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Abstract: Remarkable chiral activity is donated to a copper deposit surface by magneto-electrodeposition,
whose exact mechanism has been clarified by the three-generation model. In copper deposition under a
vertical magnetic field, a macroscopic tornado-like rotation called the vertical magnetohydrodynamic
(MHD) flow (VMHDF) emerges on a disk electrode, inducing the precessional motions of various
chiral microscopic MHD vortices: First, chiral two-dimensional (2D) nuclei develop on an electrode
by micro-MHD vortices. Then, chiral three-dimensional (3D) nuclei grow on a chiral 2D nucleus by
chiral nano-MHD vortices. Finally, chiral screw dislocations are created on a chiral 3D nucleus by
chiral ultra-micro MHD vortices. These three processes constitute nesting boxes, leading to a limiting
enantiomeric excess (ee) ratio of 0.125. This means that almost all chiral activity of copper electrodes
made by this method cannot exceed 0.125. It also became obvious that chirality inversion by chloride
additive arises from the change from unstable to stable nucleation by the specific adsorption of it.

Keywords: chirality; chiral electrodeposition; magnetic field; nucleation; micro-MHD vortex; nano-
MHD vortex

1. Introduction

In recent years, it has been found that ionic vacancies are produced in solution phases
as byproducts of electrode reactions [1,2]. Ionic vacancies are charged particles created to
keep the conservations of linear momentum and electricity during electron transfers in
electrode reactions. The initially created embryo vacancies are similar to ions isolated in
free space, energetically unstable in solution phases. In accordance with the Debye–Hückel
theory, ions in solution phases are stabilized by the solvation, surrounded by ionic clouds.
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At the same time, from the ionic clouds, the solvation energies are liberated, producing
entropies around the ions. This is the reason why the activities of ions are less than 1.0. In
the same way, the embryo vacancies are also stabilized by the solvation, surrounded by
ionic clouds. However, since embryo vacancies are composed of minute free spaces, the
liberated solvation energies are not dispersed as heat but used for the dynamic works to
enlarge their free-space cores, and stored in the cores. As a result, it is concluded that in the
solvation, ionic vacancies do not produce entropies. As shown in Figure 1a,b, a solvated
ionic vacancy is a charged free space of the order of 0.1 nm, surrounded by polarized solvent
molecules and an ionic cloud with opposite charges. Though collided by surrounding
solvent molecules in a collision time of 10−10 s, a solvated ionic vacancy keeps an intrinsic
lifetime of 1 s [3,4], which is, compared with the collision time, extraordinarily long. This
result strongly suggests that an ionic vacancy behaves as an iso-entropic particle without
entropy production during transfer. Plainly, an ionic vacancy plays a role of an atomic scale
lubricant, so that a vacancy layer formed on the electrode provides a free surface without
friction, and the viscosity of the layer drastically decreases to zero. Such features have been
validated by various experiments [3–6].

Figure 1. Solvated ionic vacancies. (a) Negative ionic vacancy. (b) Positive ionic vacancy. H, proton;
O, oxygen atom; δ+ and δ−, partial polarized charges of water molecules surrounding the free spaces;
⊕, cation;
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In an electrode reaction under a vertical magnetic field, as shown in Figure 2, a mac-
roscopic tornado-like rotation called the vertical magnetohydrodynamic (MHD) flow 
(VMHDF) emerges over a disk electrode with a fringe (fringed vertical MHD electrode 
(fringed-VMHDE)). In the preceding papers [5,6], the processes of the MHD rotation and 
the resulting mass transfer have been clarified. The electrode surface is covered with ionic 
vacancies, providing a free surface without friction. A fringed-VMHDF is divided by an 
upper rotational layer and a lower radial flow layer. The rotation of the upper layer is 
driven by the Lorentz force, and the radial flow arises from the pressure difference on the 
fringe of the electrode. By removing the fringe, we will find only a rotating piston-like 
flow without the radial flow layer. 

Mogi and co-workers have been experimentally clarifying the chirality-emerging 
processes of copper electrodeposition under VMHDFs [7–18]. Chiral deposit films of cop-
per were fabricated by chiral microscopic vortices called micro- and nano-MHD flows, 
formed on and in vacancy layers, which have chiral activities for enantiomeric reactions 
of amino acids. By changing the direction of the magnetic field and electrochemical 
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In an electrode reaction under a vertical magnetic field, as shown in Figure 2, a
macroscopic tornado-like rotation called the vertical magnetohydrodynamic (MHD) flow
(VMHDF) emerges over a disk electrode with a fringe (fringed vertical MHD electrode
(fringed-VMHDE)). In the preceding papers [5,6], the processes of the MHD rotation and
the resulting mass transfer have been clarified. The electrode surface is covered with ionic
vacancies, providing a free surface without friction. A fringed-VMHDF is divided by an
upper rotational layer and a lower radial flow layer. The rotation of the upper layer is
driven by the Lorentz force, and the radial flow arises from the pressure difference on the
fringe of the electrode. By removing the fringe, we will find only a rotating piston-like flow
without the radial flow layer.

Mogi and co-workers have been experimentally clarifying the chirality-emerging
processes of copper electrodeposition under VMHDFs [7–18]. Chiral deposit films of
copper were fabricated by chiral microscopic vortices called micro- and nano-MHD flows,
formed on and in vacancy layers, which have chiral activities for enantiomeric reactions of
amino acids. By changing the direction of the magnetic field and electrochemical conditions,
various modes of chirality emergence are possible. The most important point of this process
is that microscopic chiral vortices create chiral screw dislocations with chiral activities.
Such chirality of the vortices is caused by the precession from the VMHDF [8,19]. The
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rotational direction of the VMHDF is determined by the direction of the vertical magnetic
field [5,6]; upward and downward magnetic fields provide the anticlockwise (ACW) and
clockwise (CW) rotations, respectively. From these experimental results, it is concluded
that the rotation of a VMHDF induces chiral precessions of the micro- and nano-MHD
flows, which in turn produce chiral screw dislocations with chiral activities. From the
hydrodynamic point of view, such microscopic vortices are only permitted in the case of
a drastic decrease of viscosity or zero viscosity, i.e., the viscosity of the ordinary solution
is too high for them to rotate. However, fortunately, the ionic vacancies mentioned above
assist the vortex rotations with zero viscosity.

Figure 2. Schematic of a VMHDF on a fringed-VMHDE [6]. A, copper disk electrode; B, doughnut-
shaped fringe of VMHDE; C, rotational-boundary-layer-flow; D, radial-boundary-layer-flow. δ, the
thickness of the radial boundary layer (~0.1 mm); lII, the height of the rotational boundary layer
(~several mm); vin, inner tangential velocity on the electrode; vout, outer tangential velocity on the

fringe;
→
B , magnetic flux density;

→
i , current density; z, z -axis. Reproduced with permission from

Takagi, S.; Asada, T.; Oshikiri, Y.; Miura, M.; Morimoto, R.; Sugiyama, A.; Mogi, I.; Aogaki, R., Journal
of Electroanalytical Chemistry; published by Elsevier B.V., 2022.

However, several important problems are still open to us; the scale of the length of a
VMHDF (~1 mm) is 107 times as large as that of a screw dislocation (~0.1 nm). The first
question is—how are such chiral screw dislocations created by the rotation of the VMHDF
despite extremely different scales of length? (Q1). Generally, nucleation in electrodeposition
is classified into 2D nucleation of the order of 0.1 mm, 3D nucleation of the order of 0.1 µm,
and screw dislocations of the order of 0.1 nm. Therefore, the emergence of the chiral activity
would be composed of the three generations of chiral nuclei, i.e., chiral 2D nucleus, chiral
3D nucleus, and chiral screw dislocation. A chiral screw dislocation is created on a chiral
3D nucleus, which in turn grows on a chiral 2D nucleus developing under a VMHDF. These
three processes form a nesting-boxes structure. As will be clarified later, based on a simple
evidence, the fact that the chiral activity arises from the three generations is validated
from both theoretical and experimental aspects. As for 2D and 3D nuclei, the nucleation
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processes under parallel magnetic fields have been established [20–23], so in the present
papers, we should examine how chiral 2D and 3D nuclei emerge under VMHDF rotations.

The chiral activity of the electrode is estimated by the enantiomeric excess (ee) ratio
introduced by Mogi [9–18]. A characteristic fact derived from the previous experimental
results is that the obtained ee ratios are distributed around 0.1. Does such a not-so-high
ratio mean the low efficiency of this method? To tell the truth, it is important evidence for
the three-generation model.

Furthermore, to receive the precessional motions from VMHDF rotations, vortices
must revolve around a vertical axis with the VMHDF, whereas to create chiral nuclei fixed
on the electrode, the vortices must keep their positions constant without any transfer. The
second question is—how should such incompatible situations concerning the vortices be
solved? That is, how do the fixed vortices without revolution receive the precessions from
the VMHDF? (Q2).

Since the microscopic vortices are activated from a stationary state in the lower layer,
to conserve their total angular momentums, the evolution probabilities of the vortices with
ACW rotations must be equal to that of the vortices with CW rotations. Individual vortices
have ACW or CW rotation, and adjoining vortices form a pair of vortices with opposite
rotations. Even if one of a pair of the vortices receives the precession, due to the continuity
of vortex motion, the opposite rotation of the other vortex is also enhanced. If the pair were
composed of equivalent vortices with opposite rotations, we could not discriminate the
selectivity of the precession, and would always observe achiral activities. To overcome such
a contradiction, i.e., for either vortex to receive the precession, we must have two different
types of vortices. If both kinds of vortices had similar properties, chirality breakdown
would easily occur. The third question is—how are the two kinds of vortices self-organized?
How is the precession selectively donated to either of them? (Q3).

From the above Mogi reports [9–18], the phenomenon that the chiral activity changes
with the direction of an applied magnetic field is called “odd chirality”. Namely, the copper
films deposited under antiparallel (upward) and parallel (downward) magnetic fields
provide D- (CW) and L- (ACW) chiral activities, respectively, which are opposed to the
rotational chirality of the VMHDF mentioned above [18]. The fourth question is—why
are the chiral activities of the electrode not consistent with the rotational chirality of the
VMHDF? (Q4).

Then, Mogi also reported that by adding chloride additives, D-chiral activity changes
to L-chiral activity, showing L-activity in both magnetic-field directions (the breakdown
of odd chirality) [10,13]. The final and fifth question is—what is the mechanism of such a
chirality change? (Q5).

To examine the microscopic processes mentioned above, it is necessary to precisely
analyze the vertical MHD flow based on hydrodynamic and MHD theories. Fortunately, in
magnetoelectrochemistry, we have already obtained various useful means for the analysis
of electrochemical reactions under a magnetic field. Over five decades, many researchers
have been struggling to develop magnetoelectrochemistry [24–32]. In electrode reactions
under magnetic fields, two kinds of forces, i.e., Lorentz force and gradient field force
(Kelvin force) appear. The Lorentz force often overwhelms the gradient field force, yielding
a macroscopic convection called MHD flow. In accordance with Fahidy [27–29], MHD flow
decreases the thickness of the diffusion layer, promoting mass transfer in the electrode
reaction (MHD effect). As will be mentioned later, such a magnetic field effect on micro-
electrodes was, as shown below, theoretically analyzed by Olivier [30–32]. Regarding the
MHD flow in a channel electrode, called the MHD electrode, the diffusion current equations
of the boundary layer flow and viscous flow were proposed by Aogaki [33–35].

Mutschke and co-workers examined electrodepositions in cuboid cells under magnetic
fields accompanied by 3D convections affected by a gravitational field, which were numeri-
cally simulated in various cases [36,37]. Another important aspect of the MHD effect can
influence the phase composition of composite metals (Olivier, Alemany, Daltin, Chopart,
Hinds, Coey, Zabiński) [38–46].
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The heterogeneous magnetic field yields magneto-convection by the gradient field
force in a paramagnetic solution, enhancing the mass transfer process [47–49]. For the MHD
effect under magnetic gradient fields, it has been clarified that a superimposed Lorentz
force provides more complicated effects to deposit the pattern and composition (Tschulik,
Uhlemann, Mutschke, Dunne, Coey) [50–54].

For the analysis of the electrochemical reaction using a micro-disk-electrode under
a magnetic field, we can refer to some important achievements as follows: By using
a micro-disk-electrode, Olivier established electrochemical impedance spectroscopy in
a magnetic field [30,55,56], and at the same time found that the steady-state currents
measured under parallel magnetic fields are proportional to B1/3C∗4/3, where B is the
magnetic flux density and C∗ is the concentration of the electroactive species. White and
coworkers [57–59] performed the investigation of magneto-electrochemical effects at ultra-
micro-disk electrodes. The magnetic field effects on the limiting (steady-state) current were
studied by using cyclic voltammetry in non-aqueous systems containing organic reactants
acting as electroactive species. They concluded that the magnetic field effect was attributed
to the convective flow caused by the viscous drag of the electrolyte ions accelerated by the
magnetic force.

Recently, Mutschke and coworkers studied the electrodeposition of copper on a con-
ically shaped diamagnetic electrode under the influence of a vertical magnetic field [60].
Using magnet arrays of small cylindrical magnets, Dunne and Coey studied deposit pat-
terns of cathodic electrodeposition reflecting the non-uniform magnetic field [51,61].

The MHD electrode proposed by Aogaki was composed of a rectangular channel with
two open edges, and a rectangular cathode and anode pair were face-to-face embedded
on the inner walls. This type of electrode has been used for the measurement of the
excess heat production by the pair annihilation of ionic vacancies with opposite signs
created in cathodic and anodic reactions [62,63]. As for MHDE, the instability theory of
nonequilibrium fluctuations in copper electrodeposition under a uniform parallel magnetic
field has been first established, and examined for various deposition modes, especially
concerning the effect of specific adsorption of ions [22]. Moreover, for measuring the lifetime
of ionic vacancy, we have developed a new type of MHDE called cyclotron MHD electrode
(CMHDE) [4,64], which is composed of a pair of partly shielded concentric cylindrical
electrodes operated under a magnetic field. Ionic vacancies created in an electrode reaction
circulate with an electrolyte solution by the Lorentz force.

Based on these various preceding attempts, in Part 1 of the present papers, we first
formulate the theoretical equations of the microscopic vortex motions and mass transfer
process under a vertical magnetic field. Then, by using the equations, characteristic mor-
phological patterns called micro-mystery circles formed by 2D nucleation under a vertical
magnetic field are calculated, and at the same time, the questions mentioned above are
solved. The effect of chloride additive on the chirality is also examined. In Part 2, with
the theoretical equations obtained in Part 1, the chiral 3D nucleation on a 2D nucleus will
be treated.

2. Theory

In accordance with a vertical MHD flow (VMHDF) examined elsewhere [6], we intro-
duce a simple model applicable to the three generations under assumptions of continuous
fluid: On the electrode surface, as shown in Figure 3a, two types of solution layers are
formed; the upper thick layer rotates around a z-axis, and in view of the pinning effect of
the downward vortices, the thin lower layer is assumed stationary. The electrode surface
is covered with ionic vacancies produced by electrode reactions, which are iso-entropic,
making the surface free without friction in 2D nucleation. In the case of 3D nucleation as
well as screw dislocation, due to smaller sizes than the thickness of the vacancy layer, the
solution viscosity around vortices is assumed zero, if possible. The electrode surface or a
flat surface of a nucleus is taken as an x− y plane, and the z-axis is defined at the center
in the upper direction so that the electrode phase is defined by z ≤ 0, whereas the area of
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z > 0 corresponds to the solution phase. The downward electrolytic current density in a
metal deposition is thus defined as negative, so according to Mogi’s definition, let us call
upward (positive) and downward (negative) magnetic fields as antiparallel and parallel
magnetic fields, respectively.

Figure 3. Chiral vortex formation under a rotating fluid layer. (a) Two layers model of the chiral
nucleation. (b) Two kinds of vortices. (1) Downward vortex; (2) upward vortex. (c) Continuity of
vortex motion and fluid flow. x, y , and z stand for the non-dimensional coordinates normalized by
the average size of vortices.

Adopting the notation of a right-handed system, we can define anticlockwise (ACW)
and clockwise (CW) rotations in a bird’s eye view as positive and negative, respectively. In
the lower layer, microscopic vortices are first activated by the vertical magnetic field. As
will be discussed precisely, they are composed of numerous pairs of vortices with upward
and downward flows, respectively. As shown in Figure 3b, a downward vortex blows
away ionic vacancies by the downward flow at the bottom, locally exposing rigid surfaces
with friction. It works as a kind of pin to fix the vortex at a given point. In view of a
nesting-boxes structure, the locally exposed surfaces correspond to the bottoms of the
smaller-level vortices with downward flows. Since the positions are kept constant, at the
bottoms of the vortices, chiral nuclei develop with time (1). An upward vortex pumps
up ionic vacancies with the upward flow from the electrode surface so that its bottom is
covered with ionic vacancies, forming a free surface without friction. The bottom of an
upward vortex, differently from a downward vortex, rotates on the free surface, providing
a flat surface without chiral nuclei. Though such a self-rotation, due to the pinning effect of
the downward vortices, the upward vortex also does not move with the VMHDF, keeping
the position constant (2). That is, downward vortices work as pins to stop the lower layer
vortices to revolve with the upper layer, whereas the upward vortices supply free surfaces
covered with ionic vacancies. Such different types of surfaces provide the different growth
rates of vortices determining which vortices receive the precessions. At the same time,
Figure 3c shows an important fact that, from the continuity of the vortex motion, a pair of
adjoining upward and downward vortices must rotate in opposite directions. Then, as will
be shown in Figure 4a, the individual vortex motions in the lower layer are transferred to
the upper layer, where the newly induced vortices rotate with the upper layer, receiving
the precessions. The precessional motions of the vortices in the upper layer are donated to
the vortices in the lower layer.
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Figure 4. Two-layer model of chiral nucleation. (a) A feedback cycle between the vortices in the lower
and upper layers. (b) An observer on a frame of reference rotating with the upper layer. x, y, and z
stand for the non-dimensional coordinates normalized by the average size of vortices.

2.1. Vortex Motions in the Stationary Lower Layer

First, we consider explicitly the inertial frame with a static magnetic field. Because the
sizes of fluctuations are much smaller than the belonging area of the electrode, a Cartesian
coordinate system (x, y, z) is taken for the special area, i.e., the electrode surface for the 2D
nucleation or the surface of a 2D nucleus for the 3D nucleation.

Then, we consider an incompressible fluid at a uniform temperature, so the basic
equations are given in the following (Appendix B) [65]. The momentum equation is in
tensor notation,

∂ui

∂t
+ uj

∂ui

∂xj
−

Bj

ρµ0

∂Bi

∂xj
= ν∇2ui −

∂

∂xi

P
ρ
+

∣∣∣∣→B ∣∣∣∣2
2µ0ρ

 (B7)

where ui. is the velocity component of vortices (i = 1, 2, 3), and the Cartesian coordinate
(x, y, z) is expressed by (x1, x2, x3).ν and ρ are the kinematic viscosity and the density,

respectively. P is the pressure, and µ0 is the magnetic permeability.
→
B is the magnetic flux

density, and Bi is the i-component of
→
B .

In view of an incompressible fluid, the continuity equation is obtained.

∂ui

∂xi
= 0 (B8)

In an electrolytic solution, the electricity is carried by diffusion as well as conductivity
of ionic species, so that the current density will be given by

→
J = σ∗

(→
E +

→
u ×

→
B
)
− F ∑

i
ziDi∇Ci (B9)

where
→
E is the electric field, and σ∗ is the electrical conductivity defined by

σ∗ = F2 ∑
i

z2
i λ∗i Ci (B10)
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where zi is the charge number, including the sign, λ∗i is the mobility, F is the Faraday’s
constant, Ci is the concentration of ionic species i, and Di is the diffusion coefficient. The
equation of magnetic flux density is simply written in the tensor notation as follows.

∂Bi

∂t
+

∂

∂xj

(
ujBi − uiBj

)
= η∇2

→
B (B16)

where η is the resistivity defined by

η ≡ 1
σ∗µ0

(B14)

and ∇2 implies ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3.

As the reaction proceeds, the magnetic flux density first fluctuates, expressed by
(Appendix C)

→
B =

→
B
∗
+
→
b (C1)

where
→
B
∗

is the external magnetic flux density in the absence of the reaction and
→
b is the

fluctuation by the reaction. The fluctuation of the Lorentz force is written as

fLi =
∂

∂xi

→b ·→B∗
µ0

+ B∗j
∂

∂xj

(
bi

µ0

)
(C2)

The concentration of the metallic ion is expressed by

Cm = C∗m + cm (C6)

where C∗m and cm are the concentration in the absence of fluctuation and the concentration
fluctuation, respectively.

The mass transfer equation of the fluctuation is written as

∂cm

∂t
+ wLm = Dm∇2cm (C7)

where w is the z-component of the velocity, u3. Lm is the average concentration gradient in
the diffusion layer.

Lm ≡
θ∗∞
〈δc〉

(C8)

where θ∗∞ implies the concentration difference between the bulk and the surface and 〈δc〉 is
the average thickness of a diffusion layer.

The i-component of the current density fluctuation is in tensor notation.

ji =
1

µ0
εijk

∂

∂xj
bk (C9)

where εijk denotes the transposition of the tensor. Then, the i-component of the vorticity ωi
is given by

ωi = εijk
∂

∂xj
uk (C10)

Then, we shall restrict our discussion of this problem to the case where magnetic flux
density is imposed vertically to the electrode.

→
B
∗
= (0, 0, B0 ) (C19)
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where B0 is the vertical magnetic flux density with the sign. Therefore, we obtain the
fluctuation equations.

∂bz

∂t
= η∇2bz + B0

∂w
∂z

(C20a)

∂jz
∂t

= η∇2 jz +
B0

µ0

∂ωz

∂z
(C20b)

∂ωz

∂t
= ν∇2ωz +

B0

ρ

∂jz
∂z

(C20c)

∂

∂t
∇2w = ν∇4w +

B0

ρµ0

∂

∂z
∇2bz (C20d)

2.2. Amplitude Equations of the Fluctuations in the Lower Layer

For the fluctuations including vortex motions, we assume the following 2D plane
waves (Appendix D).

w = W0(z, t) exp
[
i
(
kxx + kyy

)]
(D1a)

ωz = Ω0(z, t) exp
[
i
(
kxx + kyy

)]
(D1b)

bz = K0(z, t) exp
[
i
(
kxx + kyy

)]
(D1c)

jz = J0(z, t) exp
[
i
(
kxx + kyy

)]
(D1d)

cm = Θ0(z, t) exp
[
i
(
kxx + kyy

)]
(D1e)

where W0(z, t), Ω0(z, t), K0(z, t), J0(z, t), and Θ0(z, t) are the amplitudes of the fluctuations,
and kx and ky are the wavenumbers in the x- and y-directions, respectively.

Substituting Equations (D1a)–(D1e) into Equations (C7) and (C20a)–(C20e), we obtain
the amplitude equations. Since the fluctuations are at quasi-steady states, neglecting the
time-differential terms, we finally have(

D2 − k2
)

K0 = −
(

B0

η

)
DW0 (D3a)

(
D2 − k2

)
J0 = −

(
B0

µ0η

)
DΩ0 (D3b)

(
D2 − k2

)
Ω0 = −

(
B0

ρν

)
DJ0 (D3c)

(
D2 − k2

)2
W0 = −

(
B0

µ0ρν

)
D
(

D2 − k2
)

K0 (D3d)

(
D2 − k2

)
Θ0 =

(
Lm

Dm

)
W0 (D3e)

where D ≡ d/dz and k ≡
(

k2
x + k2

y

)1/2
.

Substituting Equation (D3b) into Equation (D3c), and using Equation (B14) in Appendix B,
we have {(

D2 − k2
)2
−QD2

}
Ω0 = 0 (D4a)
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Then, the substitution of Equation (D3a) into Equation (D3d) leads to{(
D2 − k2

)2
−QD2

}
W0 = 0 (D4b)

where the magneto-induction coefficient Q is defined by

Q ≡
σ∗B2

0
ρν

(D4c)

Here, we introduce a representative length d. Then, let a = kd be the wavenumber in
a non-dimensional unit. We shall, however, let x, y, and z stand for the non-dimensional
coordinates normalized by d, so that the following parameter Q and operator D are changed
as follows.

Q∗ ≡
σ∗B2

0d2

ρν

(
= Qd2

)
(D5a)

D ≡ d
dz

(= Dd) (D5b)

where the coordinate z is in the new unit of length d. Resultantly, Equations (D4a) and
(D4b) are rewritten as {(

D2 − a2
)2
−Q∗D2

}
Ω0 = 0 (D6a)

{(
D2 − a2

)2
−Q∗D2

}
W0 = 0 (D6b)

As shown in Equations (D6a) and (D6b), Ω0 and W0 are independent of each other. This
means that the z-component of the vorticity does not interact with the z-component of
velocity as they are.

2.3. Vortex Motions Induced in the Rotating Upper Layer

The upper layer is a reservoir of the vortices activated in the lower layer. In the lower
layer, the activated vortices, due to the pinning effect of the downward vortices, keep
their positions constant. On the contrary, in the upper layer, due to the rotation of the
upper layer, the vortices induced by the vortices in the lower layer change their positions,
revolving with the upper layer. At the same time, they start precessional motions. Then,
through the upper boundary between the upper and lower layers, the motions conferred
by the upper-layer rotation are transferred to the lower-layer vortices. All these processes,
as shown in Figure 4a, form a positive feedback cycle.

Due to the low electric conductivity of an electrolytic solution, the electromagnetic
induction by the upper layer vortices is neglected, so for simplicity, we only think of the
effects of Coriolis force and centrifugal force. As shown in Figure 4b, let us consider an

incompressible fluid of the upper layer rotating with an angular velocity
→
Ω. In a frame of

reference rotating with the same angular velocity, an observer at rest recognizes two kinds
of acceleration (Appendix E) [65], i.e.,

→
FR = 2

→
Ω×

→
U − 1

2
∇
(∣∣∣∣→Ω×→r ∣∣∣∣2

)
(E1)

where
→
Ω denotes the vector of the angular velocity,

→
U is the vector of the velocity, and

→
r is

the position vector.
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The term 2 Ω →×
→
U represents the Coriolis acceleration and the term−(1/2)∇

(∣∣∣∣→Ω×→r ∣∣∣∣2
)

is the centrifugal force. The velocity is expressed by the main flow component of the rotation U∗i
and the activated vortex flow ui, i.e.,

Ui = U∗i + ui (E4a)

However, since the observer is rotating with the upper layer, it follows that

U∗i = 0 (E4b)

The acceleration in Equation (E1) is fluctuated, expressed in the tensor notation.

fRi = 2εijkUjΩk −
1
2

∂

∂xi

(∣∣∣∣→Ω×→r ∣∣∣∣2
)

(E5)

where the first and second terms on the right-hand side of Equation (E5) denote the
contributions of the Coriolis and centrifugal forces, respectively, where the second term is
equal to zero without fluctuation.

Considering that a vector of rotation is an axial vector with z-axis, we can write down
the following notation,

→
Ω ≡

(
0, 0, Ω̃

)
(E14)

where Ω̃ is the angular velocity of the upper layer. Therefore, we obtain the equations of
the z-components of the vorticity ωz and velocity w for the vortices.

∂ωz

∂t
= ν∇2ωz + 2Ω̃

∂uz

∂z
(E15)

and
∂

∂t
∇2w = ν∇4w− 2Ω̃

∂ωz

∂z
(E16)

Substituting Equations (D1a) and (D1b) in Appendix D into Equations (E15) and (E16),
and considering that the fluctuations are in a quasi-steady state, we disregard the time
differential terms. Then, let a = kd be the wavenumber in the non-dimensional. We shall,
however, let x, y, and z stand the coordinates in the new unit of length d. As a result,
Equations (E15) and (E16) are changed to(

D2 − a2
)

Ω0 = −T∗DW0 (E20a)

and (
D2 − a2

)2
W0 = d2T∗DΩ0 (E20b)

where D is defined by the new coordinate z as d/dz, and the rotation coefficient T∗ is
expressed by

T∗ ≡ 2Ω̃d
ν

(E20c)

At the boundary between the upper and lower layers, the lower-layer vortices will receive the
precessional motions from the upper-layer vortices shown in Equations (E20a) and (E20b).

2.4. Boundary Conditions
2.4.1. Hydrodynamic Conditions

The fluid in the lower layer is confined between the electrode and the upper layer. For
convenience, the positions of the lower and upper boundaries are defined as 0 and 1 by the
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scale of length d, which is equalized to the autocorrelation distance a+ of the fluctuation,
i.e., the average size of the vortices.

d = a+ (1)

Then, regardless of the nature of the boundary surface on the electrode, rigid or free,
we must require

w = 0 for z = 0 (2)

We shall distinguish two kinds of boundary surfaces—the rigid surface on which no slip
occurs and the free surface on which no tangential stress acts.

(a) For the rigid surfaces:

Consider first the rigid surface. The condition that no slip occurs on the surface implies
that w, as well as the horizontal components of the velocity, u and v vanish, i.e., u = v = 0.
Since such a condition must be satisfied for all coordinates x and y on the surface, it follows
from the continuity equation, Equation (B8) more explicitly, ∂u/∂x + ∂v/∂y + ∂w/∂z = 0
that

∂w
∂z

= 0 for z = 0 (3)

The condition of the normal component of the vorticity ωz can also be deduced. More
explicitly, ωz is expressed by ∂v/∂x− ∂u/∂y, so that we have

ωz = 0 for z = 0 (4)

Substituting Equations (D1a) and (D1b) into Equations (2), (3) and (4), we obtain the
following amplitude conditions.

W0 = 0 for z = 0 (5a)

DW0 = 0 for z = 0 (5b)

Ω0 = 0 for z = 0 (5c)

(b) For the free surfaces:

The conditions on the free surface are that the stress tensors are zero, i.e.,

Pxz = Pyz = 0 (6)

Since the isotropic term −Pδij has no transverse component, the condition Equation (6) is
equivalent to the vanishing of the components Pxz and Pyz of the viscous stress tensor.

Pxz = µs

(
∂u
∂z

+
∂w
∂x

)
(7a)

and

Pyz = µs

(
∂v
∂z

+
∂w
∂y

)
(7b)

where µs implies the viscosity of the solution. As w vanishes for all x- and y-coordinates on
the boundary surface, it follows from Equations (6), (7a) and (7b) that

∂u
∂z

=
∂v
∂z

= 0 for z = 0 (7c)

Substitution of Equation (7c) into the equation of continuity differentiated with respect to z,
∂(∂u/∂x)/∂z + ∂(∂v/∂y)/∂z + ∂(∂w/∂z)/∂z = 0 leads to

∂2w
∂z2 = 0 for z = 0 (8)
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Then, substituting Equation (7c) into the equation of ωz (Equation (C10)) differentiated by
z, ∂ωz/∂z = ∂(∂v/∂z)/∂x− ∂(∂u/∂z)/∂y, we have

∂ωz

∂z
= 0 for z = 0 (9)

From Equations (2), (8) and (9), we have

W0 = 0 for z = 0 (10a)

D2W0 = 0 for z = 0 (10b)

DΩ0 = 0 for z = 0 (10c)

(c) For the upper boundary between the lower and upper layers:

Since the upper and lower layers are hydrodynamically connected, w and ωz do not
vanish at the upper boundary, and there is no slip there. The boundary conditions at the
upper boundary are given by Equations (E20a) and (E20b). In the lower layer, Equations
(D6a) and (D6b) are fulfilled. Therefore, from Equation (E20a), we have the upper boundary
condition, (

D2 − a2
)

Ω0 = −T∗DW0 for z = 1 (11a)

and inserting Equation (D6b) into Equation (E20b), we obtain the simpler condition.

Q∗D2W0 = d2T∗DΩ0 for z = 1 (11b)

2.4.2. Mass Transfer Conditions

In addition to the hydrodynamic conditions, we can also write down the mass transfer
conditions. From Fick’s first law, we obtain the following relationship between the current
density fluctuation jz and the concentration fluctuation cm.

jz = −zmFDm

(
∂cm

∂z

)
z=0

(12)

where zm and Dm are the charge number of the metallic ion and the diffusion coefficient,
respectively. At the upper boundary, it is assumed that the concentration fluctuation
vanishes.

cm → 0 for z→ 1 (13)

As a result, using the amplitudes J0 and Θ0, we have

J0 = −zmFDmDΘ0 for z = 0 (14a)

and
Θ0 → 0 for z→ 1 (14b)

The conditions of Equations (14a) and (14b) suggest that two arbitrary constants in the
solution of the concentration fluctuation are required.

2.5. Solutions of W0 and Ω0 in the Lower Layer

From Appendix I, the general equation of the amplitude of the z-component of the
velocity W0 is provided by

W0(z, t) = (α0 + α1z)eaz + (α2 + α3z)e−az (I12)

where α0, α1, α2, and α3 are arbitrary constants. Then, the first and second derivatives are
derived as follows:

DW0(z, t) = {α0a + α1(1 + az)}eaz + {−α2a + α3(1− az)}e−az (I14a)
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and

D2W0(z, t) =
{

α0a2 + α1(2 + az)a
}

eaz +
{

α2a2 + α3(−2 + az)a
}

e−az (I14b)

The vorticity in the lower layer is affected by the precessional motions in the upper
layer at the upper boundary. In view of the boundary conditions in Equations (11a) and
(11b) at the upper boundary, two arbitrary constants are necessary. This means that the
vorticity depends only on eaz, so that Ω0 is expressed by

Ω0(z, t) = (β0 + β1z)eaz (I13)

where β0 and β1 are arbitrary constants. The first and second derivatives are

DΩ0(z, t) = {β0a + β1(1 + az)}eaz (I15a)

and
D2Ω0(z, t) = a{β0a + β1(2 + az)}eaz (I15b)

The individual rigid and free surface components of W0 and Ω0 are determined in the
following.

(a) For the rigid surface vortices:

Substituting Equations (I12), (I13) and (I14a) into Equations (5a)–(5c), we obtain

α2 = −α0 (15a)

α3 = −(2α0a + α1) (15b)

β0 = 0 (15c)

Inserting Equations (15a)–(15c) in Equations (I12) and (I13), we obtain the expressions for
the rigid surface vortices,

W0
r (z, t) = 2(α0 + α1z)sin haz− 2α0aze−az (16a)

and
Ω0

r (z, t) = β1zeaz (16b)

where the subscript ‘r’ implies the rigid surface component. β1 denotes the vorticity
coefficient of the rigid surface vortices. Using the upper boundary conditions in Equations
(11a) and (11b), we will determine the velocity coefficients α0 and α1 of the rigid surface
vortices as the functions of β1.

(b) For the free surface vortices:

Substituting Equations (I12), (I14b) and (I15a) into Equations (10a)–(10c), we obtain

α2 = −α0 (17a)

α3 = α1 (17b)

β1 = −β0a (17c)

Inserting Equations (17a)–(17c) in Equations (I12) and (I13), we obtain the expressions for
the free surface vortices,

W0
f (z, t) = 2α0sinhaz + 2α1z cosh az (18a)

and
Ω0

f (z, t) = β0(1− az)eaz (18b)
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where the subscript ‘f’ implies the free surface component. β0 denotes the vorticity coeffi-
cient of the free surface vortices. Using the upper boundary conditions in Equations (11a)
and (11b), we will determine the velocity coefficients α0 and α1 of the free surface vortices
as the functions of β0.

2.6. Determination of the Velocity Coefficients α0 and α1

(a) For the rigid and free surface vortices at the upper boundary:

At the upper boundary, we have two relationships. First, by substituting Equations
(I13), (I14a) and (I15b) into Equation (11a), we have

{α0a + α1(1 + a)}ea + {−α2a + α3(1− a)}e−a = −2T∗−1β1aea (19a)

Then, the substitution of Equations (I14b) and (I15a) into Equation (11b) leads to{
α0a2 + α1

(
2a + a2

)}
ea +

{
α2a2 + α3

(
−2a + a2

)}
e−a = 2Q∗−1d2T∗{β0a + β1(1 + a)}ea (19b)

(b) For the rigid surface vortices in the lower layer:

Substituting Equations (15a)–(15c) into Equations (19a) and (19b), we have

α0a
(
sin h a + ae−a)+ α1(sin h a + a cos h a) = −T∗−1β1aea (20a)

and

α0a
{

cos h a + (1− a)e−a}+ α1(2cos h a + a sin h a) = −(2Q∗a)−1d2T∗β1(1 + a)ea (20b)

Equations (20a) and (20b) form simultaneous equations with respect to α0 and α1, so that
the following solutions are derived.

α0 = β1α∗0r(a) (21a)

where α∗0r(a) is given by

α∗0r(a) = −
ea{2Q∗a2(2cos h a + asin h a) + d2T∗2(1 + a)(sin h a + acos h a)

}
2Q∗T∗a2

(
sin h2a + a2

) (21b)

and
α1 = β1α∗1r(a) (22a)

where α∗1r(a) is expressed by

α∗1r(a) ≡
ea[2Q∗a2{cos h a + (1− a)e−a}+ d2T∗2(1 + a)(sin h a + ae−a)

]
2Q∗T∗a

(
sin h2 a + a2

) (22b)

Here, we use the following formula.

cos h2a− sin h2a = 1 (23)

(c) For the free surface vortices in the lower layer:

Substituting Equations (17a)–(17c) into Equations (19a) and (19b), we have

α0a cosh a + α1(cos h a + asin h a) = T∗−1β0a2ea (24a)

and
α0asinha + α1(2sin h a + acos h a) = −(2Q∗)−1d2T∗β0aea (24b)
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Equations (24a) and (24b) form simultaneous equations with respect to α0 and α1, so that
the following solutions are derived:

α0 = β0α∗0f(a) (25a)

where α∗0f(a) is defined by

α∗0f(a) ≡
ea{2Q∗a(2sin h a + a cos h a) + d2T∗2(cos h a + a sin h a)

}
2Q∗T∗(sin h a cos h a + a)

(25b)

and
α1 = β0α∗1f(a) (26a)

where α∗1f(a) is written by

α∗1f(a) = −
aea(2Q∗a sin h a + d2T∗2cos h a

)
2Q∗T∗(sin h a cos h a + a)

(26b)

2.7. The Solution of Θ0 and DΘ0 at the Electrode Surface

As shown in Appendix J, using the solution of W0 in Equation (I12), we solve Equation
(D3e). The general expression of Θ0 is given by

Θ0(z, t) = A1e−az + R∗
8a3

{
−2α0a(−2az + 1) + α1

(
2a2z2 − 2az + 1

)}
eaz

+
{
−2α2a(2az + 1)− α3

(
2a2z2 + 2az + 1

)}
e−az (J6)

We also have the first derivative with respect to z

DΘ0(z, t) = −aA1e−az

+ R∗
8a2

[{
2α0a(2az + 1) + α1

(
2a2z2 + 2az− 1

)}
eaz

+
{

2α2a(2az− 1) + α3
(
2a2z2 − 2az− 1

)}
e−az] (J7a)

where the mass transfer coefficient R∗ is defined by

R∗ ≡ Lmd2

Dm
(J2b)

Therefore, at the electrode surface, z = 0, we have

DΘ0(0, t) = −aA1 +
R∗

8a2 (2α0a− α1 − 2α2a− α3) (J7b)

and
Θ0(0, t) = A1 +

R∗

8a3 (−2α0a + α1 − 2α2a− α3) (J7c)

where A1 denotes an arbitrary constant. Using the amplitude equations of the current den-
sity, vorticity, and mass-flux fluctuations in Equations (D3b), (D3c) and (14a), respectively,
we finally obtain the following equations, removing the arbitrary constant A1.

DΘ0(0, t) =
2β1

zmFDmS∗
(J14)

and
Θ0(0, t) = − 2β1

zmFDmS∗a
− R∗

4a3 (2α2a + α3) (J16)

where the magneto-viscosity coefficient S∗ is defined by

S∗ ≡ B0d
ρν

(J9b)
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In Equations (J14) and (J16), the coefficients α2, α3, and β1 are undecided, so using
the conditions of the rigid and free surface vortices, we determine them in the following.

a. For the rigid surface vortices:

Substituting Equations (15a)–(15c) into Equations (J14) and (J16), we have

DΘ0
r (0, t) =

2β1

zmFDmS∗
(27a)

and
Θ0

r (0, t) = − 2β1

zmFDmS∗a
+

R∗

4a3 (4α0a + α1) (27b)

Then, substitution of Equations (21a), (21b), (22a) and (22b) into Equation (27b) leads
to

Θ0
r (0, t) = − 2β1

zmFDmS∗a

− β1R∗ea[2Q∗a2{5 cos h a+2a sin h a+(1+a)ea}+d2T∗2(1+a)(3 sin h a+2a cos h a+aea)]
8Q∗T∗a4(sin h2a+a2)

(27c)

The residual undetermined parameter, i.e., the vorticity coefficient of the rigid surface
vortex β1 in Equations (27a)–(27c) will be determined by examining the actual formulation
of 2D or 3D nucleation.

(b) For the free surface vortices:

Substituting Equations (17a)–(17c) into Equations (J14) and (J16), we have

DΘ0
f (0, t) = − 2β0a

zmFDmS∗
(28a)

and
Θ0

f (0, t) = − 2β0

zmFDmS∗
− R∗

4a3 (2α0a− α1) (28b)

Then, substitution of Equations (25a), (25b), (26a) and (26b) into Equation (28b) leads
to

Θ0
f (0, t) =

2β0

zmFDmS∗
+

β0R∗ea{2Q∗a(5 sin h a + 2a cos h a) + d2T∗2(3 cos h a + 2a sin h a)
}

8Q∗T∗a2(sin h a cos h a + a)
(28c)

The residual undetermined parameter, i.e., the vorticity coefficient of the free surface
vortex β0 in Equations (28a)–(28c) will be determined by the actual formulation of 2D or
3D nucleation.

3. 2D Nucleation
3.1. Asymmetrical Fluctuations in 2D Nucleation Process

The 2D nucleation proceeds in an electric double layer. As shown in Figure 5, at the
inner Helmholtz plane (IHP), dehydrated metallic ions receive electrons, being adsorbed as
adatoms on the electrode surface [22].
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Figure 5. The 2D nucleation in an electric double layer.

Assuming equilibrium between the metallic ions at the IHP and the adatoms at the
metal surface, the electron-transfer reaction is written as

M(ad) 
 Mzm
+
(IHP) + zme−(metal) (29)

where M(ad) and Mzm
+
(IHP) are the adatom and the metallic ion at the IHP, respectively,

and e−(metal) is the free electron at the electrode.
According to Equation (29), their chemical and electrochemical potentials are related

with
µad(x, y, t) = µm(x, y, ζa, t) + zmµe(x, y, t) (30)

where µad(x, y, t) implies the chemical potential of the adatom. ζa ≡ ζ(x, y, t)a denotes the
surface deformation by 2D nucleation formed by asymmetrical fluctuations, µm(x, y, ζa, t)
is the electrochemical potential of the metallic ion, and µe(x, y, t) is the electrochemical
potential of a free electron.

At the equilibrium potential, physical quantities fluctuate toward the positive and
negative sides of their equilibrium states (Figure 6a). However, when the potential is
deviated from the equilibrium to the cathodic direction, the cathodic reaction proceeds, and
various asymmetrical fluctuations, including 2D nucleation, develop around the electrode.
As shown in Figure 6b, they one-sidedly fluctuate from their equilibrium states, i.e., whether
plus or minus, their signs are kept constant. This means that in a nonequilibrium state,
either side of the amplitude of an equilibrium fluctuation is cut off (phase cutting).
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Figure 6. Equilibrium and nonequilibrium fluctuations. (a) Equilibrium concentration fluctuation.
(b) Nonequilibrium concentration fluctuation in a cathodic deposition.

Due to large mobility in light speed, the fluctuation of the electron can be neglected in
steady-state, so from Equation (30), the relationship between the fluctuations is expressed
by

δµm(x, y, ζa, t)a = δµad(x, y, t)a (31)

where superscript ‘a’ implies asymmetrical fluctuation. Due to the small curvature of a 2D
nucleus, the chemical potential fluctuation of the adatom, which arises from the change
of the surface form of the deposit can be neglected δµad(x, y, t)a = 0, so that we have the
following condition of the electrochemical potential fluctuation of the metallic ion.

δµm(x, y, ζa, t)a = 0 (32)

Accompanied by electrolytic current flowing, asymmetrical potential and concentra-
tion fluctuations occur. Based on Fick’s first law, at the outer Helmholtz plane (OHP),
z = 0+, the current density fluctuation is written by

jz(x, y, 0, t)a = −zmFDm

{
∂cm(x, y, z, t)a

∂z

}
z=0+

(33a)

In the presence of a large amount of supporting electrolytes, from Equation (B9), the
current density fluctuation is also described by the potential fluctuation as follows:

jz(x, y, 0, t)a = −σ∗
{

∂φ2(x, y, z, t)a

∂z

}
z=0+

(33b)
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where φ2(x, y, z, t)a implies the asymmetrical fluctuation of the overpotential Φ2 in the
diffuse layer. From Equations (33a) and (33b), we obtain

σ∗
{

∂φ2(x, y, z, t)a

∂z

}
z=0+

= zmFDm

{
∂cm(x, y, z, t)a

∂z

}
z=0+

(33c)

Since both fluctuations have the same function form of exp(−az), Equation (33c) supplies
the equation,

σ∗φ2
(

x, y, 0+, t
)a

= zmFDmcm
(
x, y, 0+, t

)a (33d)

At the same time, the electrochemical potential fluctuation δµm(x, y, ζa, t)a is also repre-
sented by these fluctuations,

δµm(x, y, ζa, t)a = zmF
{

φ1(x, y, t)a + φ2(x, y, ζa, t)a}+ RT
C∗m(z = 0)

cm(x, y, ζa, t)a (34)

where φ1(x, y, t)a and φ2(x, y, ζa, t)a are the overpotential fluctuations at the inner Helmholtz
plane (IHP) and at the surface of a 2D nucleus in the diffuse layer, respectively. C∗m(z = 0)
is the surface concentration outside the double layer, R is the universal gas constant
(8.31 J K−1 mol−1), T is the absolute temperature (K), and F is the Faraday constant
(96, 500 C mol−1).

By expanding with respect to the z-coordinate at the flat OHP without the 2D nuclei,
z = 0+, the potential fluctuation at the surface of a 2D nucleus z = ζa is expressed by

φ2(x, y, ζa, t)a = φ2
(
x, y, 0+, t

)a
+ Lφ2 ζ(x, y, t)a (35a)

Lφ2 is the gradient of the electrostatic overpotential in the diffuse layer defined by [22]

Lφ2 ≡ −
Φ∗2OHP

λ
(35b)

where Φ∗2OHP is the electrostatic overpotential at a flat OHP without 2D nuclei z = 0+

measured from the outer boundary of the diffuse layer (z = ∞+), and λ is the Debye length
equalized to the average diffuse layer thickness.

λ ≡
(

εRT
F2 ∑j 6=m z2

j C∗j (z = ∞)

) 1
2

(35c)

where ε is the dielectric constant of water (6.95×10−10 J−1 C2 m−1, 25 ◦C), zj is the charge
number including sign, and C∗j (z = ∞) is the bulk concentration of ionic species j except
for the bulk metallic-ion concentration C∗m(z = ∞) (mol m−3).

The concentration fluctuation in the diffuse layer is correspondingly expressed by

cm(x, y, ζa, t)a = cm
(
x, y, 0+, t

)a
+ Lm2ζ(x, y, t)a (36a)

where Lm2 is the average concentration gradient of the metallic ion in the diffuse layer [66],
which is defined by

Lm2 ≡ −
zmFC∗m(z = 0)

λRT
Φ∗2OHP (36b)

Equations (35b) and (36b) have the relationship,

zmFLφ2 = − RT
C∗m(z = 0)

Lm2 (37)
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Here, the overpotential fluctuation of the Helmholtz layer φ1(x, y, t)a is induced by the fluc-
tuation φ2(x, y, ζa, t)a, which is depicted by the differential potential coefficient (∂〈Φ1〉/〈Φ2〉)µ
in Equation (A1) in Appendix A.

φ1(x, y, t)a =

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

φ2(x, y, ζa, t)a (38)

Substituting for φ1(x, y, t)a from Equation (38) in Equation (34), then inserting Equations
(36a) and (37) into the resulting equation, we obtain

δµm(x, y, ζa, t)a = zmF
{(

∂〈Φ1〉
∂〈Φ2〉

)
µ
+ 1
}

φ2(x, y, 0+, t)a
+ RT

C∗m(z=0) cm(x, y, 0+, t)a

+zmF
(

∂〈Φ1〉
∂〈Φ2〉

)
µ

Lφ2ζ(x, y, t)a
(39a)

Under the limiting diffusion condition, the surface concentration C∗m(z = 0) is sufficiently
small in limiting diffusion, so that substituting for φ2(x, y, 0+, t)a from Equation (33d) in
Equation (39a), we can derive the following condition:

(zmF)2Dm

{(
∂〈Φ1〉
∂〈Φ2〉

)
µ

+ 1

}
� σ∗RT

C∗m(z = 0)
(39b)

Using Equations (35b) and (39b), we obtain the electrochemical potential fluctuation at the
top of a nucleus, which is represented by

δµm(x, y, ζa, t)a =
RT

C∗m(z = 0)
cm
(
x, y, 0+, t

)a − zmF
λ

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHPζ(x, y, t)a (39c)

Applying the electrochemical condition Equation (32) to Equation (39c), we have the
relationship between ζ(x, y, t)a and cm(x, y, 0+, t)a.

cm
(

x, y, 0+, t
)a

=
zmF
λRT

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHPC∗m(z = 0)ζ(x, y, t)a (40)

Due to small wavenumbers of the fluctuations arising from large 2D nuclei, a higher
order of smallness, such as surface energy, can be disregarded [22]. Considering that the
surface deformation results from the mass transfer of metallic ions, we obtain

∂

∂t
ζ(x, y, t)a = ΩmDm

{
∂

∂z
cm(x, y, z, t)a

}
z=0

(41)

where Ωm represents the molar volume of the deposited metal (m3 mol−1).
Here, in the scale of unit length da of the asymmetrical fluctuations, the coordinate

of the electrode surface z = 0 is equalized to the coordinate of the OHP z = 0+, so that
cm(x, y, 0+, t)a at the OHP is regarded as cm(x, y, 0, t)a at the electrode surface. Therefore,
the substitution of Equation (40) into Equation (41) leads to

∂

∂t
cm(x, y, 0, t)a = Aθ

{
∂

∂z
cm(x, y, z, t)a

}
z=0

(42)

Equation (42) is transformed in terms of Fourier transform regarding x- and y-coordinates,
i.e.,

∂

∂t
Θ0(0, t)a = AθDΘ0(0, t)a (43a)

where DΘ0(0, t)a implies
{

∂Θ0(z, t)a/∂z
}

z=0
, and Aθ is the adsorption coefficient.
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Aθ ≡
(

zmF
RT

)(
∂〈Φ1〉
∂〈Φ2〉

)
µ

DmΩmC∗m(z = 0)
λ

Φ∗2OHP (43b)

Equation (43a) controls the 2D nucleation in an electric double layer, i.e., when the ampli-
tude unstably develops with time, 2D nuclei can deterministically grow with micro-MHD
flows, yielding chiral depositions.

3.2. Characteristic Equations of the Vorticity Coefficients βa
0 and βa

1

As will be shown below, the characteristic equations of the micro-MHD flows on the
rigid and free surfaces (i.e., rigid and free surface vortices) are derived as the equations of
the vorticity coefficients βa

0 and βa
1, which are solved under the condition,

B0Ω̃ > 0 (44)

Here, for 2D nucleation, Ω̃ corresponds to the angular velocity of a VMHDF. As shown
in the preceding papers [5,6], according to Equation (44), the sign of Ω̃ , i.e., the rota-
tional direction of a VMHDF is determined by the sign of B0, i.e., the direction of the
magnetic field.

(a) For the rigid surface vortices:

Substituting DΘ0
r (0, t) from Equation (27a) and Θ0

r (0, t) from Equation (27c) in Equa-
tion (43a), we obtain the following characteristic equation of the vorticity coefficient βa

1 for
the rigid surface vortices in 2D nucleation.

dβa
1

dt
= −Aθfa

r (a)βa
1 (45a)

where fa
r (a) implies the amplitude factor function of the rigid surface vortices in 2D nucle-

ation.

fa
r (a) =

16Q∗ag4(a)
16Q∗ag5(a) + S∗aT∗a−1R∗ag6(a)

(45b)

where, since Equation (44) is always fulfilled, fa
r (a) has no singular point and takes positive

values.
As shown in Appendix G, the coefficients R∗, Q∗, T∗, and S∗ are redefined in accor-

dance with 2D nucleation as follows.

R∗a ≡ Lmda2

Dm
(G5b)

Q∗a ≡
σ∗B2

0da2

ρνa (G5c)

T∗a ≡ 2 Ω ˜da

νa (G5d)

S∗a ≡ B0da

ρνa (G5e)

where da and νa are the representative lengths in 2D nucleation and the kinematic viscosity
of the bulk solution, respectively. Then, g4(a), g5(a), and g6(a) are defined by

g4(a) ≡ a4
(

sin h2a + a2
)

(45c)

g5(a) ≡ a3
(

sin h2a + a2
)

(45d)
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g6(a) ≡ zmFDmea
[
2Q∗aa2{5cos h a + 2a sin h a + (1 + a)ea}+ da2T∗a2(1 + a)(3sin h a + 2a cos h a + aea)

]
(45e)

where, for the deposition, Q∗a > 0 and R∗a > 0 are always fulfilled, and from Equation
(44), S∗aT∗a−1 > 0 is also obtained. Equation (45a) is solved as

βa
1(t) = βa

1(0) exp(pa
r t) (46a)

where pa
r implies the amplitude factor of the rigid surface vortices.

pa
r ≡ −Aθfa

r (a) (46b)

Therefore, the vortex motions develop or diminish with time in accordance with the sign of
the amplitude factor pa

r .

(b) For the free surface vortices:

Substituting DΘ0
f (0, t) from Equation (28a) and Θ0

f (0, t) from Equation (28c) in Equa-
tion (43a), we obtain the following characteristic equation of the vorticity coefficient βa

0 for
the free surface vortices:

dβa
0

dt
= −Aθfa

f (a)βa
0 (47a)

where fa
f (a) implies the amplitude factor function of the free surface vortices in 2D nucle-

ation.

fa
f (a) =

16Q∗ag1(a)
16Q∗ag2(a) + S∗aT∗a−1R∗ag3(a)

(47b)

and
g1(a) ≡ a3(sin h a cos h a + a) (47c)

g2(a) ≡ a2(sin h a cos ha + a) (47d)

g3(a) ≡ zmFDmea
{

2Q∗aa(5 sin h a + 2a cos h a) + da2T∗a2(3 cos h a + 2a sin h a)
}

(47e)

where, since Equation (44) is always fulfilled, fa
f (a) has no singular point and takes positive

values. The characteristic equation, Equation (47a), can always be solved, i.e.,

βa
0(t) = βa

0(0) exp(pa
f t) (48a)

where pa
f means the amplitude factor of the free surface vortices.

pa
f ≡ −Aθfa

f (a) (48b)

From Equations (46a) and (48a), we can determine whether the activated vortices are
stable or unstable. If the amplitude factors pa

r and pa
f are negative for all wavenumbers,

the fluctuations, as well as the vortices, are stable, stochastically repeating activation and
extinction. On the contrary, when they are positive for some of the wavenumbers, the
corresponding fluctuation components once activated become unstable, deterministically
developing with time.

In Figure 7, the representative function forms of fa
r (a) and fa

f (a) against the non-
dimensional wavenumber a are exhibited. As discussed above, they are always positive for
a, and fa

f (a) is larger than fa
r (a). As will be discussed later, when the adsorption coefficient

Aθ is negative, i.e., in non-specific adsorption of ions, the free surface vortices receive the
precessions since the free surface vortices grow faster than the rigid surface vortices. On
the other hand, in the case of specific adsorption, due to positive Aθ, the rigid surface
vortices dwindle more slowly than the free surface ones, so that the rigid surface vortices
will receive the precessions.
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Figure 7. Amplitude factor functions vs. non-dimensional wavenumber a. a, fa
r (a) of the fluctuations

on the rigid surfaces. b, fa
f (a) of the fluctuations on the free surfaces.

However, under some other conditions, if the difference of both functions became
smaller, slight changes in the initial situation would easily lead to the inversion of the
vortices receiving the precessions, i.e., breaking of chiral symmetry.

3.3. Nucleation by the Rigid and Free Surface Vortices

To calculate the nucleation with the rotations of the rigid and free surface vortices,
we must solve the self-organization problem concerning two independent fluctuation
components at once. This means that we must treat a two-components vector so that it is
convenient to embed the amplitudes of both components in a single complex number.

We first suppose a horizontal wavenumber plane
(
ax, ay

)
divided by 2D grids, where

in the vertical z-direction, a solution phase (z > 0) and an electrode phase (z ≤ 0) are
defined. Then, considering a stochastic process in multi-nucleation of electrodeposition, we
introduce a unit random complex number Ra

d in the following: In the vertical z-direction
within the autocorrelation distance of the fluctuation a+(= da), i.e., in the lower layer
(0 ≤ z ≤ 1), the same random numbers are used, so that we define the following 2D
random number.

Ra
d = cos θa

rand + i· sin θa
rand (49)

where θa
rand is a uniform random number between 0 and 2π, which is assigned to all grid

points defined on the ax − ay plane. As a result, the actual values of βa
1(0) and βa

0(0) in
Equations (46a) and (48a) are expressed by

βa
1(0) = |βa

1(0)|Ra
d (50a)

βa
0(0) = |βa

0(0)|Ra
d (50b)

Though the same random number is used, since the two components on the rigid and free
surfaces are normal to each other, they are defined independently.

According to the discussion in Appendix F, the initial concentration fluctuation is
assumed to have the following Gaussian-type power spectrum.

Pint
(
ax, ay

)
=

1
π

exp
(
−a2

)
(F5)
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where a2 ≡ a2
x + a2

y is defined. Substituting Equations (G7a) and (50a) into Equation (46a),
we have the exact expression of βa

1.

βa
1(t) = γa

1fa
r (a) exp

(
− a2

2

)
exp(pa

r t)Ra
d (51a)

where the power spectrum component exp
(
−a2/2

)
plays a low-pass filter concerning the

wavenumber for the fluctuations. The constant part of the vorticity coefficient of the rigid
surface vortex in 2D nucleation γa

1 is given by

γa
1 ≡

1
2

αa
r

(
XY
π

) 1
2
zmFDmθ∗∞S∗a (G7b)

where X and Y are x- and y-lengths of the electrode, respectively, and αa
r is the initial ratio

of the rigid surface component to the total concentration fluctuation. As discussed initially,
the rigid and free surface components, as well as the vortices, distribute equally over the
electrode, so that αa

r =
√

2/2 equal to that of the free surface component is assumed. For
cathodic deposition, the concentration difference θ∗∞ > 0 is fulfilled, so that γa

1 > 0 is
derived. Substitution of Equations (G10a) and (50b) into Equation (48a) leads to the explicit
equation of the vorticity coefficient of the free surface vortices.

βa
0(t) = γa

0fa
f (a)a−1 exp

(
− a2

2

)
exp(pa

f t)Ra
d (51b)

The constant part of the vorticity coefficient of the free surface vortex in 2D nucleation γa
0

is given by

γa
0 ≡

1
2

αa
f

(
XY
π

) 1
2
zmFDmθ∗∞S∗a (G10b)

where αa
f =
√

2/2 is assumed as the initial ratio of the free surface component to the total
concentration fluctuation and for deposition, γa

0 > 0 is obtained. Equations (51a) and (51b)
show that the vorticity coefficients are also restricted by the initial spectrum component
exp

(
−a2/2

)
.

After assigning the random numbers at all grid points in the solution phase and
considering the stochastic effect of Equations (50a) and (50b), the amplitude of the gradients
of the concentration fluctuations in Equations (G8b) and (G11b) is rewritten as

DΘ0
r (0, t)a =

2γa
1fa

r (a)
zmFDmS∗a

exp
(
− a2

2

)
exp(pa

r t)Ra
d (52a)

and

DΘ0
f (0, t)a =

2γa
0fa

f (a)
zmFDmS∗a

exp
(
− a2

2

)
exp(pa

f t)Ra
d (52b)

DΘ0
r (0, t)a and DΘ0

f (0, t)a must independently distribute over the electrode surface
without any contradiction, which mathematically implies that they are orthogonal normal
packed.

To self-consistently calculate their self-organization processes, a complex Fourier
transform is used, e.g., the rigid and free surface components are embedded as the real
and imaginary parts in the forms of odd and even functions, such as sine and cosine
functions concerning the wavenumber, respectively. Generally, the odd and even functions
are normal to each other, whose symmetries are preserved in the transform.

In accordance with the above discussion, to embed the odd and even functions into a
complex space, the following operator C is introduced.

C ≡ Re(even) + i·Im(odd) (53a)
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or
C ≡ Re(odd) + i·Im(even) (53b)

where ‘(even)’ and ‘(odd)’ imply the even and odd functions embedded in the real and
imaginary parts, and vice versa. Then, the allotment of random numbers to the 2D grids
allows us to introduce random phases to the odd and even functions.

As a result, the complex amplitude of the concentration gradient function with random
phases is expressed in the following.

CDΘ0
(0, t)a = DΘ0

r (0, t)a(even) + i·DΘ0
f (0, t)a(odd) (54)

The CDΘ0
(0, t)a is transformed to the complex concentration gradient by the complex

Fourier inversion, i.e.,

C
{

∂cm(x, y, 0, t)a

∂z

}
z=0

=
1

2π

∫ ∞

−∞

∫ ∞

−∞
CDΘ0

(0, t)a exp
[
−i
(
axx + ayy

)]
daxday (55a)

where it should be noted that the coordinates x and y are defined as non-dimensional. The
Fourier transformation makes only periodic components transformed. After obtaining the
result, to reproduce the actual form of the asymmetrical fluctuation, some average values
regarding x- and y-coordinates must often be added to it. The complex amplitudes of
the rigid and free surface components are transformed to the concentration gradient in a
complex space in keeping their symmetries, i.e.,

C
{

∂cm(x, y, z, t)a

∂z

}
z=0

=

{
∂cm,r(x, y, z, t)a

∂z

}
z=0

(even) + i·
{

∂cm,f(x, y, z, t)a

∂z

}
z=0

(odd) (55b)

where cm,r(x, y, z, t)a and cm,f(x, y, z, t)a are the rigid and free surface concentration fluctu-
ations, respectively. The rigid and free surface components are transformed as even and
odd functions with random phases of the x- and y-coordinates, respectively. As shown in
Figure 6b, nonequilibrium fluctuations have either sign of positive or negative. For cathodic
deposition, the concentration and concentration gradient fluctuations take negative and
positive values, respectively. To derive the negative current density, with the root mean
square (rms) values of the fluctuations, we must cut off the extra negative portions of the
concentration gradient fluctuations. From Rayleigh’s theorem, the mean square value of the
concentration gradient fluctuation is equalized to the mean square value of its amplitude.

For the rigid or free surface component, it follows that

1
XY

∞x

−∞

{
∂cm,i(x, y, z, t)a

∂z

}2

z=0
dxdy =

1
XY

∞x

−∞

{
DΘ0

i (0, t)a
}2

daxday for i = r or f (56a)

where X and Y imply the x- and y-lengths of the electrode. From Equation (56a), the root
mean square (rms) value of the concentration gradient can be calculated by the rms value
of the amplitude as follows.

rms
{

∂cm,i(x, y, z, t)a

∂z

}
z=0
≡
[

1
XY

∞x

−∞

{
DΘ0

i (0, t)a
}2

daxday

] 1
2

(> 0) for i = r or f (56b)

Therefore, by adding the root mean square value, the “phase cutting” is completed, i.e., the
concentration gradient fluctuations are redefined.{

∂cm,i(x, y, z, t)a

∂z

}
z=0
≡
{

∂cm,i(x, y, z, t)a

∂z

}
z=0

+ rms
{

∂cm,i(x, y, z, t)a

∂z

}
z=0

for i = r or f (56c)
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The concentration gradient distributed over the electrode surface is completely reproduced
by the linear combination of the rigid and free surface components of the even and odd
functions with respect to x- and y-coordinates.{

∂cm(x, y, 0, t)a

∂z

}
z=0

=

{
∂cm,r(x, y, 0, t)a

∂z

}
z=0

+

{
∂cm,f(x, y, 0, t)a

∂z

}
z=0

(> 0) (57)

Finally, the current densities on the rigid and free surfaces are derived from Fick’s first
law in the following.

jz, r(x, y, 0, t)a = −zmFDm

{
∂cm,r(x, y, z, t)a

∂z

}
z=0

(< 0) (58a)

and

jz, f(x, y, 0, t)a = −zmFDm

{
∂cm,f(x, y, z, t)a

∂z

}
z=0

(< 0) (58b)

The total current density jz(x, y, 0, t)a is thus expressed by

jz(x, y, 0, t)a = jz, r(x, y, 0, t)a + jz, f(x, y, 0, t)a (59a)

As a result, the surface morphology of the 2D nuclei is effectively calculated by the surface
height fluctuation.

ζ(x, y, t)a = − Ωm

zmF

∫ t

0
jz(x, y, 0, t)adt (59b)

where Ωm implies the molar volume of the deposit metal. Based on Equations (59a) and
(59b), the surface morphology of the 2D nuclei can be divided into the rigid and free surface
components, i.e.,

ζ(x, y, t)a = ζr(x, y, t)a + ζf(x, y, t)a (59c)

3.4. The Rotational Directions of the Micro-MHD Flows on the Rigid and Free Surfaces

As discussed initially, we can determine the characteristics of the rigid and free surface
vortices by the signs of the z-components of the velocity and vorticity fluctuations. Namely,
the rigid and free surface vortices correspond to the vortices with downward and upward
flows, which are expressed by the negative and positive values of the z-components of the
velocity fluctuation, respectively. In addition, the CW and ACW rotations are provided by
negative and positive values of the z-component of the vorticity.

As shown in Appendices H and K, the x- and y-components of the velocity are
calculated by the z-components of the velocity and vorticity.

(a) For the rigid surfaces:

Using Equations (21a) and (22a), we redefine Equation (16a) as

W0
r (z, t)a = 2βa

1[{α∗a0r (a) + α∗a1r (a)z}sin h az− α∗a0r (a) az exp(−az)] (60)

Then, inserting Equation (51a) into Equation (60), we obtain

W0
r (z, t)a = 2γa

1fa
r (a) exp

(
− a2

2

)
exp(pa

r t)[{α∗a0r (a) + α∗a1r (a)z}sin h az− α∗a0r (a) az exp(−az)]Ra
d (61a)

Replacing β1 in Equation (16b) with βa
1 in Equation (51a), we have

Ω0
r (z, t)a = γa

1fa
r (a) exp

(
− a2

2

)
exp(pa

r t) z exp(az)Ra
d (61b)
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where Equations (21b) and (22b) supply the following expressions.

α∗a0r (a) = −
ea{2Q∗aa2(2cos h a + asin h a) + da2T∗a2(1 + a)(sin h a + acos h a)

}
2Q∗aT∗aa2

(
sin h2a + a2

) (62a)

and

α∗a1r (a) =
ea[2Q∗aa2{cos h a + (1− a)e−a}+ da2T∗a2(1 + a)(sin h a + ae−a)

]
2Q∗aT∗aa

(
sin h2a + a2

) (62b)

(b) For the free surfaces:

Using Equations (25a) and (26a), we redefine Equation (18a) as

W0
f (z, t)a = 2βa

0{α∗a0f (a) sin h az + α∗a1f (a)z cos h az} (63)

Inserting Equation (51b) into Equation (63), we obtain

W0
f (z, t)a = 2γa

0fa
f (a)a−1 exp

(
− a2

2

)
exp(pa

f t){α∗a0f (a) sin h az + α∗a1f (a)z cos h az}Ra
d

(64a)
Inserting Equation (51b) into Equation (18b), we have

Ω0
f (z, t)a = γa

0fa
f (a)a−1 exp

(
− a2

2

)
exp(pa

f t)(1− az) exp(az)Ra
d (64b)

where Equations (25b) and (26b) supply the expressions of α∗a0f (a) and α∗a1f (a).

α∗a0f (a) =
ea{2Q∗aa(2sin h a + a cos h a) + da2T∗a2(cos h a + a sin h a)

}
2Q∗aT∗a(sin h a cos h a + a)

(65a)

and

α∗a1f (a) = −
aea(2Q∗aa sin h a + da2T∗a2 cos h a

)
2Q∗aT∗a(sin h a cos h a + a)

(65b)

Then, the rigid and free surface components are embedded into real and imaginary parts of
a complex amplitude in the forms of even and odd functions regarding the wavenumber.

CW0
(0, t)a = W0

r (0, t)a(even) + i·W0
f (0, t)a(odd) (66a)

and
CΩ0

(0, t)a = Ω0
r (0, t)a(even) + i·Ω0

f (0, t)a(odd) (66b)

In accordance with the above discussion of the 2D nucleation, the actual z-components of
the velocity and vorticity fluctuations are calculated by the following complex Fourier in-
versions, where the rigid and free surface components are embedded as real and imaginary
parts in the forms of even and odd functions regarding x- and y-coordinates, respectively.

Cw(x, y, z, t)a =
1

2π

∫ ∞

−∞

∫ ∞

−∞
CW0(z, t)a exp

[
−i
(
axx + ayy

)]
daxday (67a)

and
Cωz(x, y, z, t)a =

1
2π

∫ ∞

−∞

∫ ∞

−∞
CΩ0(z, t)a exp

[
−i
(
axx + ayy

)]
daxday (67b)

As discussed in Equations (55a) and (55b), the Fourier transform makes the transformation
of the periodic components, so that the actual forms are reproduced by adding the average
components to them. As mentioned above, the vortices are classified by four characters;
the rigid and free surface components correspond to the downward flow wr(x, y, z, t)a < 0
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and the upward flow wf(x, y, z, t)a > 0, respectively. On the other hand, the rotational
directions are determined by the precessions from the upper layer. CW and ACW rotations
in bird’s-eye view correspond to the negative vorticity ωz,i(x, y, z, t)a < 0 and the positive
vorticity ωz,i(x, y, z, t)a > 0 for i = r or f, respectively. Therefore, in accordance with
Equation (56c), we redefine the velocities and vorticities.

For the rigid surface vortices, we have

wr(x, y, z, t)a ≡ wr(x, y, z, t)a − rms wr(x, y, z, t)a (< 0) (68a)

and
ωz,r(x, y, z, t)a ≡ ωz,r(x, y, z, t)a ± rms ωz,r(x, y, z, t)a (> 0 or < 0) (68b)

For the free surface vortices, we have

wf(x, y, z, t)a ≡ wf(x, y, z, t)a + rms wr(x, y, z, t)a (> 0) (69a)

and
ωz,f(x, y, z, t)a ≡ ωz,f(x, y, z, t)a ∓ rms ωz,f(x, y, z, t)a (> 0 or < 0) (69b)

where rms wi(x, y, z, t)a and rms ωz,i(x, y, z, t)a (i = r or f) imply the rms values of wi(x, y, z, t)a

and ωz,i(x, y, z, t)a, which are expressed by

rms wi(x, y, z, t)a ≡
[

1
XY

∞x

−∞

{
W0

i (z, t)a
}2

daxday

] 1
2

(> 0) for i = r or f (70a)

and

rms ωz,i(x, y, z, t)a ≡
[

1
XY

∞x

−∞

{
Ω0

i (z, t)a
}2

daxday

] 1
2

(> 0) for i = r or f (70b)

Actual distributions of the velocity and vorticity are expressed by the linear combinations
of rigid and free components, respectively.

w(x, y, z, t)a = wr(x, y, z, t)a + wf(x, y, z, t)a (71a)

and
ωz(x, y, z, t)a = ωz,r(x, y, z, t)a + ωz,f(x, y, z, t)a (71b)

As mentioned above, the pair of vortices are composed of the vortices with opposite z-
components of velocities and vorticities, and downward and upward z-components of the
velocity correspond to rigid and free surface vortices. Since a pair of vortices with upward
and downward flows have opposite rotations, as shown in Figure 8, the vortices are simply
classified into two sets, where the distributions of the phase-cut quantities in x-direction
are schematically exhibited.

As shown in Figure 9, the formation processes of chiral 2D and 3D nuclei plus chiral
screw dislocation constitute nesting boxes, i.e., chiral 2D nuclei develop on an electrode,
chiral 3D nuclei grow on a chiral 2D nucleus, and chiral screw dislocations are created on
a chiral 3D nucleus. As discussed initially, for chirality to emerge, two types of vortices
are necessary. One of them (i.e., the rigid surface vortex) directly contributes to the chiral
nucleation, where the rigid surfaces under a vortex of the micro-MHD flow are formed by
locally exposed rigid surfaces, such as a bee’s nest. Each local rigid surface corresponds to
the bottom of a smaller rigid surface vortex, yielding a chiral nucleus of the next generation.
On the other hand, on the free surfaces covered with ionic vacancies, due to the moving
solution of a vortex at the electrode surface, such microstructures of 3D nuclei are not
created.
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Figure 8. Two sets of the micro-MHD vortex pair formed on the rigid and free surfaces. (a) CW-ACW
vortex pair. (b) ACW-CW vortex pair. α, rigid surface vortex; β, free surface vortex; wa

r , z-velocity
component of the rigid surface vortex; ωa

z,r, z-vorticity component of the rigid surface vortex; wa
f ,

z-velocity component of the free surface vortex; ωa
z,f, z-vorticity component of the free surface vortex.
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Figure 9. Nesting-boxes structure of chiral 2D and 3D nucleation plus chiral screw dislocation.

4. Results and Discussion
4.1. Micro-Mystery Circles Formed by the Non-Specific Adsorption of Ions

Figure 10 exhibits the copper electrode surfaces deposited under a VMHDF. Through
the deposition, characteristic concave round patterns with diameters of the order of 100 µm,
called micro-mystery circles, were observed (Figure 10a). However, after encircling the
VMHDE with a sheath to stop the rotation of the VMHDF, such patterns disappear on the
deposit surface (Figure 10b). Since these experimental results do not directly indicate the
chirality of the 2D nuclei, in the following, based on the theoretical foundation discussed
above, we calculate the morphological pattern of the micro-mystery circle and examine
whether such a concave pattern is theoretically reproduced or not.
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Figure 10. SEM images of the surface morphologies of copper electrodeposition under vertical
magnetic fields. (a) A micro-mystery circle formed by a VMHDF. (b) Disappearance of the micro-
mystery circle by the blocking of VMHDF with a sheath. Though the applied magnetic flux density
is different, i.e., (a) 3 T and (b) 1 T, the other conditions are the same. Deposition time is 300 s. A
500 mol m−3 CuSO4 + 500 mol m−3 H2SO4 solution was used at room temperature.

In the preceding paper [21], it has been clarified that the MHD flow patterns formed on
the copper deposit surface are reproduced after multiple nucleation. In accordance with the
procedure shown in Equations (49)–(59c), we calculated the copper deposit surfaces after
repeating the one hundred-times nucleation under a VMHDF: Assigning random numbers
to the grid points of a defined electrode surface at the beginning of each nucleation, 2D nu-
clei start to develop with time, expanding two-dimensionally, so that at their borders, some
disorders take place. In actual 2D nucleation, such disorders would be self-consistently
reformed. However, in this theory, because the treatment of such boundary disorders is not
considered, as shown in Figure 11, the disorders of the boundaries remain as they are. In
the calculated images, the concave circular patterns of the same order of magnitude as the
SEM image appear on the deposit surface. In the present case of nonspecific adsorption
of ions, the nucleus on the rigid surface grows more slowly than the nucleus on the free
surface, so we can expect that the concave part is mainly composed of the rigid surfaces of
2D nuclei involving chiral 3D nuclei. We can also suppose that chiral screw dislocations
would be created on the 3D nuclei. Namely, in quite high probability, it is expected that the
chiral activity exists on the concave part.

Figure 11. Theoretical calculation of micro-mystery circles after multiple 2D nucleation. (a) The
case of four circles. (b) The case of a single circle. Calculation data are as follows: B0 = 5 T,
∼
Ω = 62.8 s−1, zm = 2, Dm = 6 × 10−10 m2 s−1, 〈δc 〉 = 3.74 × 10−4 m, Cm(z = ∞) = 50 mol
m−3. Supporting electrolyte, 500 mol m−3; applied overpotential, −0.4 V; nucleation period, 1.0 s;
nucleation number, 100.



Magnetochemistry 2022, 8, 71 33 of 66

As discussed initially, due to the conservation of angular momentums of the vortices
activated from a stationary state, vortices with ACW and CW rotations are equally evolved,
so that half of the nuclei randomly created in each generation would be chiral ones formed
on the rigid surfaces. In view of the nesting-boxes structure of the chiral nucleation shown
in Figure 9, the probability that the chiral screw dislocations emerge from all active points
is obtained by the product of the probability of each generation.

εscrew =
1
2
× 1

2
× 1

2
=

1
8
(= 0.125) (72)

Equation (72) is derived from the three-generation model of chiral nucleation under the
initial condition that rigid surface and free surface vortices are equally distributed over the
electrode. This is a strong restriction for all the vortices in the three generations.

The created screw dislocations act as single active points for enantiomeric reagents.
Figure 12 schematically exhibits D-active and L-active surfaces of a nucleus, i.e., the surfaces
are uniformly covered with single and achiral active points. A single active point is active
for either D- and L-reagents and inactive for the other one, whereas an achiral active point
is active for both D- and L-reagents. Owing to the uniform distribution, we can calculate
the reaction current of the electrode by the ratios of the single active points and achiral
active points, i.e., εscrew and 1− εscrew, respectively.

Figure 12. D-active and L-active surfaces of a nucleus. (a) D-active surface. (b) L-active surface. Red
circle, D-active point; blue circle, L-active point; semicircles of red and blue, achiral active point.

Because an achiral active point is composed of both D- and L-active portions, the
probability for an enantiomeric reagent to react at the active point is equal to 1/2. Therefore,
we can assume that the activity of an achiral active point is half of a single active point. In
view of twice larger activity of a single active point, for the electrode active for either D- or
L-reagents, the total current is written by

Iactive = 2εscrew I0 + (1− εscrew)I0 = (1 + εscrew)I0 (73a)

where I0 implies the total current of the electrode covered with only achiral active points.
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On the other hand, the single active point of the electrode is inactive for the other
reagent, so that for the reagent, the current component of the single active point becomes
zero, and the total current is equal to the current of the achiral active points.

Iinactive = (1− εscrew)I0 (73b)

Using Equations (73a) and (73b), we can calculate the absolute value of the enantiomeric
excess (ee) ratio defined by Mogi, i.e.,

|r(ee)| ≡ Iactive − Iinactive

Iactive + Iinactive
= εscrew (73c)

where the ee ratio itself is defined as positive for L-activity and negative for D-activity. The
absolute value of the ee ratio is equal to the probability that the chiral screw dislocations
emerge from all the active points. Since εscrew = 0.125 corresponds to an ideal limiting case,
we can conclude that the absolute value of the ee ratio cannot exceed 0.125.

|r(ee)| ≤ εscrew(= 0.125) (74)

Equation (74) is supported by the experimental data of Mogi’s reports [9–18]. Namely, the
three-generation model is experimentally validated. An ee ratio of 0.125 is declared as the
ideal limiting value obtained by the present method, which results from the fact that the
evolution probability of the rigid surface vortex is equal to that of the free surface vortex.

4.2. Inversion of Chirality by the Specific Adsorption of Chloride Ions

As mentioned above, the magnetic field, current, and Lorentz force consist of a right-
handed system, so that according to the law of a right-handed system, Equation (44) is
always fulfilled. As a result, under a parallel magnetic field (B0 < 0) or an antiparallel
magnetic field (B0 > 0), in a bird’s-eye view, the upper layer, i.e., the VMHDF rotates in a
clockwise

(
Ω̃ < 0

)
or an anticlockwise

(
Ω̃ > 0

)
direction, respectively. Then, the vortices

in the lower layer receive the precessions from the upper layer via the vortices in the upper
layer. As shown in Figure 2C, due to the continuity of the vortex motion, two adjoining
vortices form a pair of vortices with reverse rotations as well as downward and upward
flows, so that a rigid surface vortex appears with a free surface vortex. If either of them
starts a precessional motion, the other must subordinately rotate in the opposite direction.
Then, the next problem is which the vortex receives the precession, rigid or free surface.
There are two cases, i.e., one is an unstable case where the vortices develop with time and
the other is a stable case where the vortices, once activated, dwindle with time.

As discussed in Equations (46b) and (48b), in accordance with the signs of the ampli-
tude factors pr and pf, the micro-MHD vortices will develop or decay with time. As shown
in Figure 7, the amplitude factor functions f0

r (a) and f0
f (a) in Equations (45b) and (47b),

always take positive values for all wavenumbers, so that from Equations (46b) and (48b),
the signs of pr (i.e., pa

r ) and pf (i.e., pa
f ) determined by the adsorption coefficient Aθ shown

in Equation (43b), whose sign depends on the sign of the product of the differential po-
tential coefficient and the overpotential at the OHP((∂〈Φ1〉/〈Φ1〉)µΦ∗2OHP). As discussed
in Appendix A, as for ionic adsorption, the following conditions concerning unstable and
stable growths of the fluctuations are derived.(

∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHP < 0 (unstable) for non− specific adsorption (A9a)

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHP > 0 (stable) for specific adsorption (A9b)
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Here, the differential potential coefficient is expressed by [66](
∂〈Φ1〉
∂〈Φ2〉

)
µ

=
ε

λCH

{(
∂Q∗1
∂Q∗2

)
µ

+ 1

}
(75)

where ε implies the dielectric constant of water (6.95× 10−10 J−1 C2 m−1, 25 ◦C), CH is
the electric capacity of the Helmholtz layer (≈ 10 µF cm−2 = 0.1 F m−2 [67]), and λ is the
Debye length shown in Equation (35c).

(
∂Q∗1/∂Q∗2

)
µ

is the differential charge coefficient,
where Q∗1 and Q∗2 imply the electric charges stored in the Helmholtz and diffuse layers of
an electric double layer [68,69]. From our preliminary experiments, we obtained(

∂Q∗1
∂Q∗2

)
µ

= 0.250 for a Cu electrode in a CuSO4 + H2SO4 solution (76a)

(
∂Q∗1
∂Q∗2

)
µ

= −2.10 for a Cu electrode in a CuCl2 + HCl solution (76b)

(
∂Q∗1
∂Q∗2

)
µ

= −2.02 for a Cu electrode in a CuCl2 + KCl solution (76c)

In accordance with Appendix A, the present case shown in Equation (76a) certainly
corresponds to the non-specific adsorption, whereas Equations (76b) and (76c) indicate the
strong specific adsorption of chloride ions. Since the chemical bonding force of a chloride
ion is stronger than the repulsive electrostatic force, it can adsorb on the copper cathodic
surface. For a 500 mol m−3 H2SO4 supporting electrolyte solution, from Equation (35c), we
obtain the Debye length λ= 2.47× 10−10 m. Using CH = 0.1 F m−2 as well as Equation (75),
we have the differential potential coefficients as follows:(

∂〈Φ1〉
∂〈Φ2〉

)
µ

= 35.1 for a CuSO4 + H2SO4 system (77a)

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

= −30.9 for a CuCl2 + HCl system (77b)

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

= −28.7 for a CuCl2 + KCl system (77c)

In view of cathodic polarization of the diffuse layer Φ∗2OHP < 0, Equation (77a)
corresponds to the unstable condition Equation (A9a), whereas Equations (77b) and (77c)
derive the stable condition Equation (A9b).

The differential potential coefficients in the case of the specific adsorption of chloride
ions in Equations (77b) and (77c) are smaller than −1. These results mean that the chloride
ions induce strong specific adsorption. From the discussion in Appendix A, for the non-
specific and strong specific adsorptions in the cathodic deposition, the overpotentials of the
diffuse layers take negative values. Assuming Φ∗2OHP ≈ −1× 10−2 V, we can calculate the
amplitude factors pa

r and pa
f in Equations (46b) and (48b).

As a result, in the case of the non-specific adsorptions of simple ions at the electrode
surface, as shown in Figure 13a, the amplitude factors pa

r and pa
f take positive values

for all wave numbers a, so that the asymmetrical fluctuations, including the vortices of
micro-MHD flows, become unstable, i.e., activated vortices deterministically develop with
time. Due to the larger positive amplitude factor, the free surface vortices grow faster
than the rigid surface ones. The precessions by the VMHDF therefore transfer to the free
surface vortices, so that the rigid surface vortices creating chiral 2D nuclei rotate in the
opposite direction of the VMHDF rotation, yielding 2D nuclei with opposite chirality.
In unstable 3D nucleation, we can also expect that the free surface vortices on a rigid
surface of a 2D nucleus are given the priority in precession. This time, due to the opposite
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rotational direction, the rigid surfaces of 3D nuclei and the nano-vortices will obtain the
same chirality as the VMHDF. If the same process were repeated in the third generation,
the screw dislocations formed on a rigid surface of 3D nucleus would obtain the opposite
chirality. This means that the electrode gains the opposite chiral activity as the rotations of
the VMHDF.

Figure 13. Amplitude factors pa
r and pa

f for non-specific and specific adsorptions. (a) The case of
non-specific adsorption. (b) The case of specific adsorption.

For the specific adsorption of chloride ions, as shown in Figure 13b, pa
r and pa

f become
negative for all wavenumbers, so that the fluctuations are kept stable, i.e., an initially
activated vortex dwindles to nothing with time. Such activation and extinction are stochas-
tically repeated regarding time and location. In this case, due to the smaller negative
amplitude factor, the rigid surface vortices decay more slowly than the free surface ones
receiving the precessions. Therefore, in this case, 2D nuclei with the same chirality as
the VMHDF rotation emerge under the rigid surface vortices. However, since 3D nuclei
and screw dislocations do not grow in an electric double layer, but in a diffusion layer,
their unstable free surface vortices will be again given priority in precession, so that the
chirality in the first generation would be transferred to the third generation as it stands.
This means that by adding a chloride additive, the electrode gains the same chiral activity
as the VMHDF rotation.

As for 2D chiral nucleation, in the absence of specific adsorption of ions, it is concluded
that under an upward antiparallel (B0 > 0) or a downward parallel (B0 < 0) magnetic field,
clockwise (CW)

(
Ω̃

a
r < 0

)
or anticlockwise (ACW)

(
Ω̃

a
r > 0

)
rotations occur in the rigid

surface vortices, respectively. That is, such a relationship is expressed by

B0Ω̃
a
r < 0 (78)

where Ω̃
a
r implies the representative angular velocity of the rigid surface vortices. This

symmetry of rotation is consistent with the odd symmetry of chiral activity of the copper
deposit surfaces.

On the other hand, for the specific adsorption, such as chloride adsorption, the am-
plitude factors become negative. As mentioned above, in the stable case, the rigid surface
vortices rotate in the same direction as a VMHDF. Namely, in the presence of specific
adsorption of ions, we can say that the rotational directions of the vortices creating chiral
nuclei are reversed, i.e., upward antiparallel (B0 > 0) and downward parallel (B0 < 0) mag-
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netic fields induce anticlockwise (ACW)
(

Ω̃
a
r > 0

)
and clockwise (CW)

(
Ω̃

a
r < 0

)
rotations

of the rigid surface vortices, respectively, i.e.,

B0Ω̃
a
r > 0 (79)

That is, the rotations of the rigid surface vortices of the micro-MHD flow are reversed. In
this model, the chirality of the rigid surface vortices changes but the symmetry breakdown
does not occur.

However, the obtained amplification factors pa
r and pa

f are not so large that both kinds
of vortices would easily fluctuate between both rotational directions, giving rise to the
symmetry breaking.

5. Materials and Methods

The experiment was carried out in copper electrodeposition in a 300 mol m−3 CuSO4
+ 500 mol m−3 H2SO4 solution. The experimental apparatus was represented elsewhere [6].
Water was prepared by a pure water production system (MERCK KGAA, Darmstadt,
Germany). The CuSO4 and H2SO4 were analytical grades (FUJIFILM Wako Pure Chemical
Corporation, Osaka, Japan). The VMHDE was made of a copper disk of 8 mm diameter
(oxygen-free copper, 99.99% purity, The Nilaco Corporation, Tokyo, Japan) equipped with
a 5 mm-wide fringe of PTFE resin (Flonchemical Co. Ltd., Osaka, Japan). To prevent
natural convection, it was set in a downward direction. The counter electrode (oxygen-
free copper, 99.99% purity, The Nilaco Corporation, Tokyo, Japan) was a copper plate,
25 mm in diameter, which was placed 30 mm from the VMHDE. A copper rod (1 mm
diameter) was used as a reference electrode (oxygen-free copper, 99.99% purity, The Nilaco
Corporation, Tokyo, Japan). To stop the VMHDF, a sheath with an 18 mm inner diameter
and an 18 mm height was attached to the electrode. By using the limiting diffusion current
at an overpotential of −400 mV under a given vertical magnetic field, the experiment was
performed. The whole electrode system was settled at the place of a uniform magnetic field
selected in the bore space of a 10T-cryocooled superconducting magnet (HF-10-100VH,
Sumitomo Heavy Industries Ltd., Tokyo, Japan). The deposited electrode surfaces were
observed by a surface roughness analysis 3D scanning electron microscope (ERA-8800,
ELIONIX Inc., Tokyo, Japan).

6. Conclusions

The 2D chiral nuclei are formed under the rigid surface vortices, whose chirality arises
from the precessions by the VMHDF. The chiral screw dislocations grow on a chiral 3D
nucleus, which in turn develops on a chiral 2D nucleus. Based on these results, the initial
five questions are answered as follows.

1. Chiral screw dislocations under a VMHDF arise from the three generations of chiral
nuclei, which constitute nesting boxes. Namely, chiral 2D nuclei are formed by the
chiral micro-MHD vortices with rigid surfaces. Then, chiral 3D nuclei are created
by the chiral nano-MHD vortices with rigid surfaces on a chiral 2D nucleus. Finally,
chiral screw dislocations grow by chiral ultra-micro MHD vortices with rigid surfaces
on a chiral 3D nucleus. Such a structure was validated by the fact that the observed
enantiomeric excess (ee) ratios are always smaller than 0.125.

2. The chiral nucleation system is composed of a rotating upper layer and a stationary
lower layer so that vortices in the lower layer can receive the precessions from the
upper layer and raise chiral nuclei at fixed places.

3. For chirality to emerge, two types of vortices are necessary, having rigid surfaces with
friction and free surfaces covered with ionic vacancies. Due to the rigid surface with
friction, the rigid surface vortices not only work as pins to stop the migration of the
vortices in the lower layer but also create chiral nuclei at fixed positions. Which vortex
receives the precession depends on whether the growth mode is unstable or stable.
Free surface vortices unstably grow faster than the rigid surface vortices, whereas,
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under stable conditions, rigid surface vortices activated dwindle with time more
slowly than free surface vortices. Therefore, when unstable, free surface vortices have
the priority of precession, and in stable cases, the precessions are donated to rigid
surface vortices.

4. Due to fluid and vortex continuities, a pair of adjoining vortices are composed of
rigid and free surface vortices with opposite rotations. To raise nuclei fixed to a solid
surface, chiral nucleation must occur only under the rigid surface vortices. Since
in a CuSO4 + H2SO4 solution, simple non-specific adsorption takes place, unstable
copper nucleation proceeds. As a result, the rotation of a VMHDF transfers to the
free surface vortices as the precessions, so that 2D nuclei with reverse chirality are
formed under rigid surface vortices in the rotation opposite to that of the VMHDF.
Though this result does not directly explain the chiral activity of the electrode, we can
understand the mechanism of the emergence of the opposite chirality to the VMHDF.
In accordance with the three-generation model, if such a nucleation process were
repeated three times, the opposite chirality would be realized.

5. When a chloride additive is added to a CuSO4 + H2SO4 solution, specific adsorption
of the chloride ions takes place, leading to stable nucleation. In this case, the rotation
of a VMHDF is bestowed on the rigid surface vortices as precessions. Therefore, 2D
nuclei growing under the rigid surface vortices have the same chirality as that of the
VMHDF. Namely, due to the stability of the specific adsorption of chloride ions, we
can expect a change in the chiral activity of the electrode. However, if the differences
between both amplitude factors and their values themselves were sufficiently small,
the breakdown would also take place.
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Nomenclature

x1, x2, x3 Cartesian coordinates corresponding to x, y, z (m)
x, y, z non-dimensional coordinates normalized by d
→
r position vector (m)
d representative length (m)
da representative length of asymmetrical fluctuations in 2D nucleation (m)
kx, ky wavenumber components in the x- and y-directions (m−1)
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k wavenumber defined by
(

k2
x + k2

y

)1/2
(m−1)

ax, ay wavenumber components of a in the x- and y-directions
a non-dimensional wavenumber (= kd or kda)

a+
autocorrelation distance of the fluctuation, i.e., the average size of
the vortices (m)

→
U velocity which an observer feels (m s−1)
U∗i i-component of the main flow velocity of the rotation (m s−1)
→
u velocity (m s−1)
ui i-component of

→
u (i = 1, 2, 3) (m s−1)

u x-component of the velocity, u1 (m s−1)
v y-component of the velocity, u2 (m s−1)
w z-component of the velocity, u3 (m s−1)
ωi i-component of the vorticity (s−1)
ωz z-component of the vorticity (s−1)
φs x-component of stream function (m s−1)
ψs y-component of stream function (m s−1)
Pint
(
ax, ay

)
Gaussian-type power spectrum defined by Equation (F5)

Pxz viscous stress tensor defined in Equation (7a) (N m−2)
Pyz viscous stress tensor defined in Equation (7b) (N m−2)
ρ density of solution (kg m−3)
µs viscosity of solution (N s m−2)
ν kinematic viscosity (m2 s−1)
νa kinematic viscosity of bulk solution in 2D nucleation
Ωm molar volume of deposit metal (m3 mol−1)
P pressure (N m−2)
µ0 magnetic permeability (4π × 107 N A−2)
η resistivity defined by Equation (B14)
ε dielectric constant of water (6.95 × 10−10 J−1 C2 m−1, 25 ◦C)
R universal gas constant (8.31 J K−1 mol−1)
T absolute temperature (K)
F Faraday constant (96,500 C mol−1)
→
B magnetic flux density (T)

Bi i-component of
→
B(T)

→
B
∗

external magnetic flux density in the absence of reactions (T)

B∗j j-component of
→
B
∗
(T)

B0 z-component of
→
B
∗

with sign (T)
→
b fluctuation of

→
B by reactions (T)

bi i-component of
→
b (T)

bz z-component of
→
b (T)

→
E electric field (V m−1)
→
J current density (A m−2)
ji i-component of the current density fluctuation (A m−2)
jz z-component of the current density fluctuation (A m−2)
jz(x, y, 0, t)a asymmetrical fluctuation of jz at the electrode (A m−2)
σ∗ electrical conductivity (S m−1)
zi charge number of ionic species i including sign
zm charge number of the metallic ion
λ∗i mobility of ionic species i (m2 V−1 s−1)
λi i-component of unit normal vector
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Ci concentration of ionic species i (mol m−3)
Di diffusion coefficient of ionic species i (m2 s−1)
Dm diffusion coefficient of the metallic ion (m2 s−1)
→
F L Lorentz force per unit volume (N m−3)

FL,i i-component of
→
F L (N m−3)

→
F R

acceleration which an observer feels in a frame of reference rota-
tion with the same angular velocity as the upper layer (N m−3)

fRi i-component of the fluctuation of
→
F R (N m−3)

fLi i-component of the fluctuation of the Lorentz force (N m−3)
Cm concentration of the metallic ion (mol m−3)

C∗m
concentration of the metallic ion in the absence of fluctuation
(mol m−3)

cm concentration fluctuation of the metallic ion (mol m−3)

cm(x, y, z, t)a asymmetrical fluctuation of the concentration of the metallic ion
(mol m−3)

cm(x, y, 0+, t)a cm(x, y, z, t)a at OHP (mol m−3)

C∗m(z = 0)
surface concentration of the metallic ion outside the double layer
(mol m−3)

C∗m(z = ∞) bulk concentration of the metallic ion (mol m−3)
C∗j (z = ∞) bulk concentration of ionic species j (mol m−3)

Lm
average concentration gradient in the diffusion layer defined by
Equation (C8) (mol m−4)

θ∗∞
concentration difference between the bulk and the surface
(mol m−3)

〈δc〉 average thickness of a diffusion layer (m)
U0 amplitude of u (m s−1)
V0 amplitude of v (m s−1)
W0 amplitude of w (m s−1)
Ω0 amplitude of ωz (s−1)
W0∗ real amplitude without i (m s−1)
Ω0∗ real amplitude without i (s−1)
Φ0

s amplitudes of the stream functions φs (m s−1)
Ψ0

s amplitudes of the stream functions ψs (m s−1)
K0 amplitude of bz (T)
J0 amplitude of jz (A m−2)
Θ0 amplitude of cm (mol m−3)
W0

r (z, t) amplitude of w of the rigid surface vortices (m s−1)
W0

f (z, t) amplitude of w of the free surface vortices (m s−1)
W0

r (z, t)a W0
r (z, t) in 2D nucleation (m s−1)

W0
f (z, t)a W0

f (z, t) in 2D nucleation (m s−1)
Ω0

r (z, t) amplitude of ωz of the rigid surface vortices (s−1)
Ω0

f (z, t) amplitude of ωz of the free surface vortices (s−1)
Ω0

r (z, t)a Ω0
r (z, t) in 2D nucleation (s−1)

Ω0
f (z, t)a Ω0

f (z, t) in 2D nucleation (s−1)
Θ0

r (0, t) amplitude of cm at the rigid surface (mol m−3)
Θ0

f (0, t) amplitude of cm at the free surface (mol m−3)
Q magneto-induction coefficient defined by Equation (D4c)

Q∗
non-dimensional magneto-induction coefficient defined by
Equation (D5a)

→
Ω angular velocity vector (s−1)

Ω̃
angular velocity of the upper layer corresponding to
VMHDF (s−1)
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Ω̃
a
r representative angular velocity of the rigid surface vortices (s−1)

T∗ rotation coefficient defined by Equation (E20c) (m−1)
R∗ mass transfer coefficient defined by Equation (J2b) (mol m−4 s)

S∗
magneto-viscosity coefficient defined by Equation (J9b)
(m2 A−1 s−1)

R∗a R∗ in 2D nucleation defined by Equation (G5b) (mol m−4 s)
Q∗a Q∗ in 2D nucleation defined by Equation (G5c)
T∗a T∗ in 2D nucleation defined by Equation (G5d) (m−1)
S∗a S∗ in 2D nucleation defined by Equation (G5e) (m2 A−1 s−1)

pa
r

amplitude factor of the rigid surface vortices in 2D nucleation
defined by Equation (46b) (s−1)

pa
f

amplitude factor of the free-surface vortices in 2D nucleation
defined by Equation (48b) (s−1)

fa
r (a)

amplitude factor function of the rigid surface vortices in 2D nu-
cleation defined by Equation (45b)

fa
f (a)

amplitude factor function of the free surface vortices in 2D nucle-
ation defined by Equation (47b)

µad(x, y, t) chemical potential of the ad-atom (J mol−1)

ζ(x, y, t)a surface morphology of 2D nuclei by the asymmetrical fluctua-
tions (m)

ζa shortened expression of ζ(x, y, t)a (m)
µm(x, y, ζa, t) electrochemical potential of the metallic ion (J mol−1)
µe(x, y, t) electrochemical potential of the free electron (J mol−1)
δµm(x, y, ζa, t)a asymmetrical fluctuation of µm(x, y, ζa, t) (J mol−1)
δµad(x, y, t) asymmetrical fluctuation of µad(x, y, t) (J mol−1)
IHP inner Helmholtz plane
OHP outer Helmholtz plane
0+ z-coordinate of the outer Helmholtz plane (OHP)
Φ1 overpotential at IHP (V)
φ1(x, y, t)a asymmetrical fluctuation of Φ1 (V)

Φ∗2OHP
overpotential at the flat OHP without 2D nuclei (z = 0+) mea-
sured from the outer boundary of the diffuse layer (z = ∞+) (V)

Φ2 overpotential of the diffuse layer (V)
φ2(x, y, z, t)a asymmetrical fluctuation of Φ2 (V)
φ2(x, y, 0+, t)a asymmetrical fluctuation of Φ2 at OHP (V)

φ2(x, y, ζa, t)a asymmetrical fluctuation at the surface of 2D nuclei in the diffuse
layer (V)

Lφ2

gradient of the electrostatic overpotential in the diffuse layer de-
fined by Equation (35b) (V m−1)

λ
Debye length equalized to the average diffuse layer thickness
defined by Equation (35c) (m)

Lm2
average concentration gradient of the metallic ion in the diffuse
layer defined by Equation (36b) (mol m−4)

(∂〈Φ1〉/∂〈Φ2〉)µ differential potential coefficient
Aθ adsorption coefficient defined by Equation (43b) (s−1)
θa

rand uniform random number between 0 and 2π
Ra

d 2D random number defined by Equation (49)

αa
r

(
=
√

2/2
) initial ratio of the rigid surface component to the total concentra-

tion fluctuation

αa
f

(
=
√

2/2
) initial ratio of the free surface component to the total concentra-

tion fluctuation
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γa
0

constant of the vorticity coefficient of the free surface vortex in 2D
nucleation defined by Equation (G10b) (s−1)

γa
1

constant of the vorticity coefficient of the rigid surface vortex in
2D nucleation defined by Equation (G7b) (s−1)

εscrew
probability that the chiral screw dislocations emerge from all the
active points

I0
total current of an electrode covered with only achiral active
points (A)

Iactive
total current of the electrode active for either of D- and
L-reagents (A)

Iinactive total current of the electrode for the other reagent (A)
r(ee) enantiomeric excess (ee) ratio

Q∗1
electric charge stored in the Helmholtz layer of an electric double
layer (A)

Q∗2
electric charge stored in the diffuse layer of an electric double
layer (A)(

∂Q∗1/∂Q∗2
)
µ

differential charge coefficient
CH electric capacity of the Helmholtz layer (F m−2)
∇2 ≡ ∂2/∂x2

1 + ∂2/∂x2
2 + ∂2/∂x2

3
εijk transposition of tensor

D
operator defined by d/dz or non-dimensional operator defined
by Equation (D5b)

C
operator to embed the odd and even functions into a complex
space defined by Equation (53a) or Equation (53b)

rms operator defining the root mean square value
g1(a) function of a defined by Equation (47c)
g2(a) function of a defined by Equation (47d)
g3(a) function of a defined by Equation (47e)
g4(a) function of a defined by Equation (45c)
g5(a) function of a defined by Equation (45d)
g6(a) function of a defined by Equation (45e)
α0, α1 arbitrary constants of the z-velocity component of vortices (m s−1)
α2, α3 arbitrary constants of the z-velocity component of vortices (m s−1)

α∗0r(a)
velocity coefficient of the rigid surface vortices defined by
Equation (21b) (m)

α∗1r(a)
velocity coefficient of the rigid surface vortices defined by
Equation (22b) (m)

α∗0f(a)
velocity coefficient of the free surface vortices defined by
Equation (25b) (m)

α∗1f(a)
velocity coefficient of the free surface vortices defined by
Equation (26b) (m)

β0 vorticity coefficient of the free surface vortices (s−1)
β1 vorticity coefficient of the rigid surface vortices (s−1)

βa
0

vorticity coefficient of the free surface vortices in 2D nucleation
(s−1)

βa
1

vorticity coefficient of the rigid surface vortices in 2D nucleation
(s−1)

Superscript ‘a’ implies asymmetrical fluctuation
Subscripts ‘r’
and ‘f’

mean rigid surface and free surface components, respectively

Subscripts ‘1′

and ‘2′
imply the Helmholtz and diffuse layers, respectively
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Appendix A Stability by the Non-Specific and Specific Adsorption in 2D Nucleation

In electrodeposition, as shown in Figure A1, 2D nucleation arises from an electric
double layer. At the inner Helmholtz plane (IHP), dehydrated metallic ions are deposited
on the electrode. The potential in the Helmholtz layer resultantly changes, which simulta-
neously induces the potential change in the diffuse layer. Such a process is represented by
the asymmetrical fluctuations of the potentials in the following:

φ1(x, y, t)a =

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

φ2(x, y, z, t)a (A1)

where the subscripts ‘1′ and ‘2′ imply the Helmholtz and diffuse layers, respectively.
φ1(x, y, t)a is the overpotential fluctuation at the IHP, and φ2(x, y, z, t)a is the overpotential
fluctuation at the outer Helmholtz plane (OHP), where the z-coordinate takes the position
of the top

(
z = ζ(x, y, t)a) or bottom (z = 0+) of a 2D nucleus at the OHP, and ζ(x, y, t)a

is a surface height fluctuation at the OHP. (∂〈Φ1〉/∂〈Φ2〉)µ is the differential potential
coefficient of the double layer at 〈Φ2〉 = Φ∗2OHP. Φ∗2OHP is the equilibrium electrostatic
overpotential at the flat OHP z = 0+ measured from the outer boundary of the diffuse layer
(z = ∞+) (See Figure A1a–c), and 〈Φ1〉 and Φ2 denote the average electrostatic potential
differences at the Helmholtz and diffuse layers, respectively, and the subscript µ implies
the chemical potentials (activities) of all the components are kept constant.

The sign of the potential coefficient (∂〈Φ1〉/∂〈Φ2〉)µ depends on the type of ionic
adsorption at IHP. Ionic adsorption is generally classified into two types [22]; one is non-
specific adsorption, where polarized solvent molecules and ions are arranged according
to the electrostatic force, and the potential monotonously changes with distance, so that
(∂〈Φ1〉/∂〈Φ2〉)µ > 0 and Φ∗2OHP < 0 are derived (Figure A1a). The other is the specific
adsorption, where anions, such as chloride ions, are combined with the electrode surface by
strong chemical bindings, which largely shift the potential at OHP to the negative side under
the conditions (∂〈Φ1〉/∂〈Φ2〉)µ < −1 and Φ∗2OHP < 0 (Figure A1b). Specific adsorption
would also be possible in the case of cation, such as hydrogen ion, where the chemical
bonding is not so strong that the potential distribution may draw a weak maximum at OHP,
so that −1 < (∂〈Φ1〉/∂〈Φ2〉)µ < 0 and Φ∗2OHP > 0 are fulfilled (Figure A1c). Therefore,
non-specific and specific adsorptions are characterized by the signs of the differential
potential coefficient; namely, (∂〈Φ1〉/〈∂Φ2〉)µ > 0 and (∂〈Φ1〉/∂〈Φ2〉)µ < 0, respectively.
In Figure A1d, the relationship between 〈Φ1〉 and 〈Φ2〉 is schematically exhibited, where
〈Φ1〉 is a function of 〈Φ2〉, and the differential potential coefficient (∂〈Φ1〉/∂〈Φ2〉)µ is the
slope of the tangent at 〈Φ2〉 = Φ∗2OHP.

Under a constant thickness of the Helmholtz layer, we can derive the potential change
between the top and bottom of a 2D nucleus in the diffuse layer. By expanding with respect
to the z-coordinate at the flat OHP, z = 0+, the following equation is obtained:

∆φ2(x, y, ζa, t)a = Lφ2ζ(x, y, t)a (A2a)

where ∆φ2(x, y, ζa, t)a is defined by the potential change at the OHP between the top and
bottom of the 2D nucleus as follows.

∆φ2(x, y, ζa, t)a ≡ φ2(x, y, ζa, t)a − φ2
(
x, y, 0+, t

)a (A2b)

Lφ2 is the gradient of the electrostatic equilibrium overpotential of the diffuse layer defined
by [22]

Lφ2 ≡ −
Φ∗2OHP

λ
(A3)

where λ is the Debye length equalized to the average diffuse layer thickness.
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Figure A1. The 2D nucleation in an electric double layer [22]. (a) Non-specific adsorption. (b) Anionic
specific adsorption. (c) Cationic specific adsorption. (d) Schematic view of the relationship between
〈Φ1〉 and 〈Φ2〉. z = 0+, the coordinate of OHP; z = ∞+, the outer boundary coordinate of the
diffuse layer; 	, anion; ⊕, cation; HL; Helmholtz layer, DL; diffuse layer, H∗(0, t); the equilibrium
concentration overpotentials. Reproduced with permission from Morimoto, R.; Miura, M.; Sugiyama,
A.; Miura, M.; Oshikiri, Y.; Kim, Y.; Mogi, I.; Takagi, S.; Yamauchi, Y.; Aogaki, R., The Journal of Physical
Chemistry B; published by the American Chemical Society, 2020.

λ ≡
(

εRT
F2 ∑j 6=m z2

j Cj(z = ∞)

) 1
2

(A4)

where ε is the dielectric constant (F m−1), R is the universal gas constant (8.31 J K−1

mol−1), and T is an absolute temperature (K). zj is the charge number, including the sign,
and Cj(z = ∞) is the bulk concentration of ionic species j except for the bulk metallic
concentration Cm(z = ∞) (mol m−3) [66]. Substituting Equation (A3) into Equation (A2a),
we have

∆φ2(x, y, ζa, t)a = −Φ∗2OHP
λ

ζ(x, y, t)a (A5a)

From Equation (A1), the potential change at the IHP is given by

∆φ1(x, y, t)a =

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

∆φ2(x, y, ζa, t)a (A5b)

By adding Equation (A5a) to Equation (A5b), the total potential change ∆φ0(x, y, ζa, t)a of
the double layer between the top and bottom of the 2D nucleus is expressed by

∆φ0(x, y, ζa, t)a = − 1
λ

{(
∂〈Φ1〉
∂〈Φ2〉

)
µ

+ 1

}
Φ∗2OHPζ(x, y, t)a (A6)

By means of Equation (A6), we can determine whether 2D nucleation is stable or not.
When 2D nucleation has a tendency that the reaction resistance increases, suppressing
the reaction, we can say it is stable. So, 2D nuclei are kept in flat shapes without growth,
distributed randomly on the electrode. On the contrary, in the case where the resistance
decreases, the nucleation turns unstable, and 2D nuclei deterministically grow at fixed
sites. At the early stage of cathodic deposition neglecting concentration overpotential, the
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positive change in the total double layer potential decreases the reaction resistance, so that
the unstable condition is expressed by

∆φ0(x, y, ζa, t)a > 0 (A7)

Therefore, ∆φ0(x, y, ζa, t)a = 0 provides the critical condition for the neutral stability.
Because the nucleation is expressed by a positive surface deformation, ζ(x, y, t)a > 0, from
Equations (A6) and (A7),

{
(∂〈Φ1〉/∂〈Φ2〉)µ + 1

}
Φ∗2OHP < 0 corresponds to the unstable

condition in Equation (A7). The condition (∂〈Φ1〉/∂〈Φ2〉)µ = −1 is impossible to com-
pletely realize, so that Φ∗2OHP = 0, i.e., a flat potential distribution in the diffuse layer, gives
the critical condition. As examined in Figure A1a, at the early stage of the electrodeposition
without specific adsorption, (∂〈Φ1〉/∂〈Φ2〉)µ + 1 > 0 and Φ∗2OHP < 0 are automatically
fulfilled, so that 2D nucleation without specific adsorption is always unstable. However,
according to Figure A1b, by adding anions of intense specific adsorption, such as chloride
ion, we can expect that the potential distribution in the electric double layer changes to
(∂〈Φ1〉/∂〈Φ2〉)µ + 1 < 0 and Φ∗2OHP < 0, so that 2D nucleation turns stable, leveling the
deposit surface. Though the differential potential coefficient is negative, cationic specific ad-
sorption of the hydrogen ion is not so strong, i.e., −1 < (∂〈Φ1〉/∂〈Φ2〉)µ < 0, as discussed
in Figure A1c, (∂〈Φ1〉/∂〈Φ2〉)µ + 1 > 0 and Φ∗2OHP > 0 are derived. Namely, according to
Equation (A7), hydrogen ion adsorption also makes the early 2D nucleation stable.

In the summary of above discussion, at the early stage of deposition, the unstable
condition of the 2D nucleation without specific adsorption of the ion is{(

∂〈Φ1〉
∂〈Φ2〉

)
µ

+ 1

}
Φ∗2OHP < 0(unstable) (A8a)

The stable condition with specific adsorption of the ion is{(
∂〈Φ1〉
∂〈Φ2〉

)
µ

+ 1

}
Φ∗2OHP > 0(stable) (A8b)

As for ionic adsorption, we can provide the following conditions.(
∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHP < 0 for non–specific adsorption (A9a)

(
∂〈Φ1〉
∂〈Φ2〉

)
µ

Φ∗2OHP > 0 for specific adsorption (A9b)

Namely, in the early stage of deposition, 2D nucleation is unstable for non-specific adsorp-
tion, whereas for specific adsorption, it is kept stable.

Appendix B Basic MHD Equations in the Stationary Lower Layer

In the stationary lower layer, due to the conservation of angular momentum and the
pinning effect of the microscopic vortices on the rigid surfaces, all the vortices belonging
to the same area keep their positions constant without migration. Then, first, consider
explicitly the inertial frame with a static magnetic field. Because the sizes of fluctuations
are much smaller than the belonging area, the Cartesian coordinate system (x, y, z) is taken
for the area.

With the displacement current ignored [65], Maxwell’s equations are

∇·
→
B = 0 (B1)

∇×
→
B = µ0

→
J (B2)
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∇×
→
E = −∂

→
B

∂t
(B3)

where
→
E and

→
B are the electric field strength (V m−1) and the magnetic flux density (T),

→
J is the current density (A m−2), and µ0 is the magnetic permeability (4π × 10−7 N A−2).

The overall current density
→
J flows under a magnetic flux density

→
B , so that the Lorentz

force per unit volume is generated in the following,

→
F L =

→
J ×

→
B (B4)

Substituting for
→
J from Equation (B2) in Equation (B4), we obtain

→
F L =

1
µ0

(
∇×

→
B
)
×
→
B (B5)

By using Equation (B1), an alternative form
→
F L in the tensor notation is

FLi = −
∂

∂xi


∣∣∣∣→B ∣∣∣∣2
2µ0

+
∂

∂xk

(
1

µ0
BiBk

)
(B6)

Then, consider an incompressible fluid at a uniform temperature, so that the basic equations
are given in the following. The momentum equation is

∂ui

∂t
+ uj

∂ui

∂xj
−

Bj

ρµ0

∂Bi

∂xj
= ν∇2ui −

∂

∂xi

P
ρ
+

∣∣∣∣→B ∣∣∣∣2
2µ0ρ

 (B7)

where ui is the velocity component (m s−1) (i = 1, 2, 3), and the coordinate (m) (x, y, z) is
expressed by (x1, x2, x3).ν and ρ are the kinematic viscosity (m2 s−1) and the density (kg
m−3), respectively. In view of an incompressible fluid, the continuity is held.

∂ui

∂xi
= 0 (B8)

If a fluid element has a velocity
→
u , the electric field it will experience is not

→
E , as measured

by a stationary observer, but
→
E +

→
u ×

→
B . In an electrolytic solution, the electricity is carried

by the diffusion as well as conductivity of ionic species, so that the current density will be
given by

→
J = σ∗

(→
E +

→
u ×

→
B
)
− F ∑

i
ziDi∇Ci (B9)

where σ∗ is the electrical conductivity (S m−1) defined by

σ∗ = F2 ∑
i

z2
i λ∗i Ci (B10)

where zi is the charge number, including sign, λ∗i is the mobility (m2 V−1 s−1), F is Faraday
constant (96,500 C mol−1), Ci is the concentration of the ionic species i (mol m−3), and Di
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is the diffusion constant (m2 s−1). Substitution for
→
J from Equation (B2) in Equation (B9)

leads to
→
E =

1
σ∗µ0

∇×
→
B −→u ×

→
B +

1
σ∗

F ∑
i

ziDi∇Ci (B11)

From a formula in the vector analysis, the curl of a potential gradient is equal to zero, so
that the third term on the right-hand side of Equation (B11) disappears.

∇×
→
E = ∇×

(
η∇×

→
B
)
−∇×

(
→
u ×

→
B
)

(B12)

After substituting Equation (B12) into Equation (B3), we finally derive

∂
→
B

∂t
−∇×

(
→
u ×

→
B
)
= −∇×

(
η∇×

→
B
)

(B13)

where η is the resistivity defined by

η ≡ 1
σ∗µ0

(B14)

From a formula in the vector analysis,

∇×
(
∇×

→
B
)
= ∇

(
∇·
→
B
)
−∇2

→
B (B15a)

is held, so that from Equation (B1),

∇×
(
∇×

→
B
)
= −∇2

→
B (B15b)

Substituting Equation (B15b) into Equation (B13), the equation of the magnetic flux
density is rewritten in the tensor notation.

∂Bi

∂t
+

∂

∂xj

(
ujBi − uiBj

)
= η∇2

→
B (B16)

where ∇2 implies ∂2/∂x2
1 + ∂2/∂x2

2 + ∂2/∂x2
3.

Finally, the mass transfer equation of metallic ion is given by

∂Cm

∂t
+
(→

u ·∇
)

Cm = Dm∇2Cm (B17)

where subscript ‘m’ implies the metallic ion.

Appendix C Non-Equilibrium Fluctuations Activated in the Stationary Lower Layer

As the reaction proceeds, the magnetic flux density first fluctuates, expressed by

→
B =

→
B
∗
+
→
b (C1)

where
→
B
∗

is the external magnetic flux density (T) in the absence of the reaction, and
→
b is

the fluctuation (T) by the reaction. The fluctuation of the Lorentz force is written as

fLi =
∂

∂xi

→b ·→B∗
µ0

+ B∗j
∂

∂xj

(
bi

µ0

)
(C2)
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According to Equation (C2), Equation (B7) is rewritten as

∂ui

∂t
+ uj

∂ui

∂xj
−

B∗j
ρµ0

∂bi

∂xj
= ν∇2ui −

∂

∂xi
δξ (C3a)

where B∗j and bi are the j-component of
→
B
∗

and the i-component of
→
b , respectively. In

view of the initial stationary state, ui is the velocity fluctuation component activated by the
Lorentz force fluctuation. The second order smallness ui

(
∂ui/∂xj

)
is disregarded, and

δξ ≡ δP
ρ

+

→
B
∗
·
→
b

ρµ0
(C3b)

where δP denotes the pressure fluctuation.
As a result, the continuity equation, Equation (B8), remains the same. The correspond-

ing fluctuation forms of Equations (B1) and (B16) are supplied by

∂bi

∂xi
= 0 (C4)

and
∂bi

∂t
= B∗j

∂ui

∂xj
+ η∇2bi (C5)

The concentration of the metallic ion is expressed by

Cm = C∗m + cm (C6)

where C∗m and cm are the concentration in the absence of fluctuation (mol m−3) and the
concentration fluctuation (mol m−3), respectively. The mass transfer equation, Equation
(B17), is also rewritten as

∂cm

∂t
+ wLm = Dm∇2cm (C7)

where w denotes the z-component of the velocity u3, and Lm is the average concentration
gradient.

Lm ≡
θ∗∞
〈δc〉

(C8)

where θ∗∞ denotes the concentration difference between the bulk and surface, and 〈δc〉 is
the average diffusion layer thickness (m).

In the tensor notation, the i-component of the current density fluctuation is expressed
from Equation (B2) as

ji =
1

µ0
εijk

∂

∂xj
bk (C9)

where εijk implies the transposition of the tensor. The vorticity ωi is given by

ωi = εijk
∂

∂xj
uk (C10)

After applying εijk∂/∂xj to the k-component of Equation (C3a), we have

∂ωi

∂t
= ν∇2ωi +

B∗j
ρ

∂ji
∂xj

(C11)

where

εijk
∂

∂xj

∂

∂xk
δξ =

(
∂

∂xj

∂

∂xk
− ∂

∂xk

∂

∂xj

)
δξ = 0 (C12)
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Taking the curl of Equation (C11), we have

∂

∂t
∇2ui = ν∇4ui +

B∗j
ρµ0

∂

∂xj
∇2bi (C13)

where the following relationships are used:

εijk
∂

∂xj
ωk = −∇2ui (C14a)

εijk
∂

∂xj
jk = − 1

µ0
∇2bi (C14b)

and from Equation (C10), we have

εijk
∂

∂xj
uk = ωi (C15)

To derive Equations (C14a) and (C14b), the formula

εijkεklm = δilδjm − δimδjl (C16)

is used. Then, the curl of Equation (C5), together with Equations (C9) and (C10), leads to
the following equation.

∂ji
∂t

=
B∗j
µ0

∂ωi
∂xj

+ η∇2 ji (C17)

To extract the z-components from Equations (C5), (C11), (C13), and (C17), the unit
normal vector λi is multiplied to them.

∂bz

∂t
= η∇2bz + B∗j

∂w
∂xj

(C18a)

∂jz
∂t

= η∇2 jz +
B∗j
µ0

∂ωz

∂xj
(C18b)

∂ωz

∂t
= ν∇2ωz +

B∗j
ρ

∂jz
∂xj

(C18c)

∂

∂t
∇2w = ν∇4w +

B∗j
ρµ0

∂

∂xj
∇2bz (C18a)

where bz, jz, ωz, and w denote the z-components of
→
b ,
→
j ,
→
ω, and

→
u , respectively. Equations

(C18a), (C18b), (C18c), and (C18d) describe the electromagnetic induction by the velocity
of the microscopic vortices, electromagnetic induction by the rotation of the vortices, the
rotation induced by the Lorentz force, and the velocity of the vortices induced by the
electromagnetic induction. Then, Equation (C7) expresses the mass transfer enhanced by
them.

We shall restrict our discussion of this problem to the case where magnetic flux density
is imposed vertically to the electrode.

→
B
∗
= (0, 0, B0) (C19)

Therefore, we obtain
∂bz

∂t
= η∇2bz + B0

∂w
∂z

(C20a)
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∂jz
∂t

= η∇2 jz +
B0

µ0

∂ωz

∂z
(C20b)

∂ωz

∂t
= ν∇2ωz +

B0

ρ

∂jz
∂z

(C20c)

∂

∂t
∇2w = ν∇4w +

B0

ρµ0

∂

∂z
∇2bz (C20d)

The mass transfer equation is still given by Equation (C7).

Appendix D Derivation of the Amplitude Equations of the Fluctuations in the
Stationary Lower Layer

For the fluctuations, we assume the following 2D plane waves.

w = W0(z, t) exp
[
i
(
kxx + kyy

)]
(D1a)

ωz = Ω0(z, t) exp
[
i
(
kxx + kyy

)]
(D1b)

bz = K0(z, t) exp
[
i
(
kxx + kyy

)]
(D1c)

jz = J0(z, t) exp
[
i
(
kxx + kyy

)]
(D1d)

cm = Θ0(z, t) exp
[
i
(
kxx + kyy

)]
(D1e)

where W0(z, t), Ω0(z, t), K0(z, t), J0(z, t), and Θ0(z, t) are the amplitudes of the fluctuations,
and kx and ky are the wavenumbers in the x- and y-directions, respectively.

Substituting Equations (D1a)–(D1e) into Equations (C20a)–(C20d) and Equation (C7),
we have (

D2 − k2 − 1
η

∂

∂t

)
K0 = −

(
B0

η

)
DW0 (D2a)

(
D2 − k2 − 1

η

∂

∂t

)
J0 = −

(
B0

µ0η

)
DΩ0 (D2b)

(
D2 − k2 − 1

ν

∂

∂t

)
Ω0 = −

(
B0

ρν

)
DJ0 (D2c)

(
D2 − k2

)(
D2 − k2 − 1

ν

∂

∂t

)
W0 = −

(
B0

µ0ρν

)
D
(

D2 − k2
)

K0 (D2d)

(
D2 − k2 − 1

Dm

∂

∂t

)
Θ0 =

(
Lm

Dm

)
W0 (D2e)

where D ≡ ∂/∂z and k ≡
(

k2
x + k2

y

)1/2
. Since the fluctuations are at a quasi-steady state,

neglecting the time-differential terms, we have(
D2 − k2

)
K0 = −

(
B0

η

)
DW0 (D3a)

(
D2 − k2

)
J0 = −

(
B0

µ0η

)
DΩ0 (D3d)

(
D2 − k2

)
Ω0 = −

(
B0

ρν

)
DJ0 (D3c)
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(
D2 − k2

)2
W0 = −

(
B0

µ0ρν

)
D
(

D2 − k2
)

K0 (D3d)

(
D2 − k2

)
Θ0 =

(
Lm

Dm

)
W0 (D3e)

Substituting Equation (D3b) into Equation (D3c), and using Equation (B14), we have{(
D2 − k2

)2
−QD2

}
Ω0 = 0 (D4a)

Then, substitution of Equation (D3a) into Equation (D3d) leads to{(
D2 − k2

)2
−QD2

}
W0 = 0 (D4b)

where Q implies the magneto-induction coefficient, expressed by

Q ≡
σ∗B2

0
ρν

(D4c)

Here, we introduce a representative length d. Then, let a = kd be the wavenumber in the
non-dimensional unit. We shall, however, let x, y, and z stand for the non-dimensional
coordinates normalized by d, so that the following parameter Q and operator D are changed
as follows.

Q∗ ≡
σ∗B2

0d2

ρν

(
= Qd2

)
(D5a)

D ≡ d
dz

(= Dd) (D5b)

where the coordinate z is in the new unit of length d. Equations (D4a) and (D4b) are
rewritten as {(

D2 − a2
)2
−Q∗D2

}
Ω0 = 0 (D6a)

{(
D2 − a2

)2
−Q∗D2

}
W0 = 0 (D6b)

As shown in Equations (D6a) and (D6b), Ω0 and W0 are independent of each other. This
means that the z-component of the vorticity does not interact with the z-component of
velocity as they are. Both equations are unrelated with external rotations.

Appendix E Microscopic Vortices Induced in the Rotating Upper Layer

The rotating upper layer acts as a reservoir of the vortices in the lower layer. In
the lower layer, due to the pinning effect of downward vortices on the rigid surfaces,
the downward and upward vortices are regularly fixed at the same positions. Through
the boundary between the upper and lower layers, vortices with the same velocities and
vorticities are newly induced in the upper layer, similar to miller images, covering the same
area. Such a process, as shown in Figure 4a, forms a positive feedback cycle.

Due to the low electric conductivity of electrolyte solutions, electromagnetic induction
is neglected, so that we only think of the effects of the Coriolis force and centrifugal force.
Here, let us consider a rotating incompressible fluid accompanied with microscopic vortices.
As shown in Figure 4b, an observer at rest on a frame of reference rotating with the same
angular velocity recognizes two kinds of acceleration [65], i.e.,

→
F R = 2

→
Ω×

→
U − 1

2
∇
(∣∣∣∣→Ω×→r ∣∣∣∣2

)
(E1)
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where
→
Ω is the vector of the angular velocity of the rotating upper layer (s−1),

→
U is the vector

of the velocity (m s−1), and
→
r is the vector of position (m). The term 2

→
Ω×

→
U represents the

Coriolis acceleration and the term −(1/2)∇
(∣∣∣∣→Ω×→r ∣∣∣∣2

)
is the centrifugal force.

The momentum equation is expressed by

∂Ui

∂t
+ Uj

∂Ui

∂xj
= 2εijkUjΩk + ν∇2Ui −

∂

∂xi

(
P
ρ
− 1

2

∣∣∣∣→Ω,×,
→
r
∣∣∣∣2
)

for i = 1, 2, 3 (E2)

In view of the incompressible fluid, the continuity equation is derived.

∂Ui

∂xi
= 0 (E3)

The velocity is expressed by the rotational component U∗i and the vortex component ui, i.e.,

Ui = U∗i + ui (E4a)

Since the observer is rotating with the upper layer, the rotational component is zero.

U∗i = 0 (E4b)

According to the activation, the acceleration in Equation (E1) fluctuates in the following,

fRi = 2εijkUjΩk −
1
2

∂

∂xi

(∣∣∣∣→Ω×→r ∣∣∣∣2
)

(E5)

where the first and second terms on the right-hand side of Equation (E5) denote the
contributions of the Coriolis and centrifugal forces, respectively, where the second term
is equal to zero without fluctuation. The momentum equation of the micro-MHD flow is
written by

∂ui

∂t
= 2εijkujΩk + ν∇2ui −

∂

∂xi

(
δP
ρ

)
(E6)

where the second order of smallness uj
(
∂ui/∂xj

)
is disregarded. Equation (E3) is also

rewritten by
∂ui

∂xi
= 0 (E7)

The potential gradient ∂/∂xi(δP/ρ) in Equation (E6) can be eliminated by applying the
operator εijk∂/∂xj, i.e., taking a curl of Equation (E6).

εijk
∂

∂xj
· ∂

∂xk

(
δP
ρ

)
=

(
∂

∂xj
· ∂

∂xk
− ∂

∂xk
· ∂

∂xj

)(
δP
ρ

)
= 0 (E8)

Using Equations (C16) and (E7), we obtain

εijk
∂

∂xj
·εklmulΩm = Ωj

∂ui

∂xj
(E9)

Taking the curl of (E6) and using Equations (E8) and (E9), we obtain

∂ωi

∂t
= ν∇2ωi + 2Ωj

∂ui

∂xj
(E10)



Magnetochemistry 2022, 8, 71 53 of 66

where the vorticity ωi is defined by Equation (C10) in Appendix C. In the same way, we
have

εijk
∂

∂xj
ωk = −∇2ui (C14a)

and
εijk

∂

∂xj
uk = ωi (C15)

Then, taking the curl of Equation (E10), and using Equations (C14a) and (C15), we finally
have

∂

∂t
∇2ui = ν∇4ui − 2Ωj

∂ωi

∂xj
(E11)

To extract the z-components from Equations (E10) and (E11), multiplying them by the
unit normal vector λi, we have

∂ωz

∂t
= ν∇2ωz + 2Ωj

∂w
∂xj

(E12)

and
∂

∂t
∇2w = ν∇4w− 2Ωj

∂ωz

∂xj
(E13)

where ωz and w denote the z-components of
→
ω and

→
u , respectively.

Considering that a vector of the rotation is an axial vector with z-axis, we can write
the following notation,

→
Ω ≡

(
0, 0, Ω̃

)
(E14)

where Ω̃ denotes the angular velocity of the rotating upper layer. Therefore, we have

∂ωz

∂t
= ν∇2ωz + 2Ω̃

∂w
∂z

(E15)

and
∂

∂t
∇2w = ν∇4w− 2Ω̃

∂ωz

∂z
(E16)

Substituting Equations (D1a) and (D1b) in Appendix D into Equations (E15) and (E16),
we obtain (

D2 − k2 − 1
ν

∂

∂t

)
Ω0 = −

(
2Ω̃
ν

)
DW0 (E17)

and (
D2 − k2

)(
D2 − k2 − 1

ν

∂

∂t

)
W0 =

(
2Ω̃
ν

)
DΩ0 (E18)

where the operator D implies ∂/∂z. Since the fluctuations are in a quasi-steady state,
disregarding the time-differential terms, we have

(
D2 − k2

)
Ω0 = −

(
2Ω̃
ν

)
DW0 (E19a)

and (
D2 − k2

)2
W0 =

(
2Ω̃
ν

)
DΩ0 (E19b)
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Let a = kd be the wavenumber in the non-dimensional. We shall, however, let x, y, z stand
for the coordinates in the new unit of length d. As a result, Equations (E19a) and (E19b) are
changed to (

D2 − a2
)

Ω0 = −T∗DW0 (E20a)

and (
D2 − a2

)2
W0 = d2T∗DΩ0 (E20b)

where D is defined by the new coordinate z as d/dz, and T∗ is the rotation coefficient
expressed by

T∗ ≡ 2Ω̃d
ν

(E20c)

At the upper boundary, the vortices in the lower layer will receive the precessional motions
of the vortices revolving with the upper layer shown in Equations (E20a) and (E20b).

Appendix F Intrinsic Spectrum of the Asymmetrical Fluctuations in 2D Nucleation

Asymmetrical fluctuations arise with electrochemical reactions, accompanied by the
vortices, i.e., micro-MHD flows. On the solution side, the micro-MHD flows prevail over
the fluctuations, so that the spectrum of the fluctuation is controlled by the micro-MHD
flows.

For the micro-MHD flows, the autocorrelation distance of the fluctuation a+ is taken
as a unit of length da, which is defined by the average diffusion layer thickness 〈δc〉 for 2D
nucleation [5].

a+ = da(≡ δc) (F1)

An asymmetrical concentration fluctuation outside the double layer is given by the differ-
ence between the concentration Cm(x, y, z, t) and the bulk concentration C∗m(z = ∞).

cm(x, y, z, t)a ≡ Cm(x, y, z, t)− C∗m(z = ∞) (< 0) (F2)

For cathodic deposition, as shown in Figure 6b, it takes negative values. In the case of an
unstable deposition, after applying a potential step, the fluctuation at the electrode surface
would develop up to its ultimate value, i.e., −θ∗∞, where θ∗∞ implies the concentration
difference between the bulk and surface.

θ∗∞ ≡ C∗m(z = ∞)− C∗m(z = 0) (> 0) (F3)

C∗m(z = 0) is the surface concentration outside the double layer (mol m−3). With the
normalization of θ∗∞, the intrinsic spectrum of the concentration fluctuation controlled by
the micro-MHD flow is represented by

Pint
(
ax, ay

)
≡ 1

XY

∣∣∣Θ0(0, 0)a
∣∣∣2

θ∗2∞
(F4)

where X and Y are the non-dimensional x- and y-lengths of an electrode, respectively, and
ax and ay are non-dimensional wavenumbers in x- and y-directions, respectively. For the
assumption of an isotropic Gaussian distribution with normalization, the spectrum has the
following form.

Pint
(
ax, ay

)
=

1
π

exp
(
−a2

)
(F5)
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where a2 ≡ a2
x + a2

y is defined. The important role of the spectrum is to determine the upper
limits of the amplitude factor functions fa

r (a) and fa
f (a) as a spatial filter. From Equations

(F4) and (F5), the initial amplitude of the concentration fluctuation is expressed by∣∣∣Θ0(0, 0)a
∣∣∣2 =

XY
π

θ∗2∞ exp
(
−a2

)
(F6a)

Then, the average of the amplitude is calculated by〈∣∣∣Θ0(0, 0)a
∣∣∣2 = θ∗2∞

〉
(F6b)

Appendix G Amplitudes of the Asymmetrical Concentration and Concentration
Gradient Fluctuations in 2D Nucleation

In view of the association with all the components of the fluctuations, from Rayleigh’s
theorem, the mean squares (ms) of the fluctuations concerning the electrode surface are
expressed by the mean squares of the amplitudes regarding the wavenumbers.〈∣∣cm(x, y, 0, t)a∣∣2〉 =

1
XY

∫ ∞

−∞

∫ ∞

−∞

∣∣∣Θ0(0, t)a
∣∣∣2daxday

(
≡
〈∣∣∣Θ0(0, t)a

∣∣∣2〉) (G1)

where X and Y are the non-dimensional x- and y-lengths of the electrode. Since two types
of fluctuations on the rigid and free surfaces take part in a reaction, the initial amplitude of
the concentration is divided into the rigid and free surface components.∣∣∣Θ0(0, 0)a

∣∣∣2 =
∣∣∣Θ0

r (0, 0)a
∣∣∣2 + ∣∣∣Θ0

f (0, 0)a
∣∣∣2 (G2a)

where subscripts ‘r’ and ‘f’ imply the rigid surface and free surface, respectively. Each
component is expressed by the total amplitude.

Θ0
j (0, 0)a = αa

j Θ0(0, 0)a for j = r or f (G2b)

where αa
j denotes the ratio of each initial component to the total amplitude. Substituting

Equation (G2b) into Equation (G2a), we have

αa2
r + αa2

f = 1 (G2c)

As initially discussed, in the present case, all the fluctuations arise from a stationary state,
so that the concentration fluctuations on the rigid and free surfaces as well as the rigid and
free surface vortices make equal contributions to the nucleation, i.e., αa

r = αa
f =
√

2/2 is
derived. The mean square of the concentration gradient fluctuation is defined by〈∣∣∣∣{ ∂

∂z
cm(x, y, 0, 0)a

}
z=0

∣∣∣∣2
〉

=

(
θ∗∞
〈δc〉

)2(
≡
〈∣∣∣DΘ0(0, 0)a

∣∣∣2〉) (G3)

In the same way as that of Equation (G2a), we derive the following relationship.∣∣∣DΘ0(0, 0)a
∣∣∣2 =

∣∣∣DΘ0
r (0, 0)a

∣∣∣2 + ∣∣∣DΘ0
f (0, 0)a

∣∣∣2 (G4)

Here, D ≡ d/dz is defined, and z stands for the coordinate in the new unit of length da

shown in Equation (F1).

(a) For a rigid surface:
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With Equations (45c)–(45e), Equation (27c) is rewritten as

Θ0
r (0, t)a = −

βa
1
{

16Q∗aT∗ag5(a) + S∗aR∗ag6(a)
}

8zmFDmQ∗aS∗aT∗ag4(a)
(G5a)

where βa
1 represents the vorticity coefficient of the rigid surface vortices in 2D nucleation,

which is a function of time. The other coefficients in 2D nucleation are defined as

R∗a ≡ Lmda2

Dm
(G5b)

Q∗a ≡
σ∗B2

0da2

ρνa (G5c)

T∗a ≡ 2Ω̃da

νa (G5d)

and
S∗a ≡ B0da

ρνa (G5e)

da and νa are the representative lengths in 2D nucleation and the kinematic viscosity of the
bulk solution, respectively. In view of Equation (46a), substitution of Equation (45b) into
Equation (G5a) leads to

Θ0
r (0, t)a = − 2fa

r (a)−1

zmFDmS∗a
βa

1(t) (G6)

where fa
r (a) denotes the amplitude factor function of the rigid surface vortices in 2D

nucleation.

f0
r (a) =

16Q∗ag4(a)
16Q∗ag5(a) + S∗aT∗a−1R∗ag6(a)

(45b)

Then, substituting Equations (F6a) and (G6) into Equation (G2b), we have

|βa
1(0)| = |γa

1|fa
r (a) exp

(
− a2

2

)
(G7a)

where the constant of the vorticity coefficient of the rigid surface vortex in the 2D nucleation
is expressed by

γa
1 ≡

1
2

αa
r

(
XY
π

) 1
2
zmFDmθ∗∞S∗a (G7b)

Then, substituting Equations (G7a) and (46a) into Equation (G6), we have

∣∣∣Θ0
r (0, t)a

∣∣∣ = 2
∣∣γa

1

∣∣
zmFDm|S∗a|

exp
(
− a2

2

)
exp(pa

r t) (G8a)

where pa
r implies the amplitude factor of the rigid surface vortex. Finally, by substituting

Equations (G7a) and (46a) into Equation (27a), we have

∣∣∣DΘ0
r (0, t)a

∣∣∣ = 2
∣∣γa

1

∣∣fa
r (a)

zmFDm|S∗a|
exp

(
− a2

2

)
exp(pa

r t) (G8b)

(b) For a free surface:

Substitution of Equations (47c)–(47e) into Equation (28c) leads to

Θ0
f (0, t)a =

aβa
0
{

16Q∗aT∗ag2(a) + S∗aR∗ag3(a)
}

8zmFDmQ∗aS∗aT∗ag1(a)
(G9a)
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where βa
0 implies the vorticity coefficient of the free surface vortices in the 2D nucleation,

which is also a function of time. Then, substituting Equation (47b) into Equation (G9a), we
have

Θ0
f (0, t)a =

2afa
f (a)−1

zmFDmS∗a
βa

0(t) (G9b)

where fa
f (a) represents the amplitude factor function of the free surface vortices in 2D

nucleation.

fa
f (a) =

16Q∗ag1(a)
16Q∗ag2(a) + S∗aT∗a−1R∗ag3(a)

(47b)

Furthermore, we substitute Equation (F6a) and Equation (G9b) into Equation (G2b), and
we have

|βa
0(0)| = |γa

0|fa
f (a)a−1 exp

(
− a2

2

)
(G10a)

where the constant of the vorticity coefficient of the free surface vortex in the 2D nucleation
is given by

γa
0 ≡

1
2

αa
f

(
XY
π

) 1
2
zmFDmθ∗∞S∗a (G10b)

Then, substituting Equations (G10a) and (48a) into Equation (G9b), we have

∣∣∣Θ0
f (0, t)a

∣∣∣ = 2
∣∣γa

0

∣∣
zmFDm|S∗a|

exp
(
− a2

2

)
exp(pa

f t) (G11a)

where pa
f implies the amplitude factor of the free surface vortex. Finally, by substituting

Equations (G10a) and (48a) into Equation (28a), we have

∣∣∣DΘ0
f (0, t)a

∣∣∣ = 2
∣∣γa

0

∣∣fa
f (a)

zmFDm|S∗a|
exp

(
− a2

2

)
exp(pa

f t) (G11b)

Appendix H Amplitude Equations of x- and y-Components of the Velocity
Fluctuation

Supposing that the x- and y-components of the velocity fluctuations u and v are
expressed by the stream functions φs and ψs, we have the following equations,

u =
∂φs

∂x
− ∂ψs

∂y
(H1)

and
v =

∂φs

∂y
+

∂ψs

∂x
(H2)

Inserting Equations (H1) and (H2) into the continuity equation for an incompressible fluid,

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0 (H3)

we obtain the gradient of the z-component w of the velocity fluctuation.

∂w
∂z

= −
(

∂2

∂x2 +
∂2

∂y2

)
φs (H4)

Here, the z-component of the vorticity fluctuation is defined by

ωz ≡
∂v
∂x
− ∂u

∂y
(H5)
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Substituting Equations (H1) and (H2) into (H5), we have

ωz =

(
∂2

∂x2 +
∂2

∂y2

)
ψs (H6)

Then, Equations (H4) and (H6) are changed to the following amplitude equations by the
2D Fourier transform.

∂W0

∂z
= a2Φ0

s (H7)

Ω0 = −a2Ψ0
s (H8)

where Φ0
s and Ψ0

s are the amplitudes of the stream functions φs and ψs, respectively.

The non-dimensional wave number a is equal to
(

a2
x + a2

y

)1/2
. After taking the Fourier

transform of Equations (H1) and (H2) concerning x and y, then substituting Equations (H7)
and (H8) into the resulting equations, we obtain the amplitude equations of the x- and
y-components of the velocity fluctuations U0 and V0, as follows.

U0 =
1
a2

(
∂2W0

∂x∂z
+

∂Ω0

∂y

)
(H9)

V0 =
1
a2

(
∂2W0

∂y∂z
− ∂Ω0

∂x

)
(H10)

Therefore, by determining the amplitudes of the z-components of the velocity and vorticity
W0 and Ω0, we can calculate the amplitudes of the x- and y-components of the velocity.

Appendix I Solutions of the Amplitudes W0 and Ω0 of the Fluctuations of Velocity
and Vorticity in the Lower Layer

Since the scale of length d
(
≈ 10−4 m

)
and the electric conductivity σ∗

(
≈ 10 S m−1

)
are small, in an electrolytic system, the non-dimensional parameter Q∗ of electromagnetic
induction can be disregarded (electrochemical approximation). However, to protect against
a mistake according to the degeneration of the solution when neglecting Q∗, the equations
to solve are treated with a limiting value of Q∗.{(

D2 − a2
)2
−Q∗D2

}
Ω0 = 0 (D6a)

and {(
D2 − a2

)2
−Q∗D2

}
W0 = 0 (D6b)

As shown above, Ω0 and W0 satisfy the same equation form. This means that both of them
are expressed by the same function form.

We assume the function form of W0 in the following,

W0 = f(z, t)e±az (I1)

Namely, for z� a−1, W0 follows e±az, whereas for z� a−1, W0 depends on f(z, t), which
is expressed by

f(z, t) = α0 + α1z + α2z + · · · = ∑i=1 αi−1zi−1 (I2)

where αi−1 is defined as a function of time. Here, for convenience, we derive the following
two formulas.

Dnf(z, t) = ∑i=1
(n + i− 1)!
(i− 1)!

αn+i−1zi−1 (I3a)
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and
DnW0 = e±az(D± a)nf(z, t) (I3b)

where n ≥ 0 is required. Using Equation (I3b), we can easily rewrite the left-hand side of
Equation (D6b).{(

D2 − a2
)2
−Q∗D2

}
W0 = e±az

{
D4 ± 4aD3 + 4a2D2 ∓ 2Q∗aD−Q∗a2

}
f(z, t) (I4)

where for almost all a’s, a2 � Q∗ is considered. Using Equation (I3a), we furthermore
rewrite Equation (I4) as{(

D2 − a2
)2
−Q∗D2

}
W0

= e±az ∑i=1

[
(i+3)!
(i−1)! αi+3 ± 4 (i+2)!

(i−1)! αi+2a + 4 (i+1)!
(i−1)! αi+1a2 ∓ 2 i!

(i−1)! Q
∗αia−Q∗αi−1a2

]
zi−1

(I5)

Equation (D6b) is therefore expressed by

∑i=1

[
(i + 3)!
(i− 1)!

αi+3 ± 4
(i + 2)!
(i− 1)!

αi+2a + 4
(i + 1)!
(i− 1)!

αi+1a2 ∓ 2
i!

(i− 1)!
Q∗αia−Q∗αi−1a2

]
zi−1 = 0 (I6)

In Equation (I6), inserting i = 1 and α3 = α4 = 0, we first obtain the constant term,

8α2a2 ∓ 2Q∗α1a−Q∗α0a2 = 0 (I7)

From Equation (I7), we have

α2 =
Q∗

8a
(α0a± 2α1) (I8)

With Equation (I8), the function f(z, t) in Equation (I2) is expressed by

f(z, t) = α0 + α1z +
Q∗

8a
(α0a± 2α1)z2 (I9)

As mentioned above, in the present case, due to the low electric conductivity and the small
scale of length, we adopt the following condition,

Q∗ � a (I10)

So, we can approximate f(z, t) by

f(z, t) = α0 + α1z (I11)

From Equation (I1), the general equation of W0 is thus provided by

W0(z, t) = (α0 + α1z)eaz + (α2 + α3z)e−az (I12)

where α0, α1, α2, and α3 are arbitrary constants, which will be expressed by the functions of
time. On the right-hand side of Equation (I12), the first term of eaz and the second term of
e−az correspond to the components surviving and disappearing at the outer boundaries of
the vortices, respectively.

The vorticity is also activated at the upper boundary, and in view of the boundary
conditions Equations (11a) and (11b), two arbitrary constants are necessary. This means
that the vorticity depends only on eaz, so that Ω0 is expressed by

Ω0(z, t) = (β0 + β1z)eaz (I13)

where β0 and β1 are arbitrary constants.
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Using the formula Equations (I3a) and (I3b), we obtain the following relationships:

DW0(z, t) = {α0a + α1(1 + az)}eaz + {−α2a + α3(1− az)}e−az (I14a)

and

D2W0(z, t) =
{

α0a2 + α1(2 + az)a
}

eaz +
{

α2a2 + α3(−2 + az)a
}

e−az (I14b)

Then, from Equation (I13), we have

DΩ0(z, t) = {β0a + β1(1 + az)}eaz (I15a)

and
D2Ω0(z, t) = a{β0a + β1(2 + az)}eaz (I15b)

Appendix J Solution of the Amplitude Θ0 of the Concentration Fluctuation in the
Lower Layer

The solution Θ0 is expressed by two kinds of solutions, i.e., general and special. From
Equation (D3e), the general solution is obtained by the non-dimensional equation.(

D2 − a2
)

Θ0
g = 0 (J1a)

In terms of the boundary condition in Equation (14b), Θ0 → 0 for z→ 1, we have

Θ0
g = A1e−az (J1b)

where A1 implies an arbitrary constant. The special solution will be obtained from the
equation. (

D2 − a2
)

Θ0
s = R∗W0 (J2a)

where R∗ is the mass transfer coefficient defined by

R∗ ≡ Lmd2

Dm
(J2b)

The solution is formally expressed by

Θ0
s =

R∗(
D2 − a2

)W0 (J3)

Using the following formulas,

1(
D2 − a2

)(ze±az) = ± 1
8a3

(
2a2z2 ∓ 2az + 1

)
e±az (J4a)

1(
D2 − a2

)(e±az) = − 1
4a2 (∓2az + 1)e±az (J4b)

Substituting Equation (I12) into Equation (J3) and using Equations (J4a) and (J4b), we have

Θ0
s =

R∗

8a3

[{
−2α0a(−2az + 1) + α1

(
2a2z2 − 2az + 1

)}
eaz +

{
−2α2a(2az + 1)− α3

(
2a2z2 + 2az + 1

)}
e−az

]
(J5)

The solution of Θ0 is expressed by
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Θ0(z, t) = Θ0
g(z, t) + Θ0

s(z, t)
= A1e−az + R∗

8a3

{
−2α0a(−2az + 1) + α1

(
2a2z2 − 2az + 1

)}
eaz

+
{
−2α2a(2az + 1)− α3

(
2a2z2 + 2az + 1

)}
e−az

(J6)

Therefore, we have

DΘ0(z, t) = −aA1e−az

+ R∗
8a2

[{
2α0a(2az + 1) + α1

(
2a2z2 + 2az− 1

)}
eaz

+
{

2α2a(2az− 1) + α3
(
2a2z2 − 2az− 1

)}
e−az] (J7a)

and
DΘ0(0, t) = −aA1 +

R∗

8a2 (2α0a− α1 − 2α2a− α3) (J4b)

Then, we also have

Θ0(0, t) = A1 +
R∗

8a3 (−2α0a + α1 − 2α2a− α3) (J7c)

To determine the arbitrary constants, i.e., A1, α0, α1, α2, and α3 of Θ0(0, t) and
DΘ0(0, t), the amplitude of the current density fluctuation J0 is solved. Due to the low elec-
tric conductivity, the contribution of the electromagnetic induction to the current density is
negligible, so Equation (D3b) is approximated by(

D2 − a2
)

J0 = 0 (J8)

On the other hand, the vorticity is controlled by the fluctuation of the current density
through Equation (D3c), which is rewritten with the non-dimensional wavenumber a as(

D2 − a2
)

Ω0 = −S∗DJ0 (J9a)

where S∗ represents the magneto-viscosity coefficient defined by

S∗ ≡ B0d
ρν

(J9b)

From Equation (J8), the function form of J0 is provided by

J0 = B1eaz (J10)

where B1 implies an arbitrary constant, and J0 satisfies Equation (14a). Here, Equations
(I13) and (I15b) provide the following identity, i.e.,(

D∗2 − a2
)

Ω0 = 2β1aeaz (J11)

Substituting Equations (J10) and (J11) into Equation (J9a), we have

B1 = −2β1

S∗
(J12)

Then, inserting Equation (J10) into Equation (14a), we obtain

B1 = −zmFDmDΘ0(0, t) (J13)
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Substituting for B1 from Equation (J12) in Equation (J13), we have

DΘ0(0, t) =
2β1

zmFDmS∗
(J14)

Substituting Equation (J14) into Equation (J7b), we have

A1 = − 2β1

zmFDmS∗a
+

R∗

8a3 (2α0a− α1 − 2α2a− α3) (J15)

Substitution for A1 from Equation (J15) in Equation (J7c), we finally obtain

Θ0(0, t) = − 2β1

zmFDmS∗a
− R∗

4a3 (2α2a + α3) (J16)

Appendix K Derivation of the x- and y-Components of the Velocity in the Lower
Layer in 2D Nucleation

Using the relationships ∂/∂x = iax, ∂/∂y = iay and d/dz ≡ D, from Equations (H9)
and (H10) in Appendix H, we obtain the amplitudes of the x- and y-components of the
velocity.

U0a
j = i· 1

a2

(
axDW0a

j + ayΩ0a
j

)
for j = r or f (K1a)

V0a
j = i· 1

a2

(
ayDW0a

j − axΩ0a
j

)
for j = r or f (K1b)

The unit imaginary number i introduced implies that the x- and y-components u and
w are normal to the z-components w and ωz.

(a) For the rigid surface:

The gradient of the amplitude of the z-component of the velocity is explicitly expressed
as follows; from Equation (61a), we have

DW0
r (z, t)a = 2Ar(a) exp(pa

r t)[a{α∗a0r (a) + α∗a1r (a)z}cos h az + α∗a1r (a)sin h az− a(1− az)α∗a0r (a) exp(−az)]Ra
d (K2a)

From Equation (61b), we obtain the amplitude of the z-component of the vorticity.

Ω0
r (z, t)a = Ar(a) exp(pa

r t)z exp(az)Ra
d (K2b)

where Ar(a) is defined by

Ar(a) ≡ γa
1fa

r (a) exp
(
− a2

2

)
(K2c)

Substituting Equations (K2a) and (K2b) into Equations (K1a) and (K1b), we obtain the
explicit forms of U0

r (z, t)a and V0
r (z, t)a.

U0
r (z, t)a = i·a−2 Ar(a) exp(pa

r t)
[
2axa

{
α∗a0r (a) + α∗a1r (a)z

}
cos h az + 2axα∗a1r (a)sin h az

−2axa(1− az)α∗a0r (a) exp(−az) + ayz exp(az) ∗ Ra
d

(K3a)

and

V0
r (z, t)a = i·a−2 Ar(a) exp(pa

r t)
[
2aya

{
α∗a0r (a) + α∗a1r (a)z

}
cos h az + 2ayα∗a1r (a)sin h az

−2aya(1− az)α∗a0r (a) exp(−az)− axz exp(az)
]
Ra

d
(K3b)

(b) For the free surface:

The gradient of the amplitude of the z-component of the velocity is explicitly expressed
as follows; from Equation (64a), we have
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DW0
f (z, t)a = 2a−1 Af(a) exp(pa

f t)[{aα∗a0f (a) + α∗a1f (a)}cos h az + aα∗a1f (a)z sin h az]Ra
d (K4a)

From Equation (64b), we obtain the z-component of the amplitude of the vorticity.

Ω0
f (z, t)a = a−1 Af(a) exp(pa

f t)(1− az) exp(az)Ra
d (K4b)

where we have

Af(a) ≡ γa
0fa

f (a) exp
(
− a2

2

)
(K4c)

Substituting Equations (K4a) and (K4b) into Equations (K1a) and(K1b), we have

U0
f (z, t)a = i·a−3 Af(a) exp(pa

f t)
[
2ax{aα∗a0f (a) + α∗a1f (a)}cos h az + 2axaα∗a1f (a) z sin h az + ay(1− az) exp(az)

]
Ra

d (K5a)

and

V0
f (z, t)a = i·a−3 Af(a) exp(pa

f t)
[
2ay{aα∗a0f (a) + α∗a1f (a)}cos h az + 2ayaα∗a1f (a)z sin h az− ax(1− az) exp(az)

]
Ra

d (K5b)

Due to the unit imaginary number i, U0
r (z, t)a and V0

r (z, t)a change their phases from
even to odd, whereas U0

f (z, t)a and V0
f (z, t)a change their phases from odd to even. As a

result, the free and rigid surface components are embedded into the real and imaginary
parts of the complex amplitude, as follows:

CU0(z, t)a = −U0
f (z, t)a∗(even) + i·U0

r (z, t)a∗(odd) (K6a)

and
CV0(z, t)a = −V0

f (z, t)a∗(even) + i·V0
r (z, t)a∗(odd) (K6b)

where the sign ‘*’ means the real component without i. From the relation i2 = −1, minus
signs are added to the free surface components.

The complex amplitudes of the x- and y-components of the velocity and vorticity
fluctuations are transformed by the complex Fourier inversion to the complex x- and
y-components of the velocity and vorticity fluctuations.

Cu(x, y, z, t)a =
1

2π

∫ ∞

−∞

∫ ∞

−∞
C U0(z, t)a exp

[
−i
(
axx + ayy

)]
daxday (K7a)

and
Cv(x, y, z, t)a =

1
2π

∫ ∞

−∞

∫ ∞

−∞
CV0(z, t)a exp

[
−i
(
axx + ayy

)]
daxday (K7b)

where the x- and y-components of a complex velocity fluctuation, with respect to the x-
and y-coordinates, are obtained as follows,

Cu(x, y, z, t)a = −uf(x, y, z, t)a(even) + i·ur(x, y, z, t)a(odd) (K8a)

and
C v(x, y, z, t)a = −vf(x, y, z, t)a(even) + i·vr(x, y, z, t)a(odd) (K8b)

The total components of the velocity are described by the odd and even functions.

u(x, y, z, t)a = ur(x, y, z, t)a(odd) + uf(x, y, z, t)a(even) (K9a)

and
v(x, y, z, t)a = vr(x, y, z, t)a(odd) + vf(x, y, z, t)a(even) (K9b)
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