# Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Computational Methods

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Park, S.W.; Mizoguchi, H.; Kodama, K.; Shamoto, S.; Otomo, T.; Matsuishi, S.; Kamiya, T.; Hosono, H. Magnetic Structure and Electromagnetic Properties of LnCrAsO with a ZrCuSiAs-type Structure (Ln = La, Ce, Pr, and Nd). Inorg. Chem.
**2013**, 52, 13363–13368. [Google Scholar] [CrossRef] - McGuire, M.A.; Garlea, V.O. Short- and long-range magnetic order in LaMnAsO. Phys. Rev. B
**2016**, 93, 054404. [Google Scholar] [CrossRef][Green Version] - Yanagi, H.; Kawamura, R.; Kamiya, T.; Kamihara, Y.; Hirano, M.; Nakamura, T.; Osawa, H.; Hosono, H. Itinerant ferromagnetism in the layered crystals LaCoOX (X = P, As). Phys. Rev. B
**2008**, 77, 224431. [Google Scholar] [CrossRef][Green Version] - Ohta, H.; Yoshimura, K. Magnetic properties of LCoAsO (L = La–Gd). Phys. Rev. B
**2009**, 80, 184409. [Google Scholar] [CrossRef][Green Version] - Prando, G.; Bonfa, P.; Profeta, G.; Khasanov, R.; Bernardini, F.; Mazzani, M.; Bruning, E.M.; Pal, A.; Awana, V.P.S.; Grafe, H.J.; et al. Common effect of chemical and external pressures on the magnetic properties of RCoPO (R = La, Pr). Phys. Rev. B
**2013**, 87, 064401. [Google Scholar] [CrossRef][Green Version] - Watanabe, T.; Yanagi, H.; Kamiya, T.; Kamihara, Y.; Hiramatsu, H.; Hirano, M.; Hosono, H. Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP. Inorg. Chem.
**2007**, 46, 7719–7721. [Google Scholar] [CrossRef] - Wang, C.; Wang, Z.-C.; Mei, Y.-X.; Li, Y.-K.; Li, L.; Tang, Z.-T.; Liu, Y.; Zhang, P.; Zhai, H.-F.; Xu, Z.-A.; et al. A New ZrCuSiAs-Type Superconductor: ThFeAsN. J. Am. Chem. Soc.
**2016**, 138, 2170–2173. [Google Scholar] [CrossRef][Green Version] - Wang, Z.-C.; Shao, Y.-T.; Wang, C.; Wang, Z.; Xu, Z.-A.; Cao, G.-H. Enhanced superconductivity in ThNiAsN. Europhys. Lett.
**2017**, 118, 57004. [Google Scholar] [CrossRef] - Shiroka, T.; Shang, T.; Wang, C.; Cao, G.-H.; Eremin, I.; Ott, H.-R.; Mesot, J. High-Tc superconductivity in undoped ThFeAsN. Nat. Commun.
**2017**, 8, 156. [Google Scholar] [CrossRef][Green Version] - Sen, S.; Guo, G.-Y. Pressure induced Lifshitz transition in ThFeAsN. Phys. Rev. Mater.
**2020**, 4, 104802. [Google Scholar] [CrossRef] - Sen, S.; Guo, G.-Y. Electronic structure, lattice dynamics, and magnetic properties of ThXAsN (X=Fe,Co,Ni) superconductors: A first-principles study. Phys. Rev. B
**2020**, 102, 224505. [Google Scholar] [CrossRef] - Yang, Y.; Feng, S.-Q.; Lu, H.-Y.; Gu, L.-T.; Chen, Z.-P. Electronic Properties and Lattice Dynamics Studies of the Nickel-Based Superconductor ThNiAsN. J. Supercond. Nov. Magn.
**2018**, 31, 3153–3158. [Google Scholar] [CrossRef] - Zhang, F.; Li, B.; Ren, Q.; Mao, H.; Xia, Y.; Hu, B.; Liu, Z.; Wang, Z.; Shao, Y.; Feng, Z.; et al. ThMnPnN (Pn = P, As): Synthesis, Structure, and Chemical Pressure Effects. Inorg. Chem.
**2020**, 59, 2937–2944. [Google Scholar] [CrossRef] [PubMed] - Corkett, A.J.; Free, D.G.; Clarke, S.J. Spin-reorientation transition in CeMnAsO. J. Clarke Inorg. Chem.
**2015**, 54, 1178–1184. [Google Scholar] [CrossRef] [PubMed] - Marcinkova, A.; Hansen, T.; Curfs, C.; Margadonna, S.; Bos, J.-W. Nd-induced Mn spin-reorientation transition in NdMnAsO. Phys. Rev. B
**2010**, 82, 174438. [Google Scholar] [CrossRef][Green Version] - Kimber, S.; Hill, A.; Zhang, Y.-Z.; Jeschke, H.; Valentí, R.; Ritter, C.; Schellenberg, I.; Hermes, W.; Pöttgen, R.; Argyriou, D.N. Local moments and symmetry breaking in metallic PrMnSbO. Phys. Rev. B
**2010**, 82, 100412. [Google Scholar] [CrossRef][Green Version] - Satya, A.T.; Mani, A.; Arulraj, A.; Chandrashekar, N.V.; Vinod, K.; Sundar, C.S.; Bharathi, A. Pressure-induced metallization of BaMn
_{2}As_{2}. Phys. Rev. B 84, 180515(R); Erratum in Phys. Rev. B**2012**, 85, 019901. [Google Scholar] [CrossRef] - Sen, S.; Kabbour, H. Pressure induced magnetic and structural transitions in ThMnAsN: An ab-initio study. arXiv
**2022**, arXiv:2207.00977. [Google Scholar] [CrossRef] - Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B
**1993**, 47, 558. [Google Scholar] [CrossRef] - Bloch, P.E. Projector augmented-wave method. Phys. Rev. B
**1994**, 50, 17953. [Google Scholar] [CrossRef] [PubMed] - Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci.
**1996**, 6, 15–50. [Google Scholar] [CrossRef] - Perdew, J.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett.
**1996**, 77, 3865. [Google Scholar] [CrossRef][Green Version] - Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B
**1998**, 57, 1505. [Google Scholar] [CrossRef] - Yu, K.; Carter, E.A. Communication: Comparing ab initio methods of obtaining effective U parameters for closed-shell materials. J. Chem. Phys.
**2014**, 140, 121105. [Google Scholar] [CrossRef] - Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B
**2005**, 71, 035105. [Google Scholar] [CrossRef][Green Version] - Kulik, H.J.; Cococcioni, M.; Scherlis, D.A.; Marzari, N. Density Functional Theory in Transition-Metal Chemistry: A Self-Consistent Hubbard U Approach. Phys. Rev. Lett.
**2006**, 97, 103001. [Google Scholar] [CrossRef][Green Version] - Mosey, N.J.; Carter, E.A. Ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. Phys. Rev. B
**2007**, 76, 155123. [Google Scholar] [CrossRef] - Mosey, N.J.; Liao, P.; Carter, E.A. Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT+U calculations. J. Chem. Phys.
**2008**, 129, 14103. [Google Scholar] [CrossRef] [PubMed][Green Version] - Aryasetiawan, F.; Karlsson, K.; Jepsen, O.; Schönberger, U. Calculations of Hubbard U from first-principles. Phys. Rev. B
**2006**, 74, 125106. [Google Scholar] [CrossRef][Green Version] - Miyake, T.; Aryasetiawan, F. Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B
**2008**, 77, 085122. [Google Scholar] [CrossRef] - Şaşíoğlu, E.; Friedrich, C.; Blügel, S. Effective Coulomb interaction in transition metals from constrained random-phase approximation. Phys. Rev. B
**2011**, 83, 121101. [Google Scholar] [CrossRef][Green Version] - Wang, L.; Maxisch, T.; Ceder, G. Oxidation energies of transition metal oxides within the GGA+U framework. Phys. Rev. B
**2006**, 73, 195107. [Google Scholar] [CrossRef]

**Figure 1.**Schematic representation of (

**a**) ferromagnetic (FM), (

**b**) C-type anti-ferromagnetic (AFM), (

**c**) A-type anti-ferromagnetic (C-AFM), and (

**d**) G-type anti-ferromagnetic (G-AFM) spin arrangements for tetragonal ThMnAsN.

**Figure 2.**Calculated density of states of ThMnAsN for the (

**a**) A-AFM, (

**b**) C-AFM, (

**c**) G-AFM, and (

**d**) FM spin arrangements. the up-spin and down-spin density of states are indicated by blue and red lines, respectively. The Fermi level is denoted by a vertical black line at $E=0$ eV.

**Figure 3.**Calculated density of states of ThMnPN for the (

**a**) A-AFM, (

**b**) C-AFM, (

**c**) G-AFM, and (

**d**) FM spin arrangements. Up-spin and down-spin density of states are indicated by blue and red lines, respectively. The Fermi level is denoted by a vertical black line at $E=0$ eV.

**Figure 4.**Variation of the total energy with the fixed local Mn moment for (

**a**) ThMnAsN and (

**b**) ThMnPN (green circles indicate the variation of the total energy with the fixed Mn magnetic moment with an effective Hubbard U of 0.9 eV) with the C-AFM spin configuration.

**Figure 5.**Calculated density of states of ThMnAsN with the C-AFM spin configuration for fixed Mn moments of (

**a**) M = 3.5 ${\mu}_{B}$, (

**b**) M = 3.0 ${\mu}_{B}$, (

**c**) M = 2.7 ${\mu}_{B}$, and (

**d**) M = 2.4 ${\mu}_{B}$. Up-spin and down-spin density of states are indicated by blue and red lines, respectively. The Fermi level is denoted by a vertical black line at $E\phantom{\rule{3.33333pt}{0ex}}=\phantom{\rule{3.33333pt}{0ex}}0$ eV.

**Figure 6.**Calculated density of states of ThMnPN with the C-AFM spin configuration for fixed Mn moments with an effective Hubbard U of 0.9 eV (

**a**) M = 3.7 ${\mu}_{B}$, (

**b**) M = 3.4 ${\mu}_{B}$, (

**c**) M = 3.0 ${\mu}_{B}$, and (

**d**) M = 2.7 ${\mu}_{B}$. Up-spin and down-spin density of states are indicated by blue and red lines, respectively. The Fermi level is denoted by a vertical black line at $E=0$ eV.

**Figure 7.**Variation of the energy gap at the Fermi level at different fixed Mn magnetic moments for (

**a**) ThMnAsN and (

**b**) ThMnPN (green circles indicate the energy gap at various fixed Mn magnetic moments with an effective Hubbard U of 0.9 eV) with the C-AFM spin configuration.

**Table 1.**Calculated total energies (with respect to the NM state) and local magnetic moments of the Mn atoms of ThMnXN (X = As, P) with the experimental structure (at 4 K) for the NM, FM, A-AFM, C-AFM, and G-AFM states. The energy of the NM state was set to zero.

ThMnAsN | ThMnPN | |||
---|---|---|---|---|

Magnetic | Energy | Mn Moment | Energy | Mn Moment |

Order | (meV/f.u.) | (${\mathbf{\mu}}_{\mathit{B}}$) | (meV/f.u.) | (${\mathbf{\mu}}_{\mathit{B}}$) |

NM | 0 | 0 | 0 | 0 |

FM | −317.8 | 2.39 | −332.8 | 2.03 |

A-AFM | −322.3 | 2.69 | −332.1 | 1.91 |

C-AFM | −781.1 | 3.52 | −701.7 | 3.34 |

G-AFM | −780.3 | 3.52 | −700.9 | 3.34 |

_{B}and 3.60 μ

_{B}, respectively, at 4 K.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sen, S.; Ghosh, H.
Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study. *Magnetochemistry* **2023**, *9*, 16.
https://doi.org/10.3390/magnetochemistry9010016

**AMA Style**

Sen S, Ghosh H.
Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study. *Magnetochemistry*. 2023; 9(1):16.
https://doi.org/10.3390/magnetochemistry9010016

**Chicago/Turabian Style**

Sen, Smritijit, and Haranath Ghosh.
2023. "Magnetic-Moment-Induced Metal–Insulator Transition in ThMnXN (X = As, P): A First Principles Study" *Magnetochemistry* 9, no. 1: 16.
https://doi.org/10.3390/magnetochemistry9010016