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Abstract: We present the new synthesis root of spinel-structure FeCr2O4 and its single crystal growth
by the optical floating zone method, ensuring its single phase and near-ideal composition. The
advantage of the proposed synthesis method is the creation of the reducing atmosphere in the oven
needed for preserving the Fe2+ oxidation state via decomposition of the iron (II) oxalate FeC2O4 used
as one of the initial components. The occurrence of the Fe3+ ions in the obtained polycrystalline
samples as well as grown single crystals was carefully monitored by means of Mössbauer spectroscopy.
Magnetic susceptibility and heat capacity temperature dependences reveal a sequence of the structural
(138 K) and magnetic (at 65 K and 38 K) phase transition characteristics for the FeCr2O4 compound.
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1. Introduction

Crystalline materials with the spinel structure and a general chemical formula of
MM2’X4 have been studied for several decades due to a broad range of magnetic, structural,
and dielectric properties discovered in them [1–7]. Here, M and M’ are metal ions or a
combination of them, and X represents oxygen or some chalcogen divalent anion (S2−,
Se2−, Te2−). Among them, the iron chromite FeCr2O4 spinel is a well-known compound
with a normal cubic spinel structure at room temperature (space group Fd3m, Figure 1) and
the lattice constant a = 8.378 Å [8]. The tetrahedrally coordinated A-site in it is occupied by
Fe2+ ions (electronic configuration 3d6) and the octahedrally coordinated B site is occupied
by Cr3+ ions (electronic configuration 3d3).
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Figure 1. Unit cell of the FeCr2O4 compound with a spinel structure. Ions in the quarter of the unit 
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Figure 1. Unit cell of the FeCr2O4 compound with a spinel structure. Ions in the quarter of the unit
cell are shown.

Another cation distribution exists in the inverse spinel: one-half of the trivalent
cations fill the A-positions and another half is randomly distributed over the B-site network
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together with the divalent ions. Recently, inverse spinels also attracted the attention due to
their peculiar magnetic and electronic properties [9,10].

In FeCr2O4, on cooling below ~140 K, symmetry lowering of the crystal structure
occurs due to the cooperative Jahn–Teller effect within the A-ion sublattice. The electronic
ground state of the Fe2+ ions in high-symmetry tetrahedral oxygen coordination is the 5E
orbital doublet that is strongly coupled to the E-symmetry distortions. The ground state of
the Cr3+ ion in octahedral surrounding is the orbital singlet A2g, which is not the Jahn–Teller
active. The strong interaction between the degenerate states and the local lattice distor-
tions leads to an effective strong coupling between the adjacent (FeO4) structural units.
Below a critical temperature TOO, a structural phase transition from the cubic to tetragonal
symmetry occurs due to the orbital ordering. For FeCr2O4, the critical temperature is
TOO = 135 K, and the tetragonal distortion achieves a value of c/a = 0.986 [11,12]. It was
shown also that the cubic-to-tetragonal transition temperature TOO gradually decreases if
the Jahn–Teller-active Fe2+ ions are replaced by the “inactive” high-spin Mn2+ ions (elec-
tronic configuration 3d5, ground state is the A1g orbital singlet), related to the weakening of
the effective long-range orbital–orbital interaction [13]. On further cooling, the symmetry
of the FeCr2O4 crystal structure is lowered to orthorhombic, almost simultaneously with
an establishment of the magnetic order at ~70 K [13].

The magnetic properties of the oxide spinel FeCr2O4 are more complex than, for
example, of its sulphide representative FeCr2S4; the latter can be described by the Neel
model and exhibits a transition to collinear ferrimagnetic state at TN = 180 K [8]. A powder
neutron diffraction study has shown that the spin arrangement in FeCr2O4 is collinear
ferrimagnetic between TN = 80 K and TS = 35 K. It is important to mention that the
transition temperature TN strongly depends on the amount of the Fe3+ ions formed during
the synthesis procedure [14]. Below 35 K, according to [8], a cone spiral spin structure
is established in FeCr2O4. Such a ferrimagnetic spiral structure has been established in
cubic spinel MnCr2O4 also [15], and the model for tetragonal spinel was developed earlier
by Menyuk et al. [16]. However, the proposed spiral spin structure is currently under a
debate, and high-quality single-crystal samples of FeCr2O4 are needed for its appropriate
examination by either the neutron diffraction or, e.g., the Mössbauer effect studies [17–19].
Recently, the magnetic and structural properties of the Fe1+xCr2−xO4 (0 ≤ x ≤ 1) spinel
series have been investigated [14]. It has been found that partial replacement of Cr3+ ions
by Fe3+ ones leads to an increase in the paramagnetic to collinear ferrimagnetic transition
temperature TN but reduces the collinear to spiral spin structure temperature TS.

Lately, the interest to the 3d-metal spinel family renewed due to a discovery of magne-
toelectric effects and related to it multiferroicity [20]. Mutual dependence of the magnetic
and dielectric properties gives rise to such practically important phenomena as nonre-
ciprocity [21] or magnetic field-controlled optical diodes [22,23]. Thus, spinels are intensely
investigated and attract an attention of the researchers both from the fundamental science
and its applied field.

Iron chromite FeCr2O4 is a compound for which many aspects remain uncovered,
such as an intrinsic magnetic structure and its development with temperature and an
applied magnetic field, an origin of the induced electric polarization and magnetoelectric
coupling. The main source of the observed discrepancies and debates, probably, is the
quality and stoichiometry of the studied samples. Indeed, whatever the synthesis route is
used, almost inevitably, part of the Fe2+ ions oxidize to the Fe3+ state and then compete with
Cr3+ ions for the octahedral B-sites [24]. A fact of such substitution cannot be resolved by
the easily accessible X-ray diffractometry (XRD), but, as it was mentioned above, can affect
a material’s properties notably. To preserve the desired Fe2+ state, a reducing atmosphere
is created traditionally in an oven during the solid-state synthesis by admixing of either the
hydrogen H2 or carbon monoxide CO to an inert gas (argon, nitrogen, or CO2) [25]. This
complicates the procedure but does not ensure an absence of Fe3+ ions in the product. We
propose a synthesis approach that does not require an involvement of additional reducing
agents though produces a minimal amount of Fe3+ ions at the output of the solid-state



Magnetochemistry 2022, 8, 86 3 of 9

synthesis. The single crystal samples were grown by the floating zone method, and we find
that in the crystal an amount of Fe3+ ions is left the same as in a prepared ceramic ingot.
Basic properties of the grown single-crystal sample are described. A preliminary study of
the sample has revealed the magnetic structure rearrangement under an applied magnetic
field at ~21 K accompanied by an appearance of the butterfly-like magnetic hysteresis [21].

The article is written as follows: in Section 2 the sample preparation procedure is
described as well as the characterization methods used, Section 3 presents the results of the
XRD analysis and Mössbauer spectroscopy of the as-grown and annealed single crystal of
FeCr2O4, in Section 4 the magnetic susceptibility is presented together with a specific heat
data, and in the Conclusions the obtained structural and magnetic transition temperatures
are summarized and compared with results obtained earlier.

2. Sample Preparation and Experimental Methods

The polycrystalline FeCr2O4 sample was synthesized by solid-state reaction using
the iron (II) oxalate dihydrate FeC2O4 × 2H2O (Alfa Aesar, 99.999%) and chromium (III)
oxide Cr2O3 (Alfa Aesar, 99.995%) as starting reagents. The reagents were mixed in a
stoichiometric ratio, and the actual weight of iron (II) oxalate was adjusted based on the
measured thermogravimetric analysis (TGA) results. The stoichiometric mixture was
thoroughly ground and mixed in the air for 3 h in an agate mortar. The mixture in an
alumina crucible was placed to the vertical furnace (MTI GSL1700X). The chamber was
evacuated to 10−2 mbar and purged with the pure Ar (99.9998%) several times. The
synthesis took place in a weak flow of argon (~0.01 L/min) under slight over pressure
(~0.01 bar) at a temperature of 1400 ◦C for 12 h. According to TGA, on heating, iron (II)
oxalate dehydrate first releases water (by achieving ~175 ◦C) and then, in the range of
200–300 ◦C, decomposes following a reaction of

FeC2O4 → FeO + CO2 + CO. (1)

Carbon monoxide emitted during the decomposition inhibits the oxidation of FeO,
thus preserving the Fe2+ state of the iron ions. The resulting reaction product was examined
for the formation of the desired phase by the powder XRD analysis and for a presence
of the undesired Fe3+ ions by the Mössbauer spectroscopy. The powder was thoroughly
grounded, mixed with the GE varnish in a 19:1 volume ratio with the addition of the extra
pure isopropyl alcohol, pressed into a cylindrical rod and fired at a temperature of 1400 ◦C
for 2 h in a weak flow of pure argon.

A single crystal of FeCr2O4 was grown in a pure argon flow of 0.1 L/min at a pressure
of 5.5 bar by the floating zone method with optical heating using the FZ-T-4000-H-VII-
VPO-PC furnace (Crystal Systems Corp., Yamanashi, Japan) equipped with four 1-kW
halogen lamps (Crystal Systems Corp., Yamanashi, Japan). A relatively high growth rate
of 5–8 mm/hour was used. The feed and seed rods were counter rotated at the rates of
10 and 15 rpm, respectively, to obtain a homogeneous molten zone. The as-grown crystal
(Figure 2) was afterwards annealed for 154 h at a temperature of 1200 ◦C in argon. Both the
as-grown sample and the one after calcination were examined with the powder XRD and
the Mössbauer spectroscopy.
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XRD measurements were carried out with the Bruker D8 Advance diffractometer
(Bruker AXS GmbH, Karlsruhe, Germany) equipped with the Cu-Kα source (Siemens AG,
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Berlin, Germany) at room temperature (RT). For the measurements, samples were carefully
ground in an agate mortar to a fine powder state. The single-crystal structure of the grown
sample was verified by means of the two-dimensional χ-ϕ scan of the sample mounted to
the Euler cradle with the 2θ-angle adjusted to a definite XRD-maximum.

Mössbauer effect studies in the transmission geometry were carried out with the
conventional spectrometer (WissEl Gmbh, Starnberg, Germany), operating in a constant
acceleration mode, at RT. 57Co (Rh) (RITVERC JSC, St. Petersburg, Russia) with the activity
of about 40 mCi was used as source of the resonance radiation. The spectrometer velocity
scale was calibrated using spectrum of thin metallic iron foil at RT. The spectra were fitted
using the SpectrRelax (v. 2.1, Matsnev, M.E.; Rusakov, V.S.; Moscow, Russia) software [26].
Values of the isomer shift are reported versus the center of gravity of the α-Fe at RT. For the
measurements, finely ground powders were used for preparing thin Mössbauer absorbers.

Magnetization of the single crystal of the FeCr2O4 as a function of the magnetic field
and temperature was measured using the Physical Property Measurement System (PPMS-9)
by Quantum Design with a vibrating sample magnetometry (VSM) option. Heat capacity
measurements in zero applied magnetic field at temperatures from 5 to 300 K were also
carried out with the PPMS-9 with a heat capacity option using a 2τ relaxation approach.

3. XRD and Mössbauer Spectroscopy

The powder XRD pattern of the crashed single crystal of FeCr2O4 and its Rietveld-
refined model curve are shown in Figure 3a. The calculated model has revealed a dom-
inating spinel structure—an FeCr2O4 (94%) phase and an impurity Cr2O3 (6%) phase.
Lattice parameter a of the spinel phase was equal to 8.375 Å, which is in a good agreement
with data published in the literature [8,27]. Two reasons can be proposed to explain an
occurrence of the residual Cr2O3 phase: (i) partial transformation of the Fe2+ ions to the
Fe3+ state (see below) and (ii) a slight departure from the initial mixture stoichiometry due
to unsaturated in-water iron (II) oxalate dihydrate.

Figure 3b presents the result of the χ-ϕ scan of the grown sample of the 4× 4× 2 mm3

size with the near (001)-oriented large faces and 2θ-angle = 62.72 degrees corresponding to
the {440}-type reflections. Observation of the expected four diffraction maxima within the
scanned solid angle and an absence of any additional detected signals for this arrangement
undoubtedly indicates the single-crystal structure of the grown macroscopic sample.

The RT Mössbauer spectrum of the polycrystalline FeCr2O4 used after for the single-
crystal growth is shown in Figure 4a. The spectrum may be reasonably well fitted with
a sum of two components; namely, the major singlet with the relative area of A = 97(1)%
and the minor doublet with A = 3(1)%. The isomer shift of the singlet δ = 0.94(1) mm/s
is the characteristic for the high-spin Fe2+ ions in the tetrahedral oxygen coordination
(A-site in the spinel structure) and matched well the reported earlier results [19]. The
lineshape of the singlet is the Lorentzian with the width value of w = 0.34(1) mm/s. The
latter value is slightly larger than the one expected for iron-bearing crystalline powders
(w~0.3 mm/s) and may be explained by the broadening due to a dynamic tetragonal
distortion reorientation related to the dynamic Jahn–Teller effect [19]. The doublet with the
isomer shift of δ = 0.46(3) mm/s and the quadrupole splitting 2ε = 0.63(6) mm/s may be
associated with the high-spin Fe3+ ions in the octahedral oxygen coordination, i.e., in the
B-sites of the spinel structure.
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The RT Mössbauer spectra of the as-grown and the post-annealed crystals are depicted
in Figure 4b,c, respectively. The spectrum of the as-grown crystal was fitted with a sum of
four components; namely, one singlet and three doublets. The singlet with δ = 0.93(1) mm/s,
w = 0.43(1) mm/s, and A = 67(1)% matches with the analogous signal in the spectrum of
the polycrystalline FeCr2O4. An additional broadening of this component may be related
to the microstresses in the crystal. The isomer shift values of the two doublets are the same
as that of the singlet (the values were fixed during the fitting), whereas the quadrupole
splitting values are 1.04(3) mm/s and 1.47(3) mm/s and the relative areas 17(4)% and
11(3)%, respectively. It shows that these Fe2+ ions have the electronic configurations close
to the one if the ions are manifested by the singlet, but some electric field gradients (EFG)
are present in these centers. We suppose that these EFGs are associated with residual static
bulk distortions revealed in the XRD patterns of the as-grown sample by the complex
shapes of the diffraction maxima. As the result of the annealing, these doublets totally
vanished, which proved our claim. After the annealing, the singlet parameters were
δ = 0.93(1) mm/s and A = 95(1)%. However, its lineshape deviated from the Lorentzian and
the spectrum was fitted assuming its pseudo-Voigt profile. The Lorentzian width for the
singlet was estimated as w = 0.46(1) mm/s, and the parameter α value defined in Ref. [28]
was 0.47(2). The deviation of the lineshape from the Lorentzian, most probably, is related to
some distribution of the hyperfine parameters. The residual microstresses may introduce
local EFGs with some distribution. These microstresses were also visible from the XRD
reflexes broadening.

The hyperfine parameters of the minor doublet in the spectra of as-grown and post-
annealed samples are δ = 0.26(2) mm/s, 2ε = 0.32(3) mm/s, A = 5(1)% and δ = 0.27(2) mm/s,
2ε = 0.32(3) mm/s, A = 6(1)%, respectively. The isomer shift and quadrupole splitting
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values of the minor doublet after growth and annealing notably differ from the values of the
minor doublet in the spectrum of the polycrystalline FeCr2O4; they are more characteristic
for the high-spin Fe3+ ions in the tetrahedral oxygen coordination, i.e., in the A-site of the
spinel structure. The presence of the Fe3+ ions in the A-sites indicates a partial inversion
of the nominally normal spinel structure of FeCr2O4. The same quantity of divalent ions
should occupy the B sites. However, such a component is not resolved in our spectra.

4. Specific Heat and Magnetic Susceptibility Results

Both the specific heat and magnetic susceptibility were studied on the post-annealed
single crystal FeCr2O4 sample.

The specific heat Cp was measured in the temperature range of 5–300 K (Figure 5).
It reveals a sequence of the anomalies observed on cooling below 200 K. The first phase
transition corresponding to an establishment of the long-range orbital ordering within the
A-sites takes place at the temperature of TOO = 138 K, which is within an experimental
uncertainty the same as reported by Kose et al. [29]. On further cooling, the next anomaly
is found at ~65 K, close to the reported Neel temperature accompanied by the structural
transition from the tetragonal to the orthorhombic phase. We note here that the obtained
value of the Neel temperature is probably the lowest reported in the literature and re-
calling its increase with the concentration of Fe3+ ions, we can assume that the obtained
single crystal is characterized by the chemical composition most close to an ideal [14]. At
Ts = 38.5 K, another anomaly in Cp(T) dependence is found, which, according to the neutron
diffraction data [8], corresponds to a development of a non-collinear conical spin state.
This value is slightly higher than the value of 38 K obtained by Singh et al. from dielectric
permittivity measurements [20].
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Magnetic susceptibility was measured with the magnetic field applied along the
quasi-cubic [001] direction. The temperature dependence of the magnetic susceptibility
of the FeCr2O4 in the field of H = 100 Oe is shown in Figure 5. An onset of the collinear
ferrimagnetic state is clearly revealed at ~65 K, matching an anomaly in the specific heat
data. Another weak, though clearly resolved, anomaly is found at ~38 K again matching
a peak in Cp(T), and, at ~21 K, the susceptibility drops. This anomaly is not reflected
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in the specific heat data. In our recent paper [21], we have found that the shape of the
magnetic susceptibility dependence of the grown FeCr2O4 single-crystal on temperature
is strongly modified with the variation of an applied magnetic field; moreover, the shape
of the magnetic hysteresis loop changes from a conventional to the butterfly-like one. We
have tentatively assigned this observation to the spin structure rearrangement similar to
that reported for the isostructural FeCr2S4 compound [30]. The authors also observed the
butterfly-like hysteresis loop and assigned it to an unconventional magnetic-field-induced
spin-reorientation transition for the single crystal FeCr2S4 with an orbitally ordered ground
state of Fe2+ [30]. Similar butterfly-like hysteresis loops were observed for other systems
(for example, LCMO manganite with TN ≈ 50 K) [31].

5. Conclusions

In this article, we report on the successful synthesis of both the powder by the high-
temperature solid-state reaction and the single crystal FeCr2O4 using iron (II) oxalate and
chromium (III) oxide as starting materials. The crystal structure and phase composition
were approved by the powder X-ray diffraction method. The presence of Fe3+ ions in the
grown crystal was analyzed by Mössbauer spectroscopy. The heat capacity measurements
show three peaks corresponding to structural and magnetic phase transitions at 138 K,
65 K, and 38.5 K. The observed value of the Neel temperature TN = 65 K to our knowl-
edge is the lowest reported in literature, indicating the lowest amount of Fe3+ ions in the
synthesized sample.
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