) corresponds to stronger distortion and indicates that lig-

and-field weakening stabilizes the HS state. Complex 1 exhibited Σ values of 51.83, 60.37, 

and 90.75 at 100, 150, and 300 K, respectively. The data show that Σ increases and the 

ligand field weakens with increasing temperature, which benefits the HS state. On the 

other hand, complex 2 was determined to have a Σ value of 87.53 (100 K); this high Σ value 

indicates that 2 contains stable FeIIHS ions within its [FeN6] units in the examined temper-

ature range. Different degrees of distortion cause complexes 1 and 2 to exhibit different 

magnetic behaviors: complex 1 exhibits two-step spin transition behavior during thermal 

induction, while complex 2 exhibits antiferromagnetism. 

To explore the relationship between SCO and the fluorescence behavior of compound 

1 [47,48], we acquired fluorescence emission spectra of solid compound 1 at various tem-

peratures in heating mode (Figure 6a). 1 exhibited a wide fluorescence emission band 

(370–700 nm) with an emission wavelength maximum of approximately 479 nm. The max-

imum fluorescence intensity at 80 K was determined to be approximately three times 

higher than that recorded at 300 K. The fluorescence emission intensity decreased mono-

tonically as the temperature was gradually increased from 80 to 340 K (Figure 6b), indic-

ative of a process dominated by temperature-controlled thermal quenching. The fluores-

cence spectra reveal that SCO and fluorescence coexist independently in complex 1. 
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To explore the relationship between SCO and the fluorescence behavior of compound
1 [47,48], we acquired fluorescence emission spectra of solid compound 1 at various tem-
peratures in heating mode (Figure 6a). 1 exhibited a wide fluorescence emission band
(370–700 nm) with an emission wavelength maximum of approximately 479 nm. The maxi-
mum fluorescence intensity at 80 K was determined to be approximately three times higher
than that recorded at 300 K. The fluorescence emission intensity decreased monotonically
as the temperature was gradually increased from 80 to 340 K (Figure 6b), indicative of a
process dominated by temperature-controlled thermal quenching. The fluorescence spectra
reveal that SCO and fluorescence coexist independently in complex 1.
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3. Experimental Section
3.1. Synthesis

All FeII complexes were handled in a glove box under argon. Unless otherwise stated,
solvents, such as anhydrous ethanol, methanol, and acetonitrile, were purchased through
commercial channels. Fe(py)4(NCS)2 and N-(3,5-di(pyridine-2-yl)-4H-1,2,4-triazol-4-yl)-
1-(4-(1,2,2-triphenylvinyl)phenyl)methanimine (abpt-TPE) were synthesized according to
previous literature procedures [26].

3.1.1. {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2MeOH·2MeCN (1)

Abpt-TPE (34.8 mg, 0.06 mmol) was dissolved in dichloromethane (8 mL), after which
the solution was added to acetonitrile (8 mL). The resulting solution was slowly dropped
into a methanol solution (16 mL) containing ascorbic acid (8.8 mg) and Fe(py)4(NCS)2
(29.2 mg, 0.03 mmol), after which it was stirred at room temperature for 5 min, which
resulted in a red solution. Solid 2,2′-bipyrimidine (9.4 mg, 0.06 mmol) was then added,
and stirring continued for another 10 min, resulting in a clear dark-red solution. Purple
needle-like crystals were obtained after storing the solution in ether vapor for one week.
Yield: 46.4% (based on abpt-TPE). Elemental analysis (%) calculated for dried {[Fe(abpt-
TPE)(NCS)2]2(bpym)} (C90H62Fe2N20S4): C, 64.98; H, 3.76; N, 16.84. Found for dried 1: C,
64.84; H, 3.77; N, 16.70.

3.1.2. {[Fe(abpt-TPE)(NCS)2]2(bpym)}·2CH2Cl2 (2)

Abpt-TPE (34.8 mg, 0.06 mmol) was dissolved in dichloromethane (8 mL) with stirring,
after which it was gradually added to a methanol solution (16 mL) containing ascorbic
acid (8.8 mg) and Fe(py)4(NCS)2 (29.2 mg, 0.03 mmol). The solution was stirred at room
temperature for 5 min, after which 2,2′-bipyrimidine (4.8 mg, 0.03 mmol) was added, with
stirring continued for 10 min at room temperature. The obtained dark-red solution was
placed in ether vapor to afford long block crystals with red–brown aggregates after a
few days. Yield: 59.3% (based on abpt-TPE). Elemental analysis (%) calculated for dried
{[Fe(abpt-TPE)(NCS)2]2(bpym)} (C90H62Fe2N20S4): C, 64.98; H, 3.76; N, 16.84. Found for
dried 2: C, 64.65; H, 3.84; N, 16.30.

3.2. Single Crystal X-ray Diffractometry (SCXRD)

SCXRD data for complexes 1 and 2 were acquired on a Rigaku XtalAB PRO MM007
DW diffractometer. The collected diffraction data were integrated and restored using the
CrystalAlice PRO program, after which each single-crystal structure was analyzed and
refined using Olex2 software. The free disorder in the structure of complex 2 was removed
using the squeeze command, and all non-hydrogen atoms were treated anisotropically.

3.3. Powder X-ray Diffractometry (PXRD)

Experimental powder X-ray diffraction data for the two complexes were acquired in
the 3–60◦ range at 5 ◦C min−1 and room temperature using a Rigaku Smart Lab 3 kW X-ray
powder diffractometer. The calculated patterns were generated using Mercury software.

3.4. Magnetic Measurements

Variable-temperature susceptibilities were measured using a Quantum Design SQUID
MPMS-3 magnetometer at 10–300 K in sweep mode in a 1000 Oe magnetic field at 5 K min−1.
The relationship between magnetization (M) and field (H) for complex 2 was determined at
2 K.

3.5. Fluorescence Spectroscopy

Variable-temperature fluorescence emission spectra of 1 from 80 to 340 K were acquired
on an Edinburgh FLS 1000 fluorescence spectrophotometer in heating mode. Each sample
was placed in a copper groove substrate and covered with a quartz plate.
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3.6. Other Characterization

Elemental analyses were performed using a Vario EL cube analyzer on dried samples
after desolvation. Thermogravimetric analysis (TGA) was carried out under argon using
a TG–DTA analyzer (Nippon Institute of Physics) heated at 10 ◦C min−1. Differential
scanning calorimetry (DSC) was performed using a TA DSC-25 instrument (New Castle,
DE, USA) with 5 K min−1 heating and cooling rates.

4. Conclusions

We designed and synthesized two binuclear complexes using abpt-TPE as the terminal
ligand and bpym as the bridging ligand. The complexes were systematically characterized
by X-ray diffractometry, magnetism measurements, and variable-temperature fluorescence
emission spectroscopy. Complex 1 exhibited two-step spin transition behavior with multi-
ple spin states: [LS–LS]↔ [LS¬–HS]↔ [HS¬–HS]. In contrast, complex 2 remained in the
[HS–HS] state, with antiferromagnetic coupling (J =−0.47 cm−1) observed between the two
covalently bridged FeII

HS units. According to structural analysis, the two compounds have
different lattice solvents, ligand strains, and different crystal stacking modes. The above
differences cause the [FeN6] octahedra of compounds 1 and 2 to have different degrees of
distortion, so the binuclear compounds show different magnetic behaviors. Interestingly,
variable-temperature fluorescence emission spectroscopy shows that the fluorescence inten-
sity of 1 decreases monotonically with increasing temperature, dominated by the thermal
quenching effect affected by temperature. Thus, SCO and fluorescence coexist in complex 1.
This work further highlights the important influence of [FeN6] octahedral distortion caused
by solvents, ligand strain, and crystal packing on the magnetic behavior of a binuclear
complex. Moreover, this work contributes to the design and construction of binuclear and
multinuclear magnetic complexes.
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(top) and 2 (bottom) at room temperature; Figure S2: TG curves of complexes 1 (top) and 2 (bottom);
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Selected crystallographic data for complex 2.
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